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Abstract Historically, much of the theory and practice in nonlinear optimization
has revolved around the quadratic models. Though quadratic functions are nonlinear
polynomials, they are well structured and many of them are found easy to deal with.
Limitations of the quadratics, however, become increasingly binding as higher-degree
nonlinearity is imperative in modern applications of optimization. In recent years, one
observes a surge of research activities in polynomial optimization, and modeling with
quartic or higher-degree polynomial functions has been more commonly accepted. On
the theoretical side, there are also major recent progresses on polynomial functions
and optimization. For instance, Ahmadi et al. (Math Program Ser A 137:453–476,
2013) proved that checking the convexity of a quartic polynomial is strongly NP-hard
in general, which settles a long-standing open question. In this paper, we proceed
to study six fundamentally important convex cones of quartic forms in the space of
super-symmetric tensors, including the cone of nonnegative quartic forms, the sums of
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squared forms, the convex quartic forms, and the sums of fourth-power forms. It turns
out that these convex cones coagulate into a chain in a decreasing order with varying
complexity status. Potential applications of these results to solve highly nonlinear
and/or combinatorial optimization problems are discussed.

Keywords Cone of polynomial functions · Super-symmetric tensors · Nonnegative
quartic forms · Sums of squares · SOS-convexity · Polynomial optimization

Mathematics Subject Classification 15A69 · 08A40 · 90C25 · 49N15

1 Introduction

Checking the convexity of a quadratic function boils down to test the positive semi-
definiteness of its Hessian matrix in the domain. Since the Hessian matrix is constant,
the test can be done easily. A natural question thus arises:

Given a fourth-degree polynomial function in n variables, can one still easily
tell if the function is convex or not?

This simple-looking question was first put forward by Shor [39] in 1992, which
turned out later to be a very challenging question to answer. For almost two decades,
the question remained open. Only until recently Ahmadi et al. [2] proved that checking
the convexity of a general quartic polynomial function is actually strongly NP-hard.
The result not only settled this particular open problem, but also helped to highlight a
crucial difference between quartic and quadratic polynomials, which makes the study
of quartic polynomials all the more compelling and interesting.

On the practical side, quartic polynomial optimization has a wide spectrum of
applications, including sensor network localization [6], MIMO radar waveform opti-
mization [12], portfolio management with high moments information [27], quantum
entanglement [16], among many others. This has stimulated a burst of recent research
activities with regard to quartic polynomial optimization. Due to the NP-hardness of
quartic polynomial optimization models (see, for example, [19,31,36]), there is a
considerable amount of recent research work devoted to approximation algorithms for
solving various quartic polynomial optimizationmodels. Luo andZhang [36] proposed
an approximation algorithm for optimization of a quartic polynomial with quadratic
constraints. Ling et al. [34] considered a special quartic optimizationmodel,which is to
minimize a biquadratic function over two spheres. He et al. [19,20] extended the study
to arbitrary degree polynomials. So [49] improved some of the approximation bounds
presented in [19]. For a comprehensive survey on the topic, onemay refer to the mono-
graph of Li et al. [31]. Another well-studied approach to cope with general polynomial
optimization problems is the so-called SOS method proposed by Lasserre [28] and
Parrilo [40]. Theoretically, it can solve any general polynomial optimization model to
any given accuracy through resorting to a sequence of semidefinite programs (SDP).
However, the size of those SDP problems may grow large very quickly. Interested
readers may find more information in the survey paper [29] and the references therein.
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There is an intrinsic connection between optimizing a polynomial function and
the description of all polynomial functions that are nonnegative over a given domain.
For the case of quadratic polynomials, this connection was explored by Sturm and
Zhang [50], and later for the biquadratic case by Luo et al. [35]. Such investigations
can be traced back to the nineteenth century when the relationship between non-
negative polynomials and the sums of squares (SOS) of polynomials was explicitly
studied. One concrete question of interest was: Given a multivariate polynomial func-
tion that takes only nonnegative values over the real numbers, can it be represented as
a sum of squares of polynomial functions? Hilbert [22] in 1888 showed that the only
three general classes of polynomial functions for which this is true can be explicitly
identified: (1) univariate polynomials; (2) multivariate quadratic polynomials; and (3)
bivariate quartic polynomials. Since polynomial functions with a fixed degree form
a vector space, and the nonnegative polynomials and the SOS polynomials form two
convex cones, respectively, within that vector space, the aforementioned results can
be understood as a specification of three particular cases where these two convex
cones coincide, while in general of course the cone of nonnegative polynomials is
larger. There are certainly other interesting convex cones in the same vector space. For
instance, the convex polynomial functions form yet another convex cone in that vector
space. Helton and Nie [21] introduced the notion of SOS-convex polynomials, to indi-
cate the polynomials whose Hessian matrix can be decomposed as a sum of squares
of polynomial matrices. All these classes of convex cones are important in their own
rights. They are also important for the sake of optimization of polynomial functions.
There have been substantial recent progresses along this direction. As we mentioned
earlier, for example, the question of Shor [39] regarding the complexity of deciding
the convexity of a quartic polynomial was nicely settled by Ahmadi et al. [2]. It is also
natural to inquire if the Hessian matrix of a convex polynomial is SOS. Ahmadi and
Parrilo [3] gave an example to show that this is not the case in general. Blekherman
proved that a nonnegative convex polynomial is not necessary a sum of squares [7]
if the degree of the polynomial is larger than two. However, Blekherman’s proof is
not constructive, and it remains an open problem to construct a concrete example of
convex polynomial which is not a sum of squares. Reznick [45] studied the sum of
even powers of linear forms, the sum of squares of forms, and the positive semidefinite
forms.

Compared to the quadratic case (cf. Sturm and Zhang [50]), the structure of the
quartic forms is far from being clear, and many solvable quadratic problems become
NP-hard when the scope of polynomials goes beyond quadratics. We believe that the
class of quartic polynomial functions (or the class of fourth-order tensors) is an appro-
priate subject of study on its own right, beyond quadratic functions (ormatrices). There
are at least three immediate reasons to elaborate on the quartic polynomials, rather
than polynomial functions of other (or general) degrees. First of all, nonnegativity
is naturally associated with even-degree polynomials, and the quartic polynomial is
next to quadratic polynomial in that hierarchy. Second, quartic polynomials represent
a landscape after the ‘phase transition’ takes place. Moreover, dealing with quartic
polynomials is still manageable, as far as notations are concerned. Finally, from an
application point of view, quartic polynomial optimization is by far the most relevant
polynomial optimization model beyond quadratic polynomials. The aforementioned
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applications such as kurtosis risks in portfolio management [27], the biquadratic opti-
mization models [34], and the nonlinear least-square formulation of sensor network
localization [6] are all such examples.

In view of the cones formed by the quartic polynomials (e.g., the cones of nonneg-
ative quartic forms, the convex quartic forms, the SOS forms, and the SOS-convex
forms), it is natural to inquire about their relational structures, complexity status, and
the description of their interiors. We aim to conduct a systematic study on these topics
in this paper, to bring together many of the known results in the context of our new
findings, and to present them in a self-contained manner. For some historical rea-
sons, results in that direction are usually presented in the framework of polynomials;
however, in this paper the chosen space is super-symmetric tensors, which is more ver-
satile and also naturally connects to linear algebra. In this paper, due to the one-to-one
correspondence between super-symmetric tensors and homogenous polynomials, we
provide various characterizations of several important convex cones in the fourth-order
super-symmetric tensor space and present their relational structures and complexity
status. Therefore, our results can be helpful in tensor optimization (see [13,51] for
recent development in sparse or low rank tensor optimization) as well. We also moti-
vate the study by some examples from applications. The contributions of this paper
are summarized in Sect. 2.3.

2 Preliminaries

2.1 Notations

Throughout this paper, we use the lower-case letters to denote vectors (e.g., x ∈ Rn),
the capital letters to denote matrices (e.g., A ∈ Rn2 ), and the capital calligraphy letters
to denote fourth-order tensors (e.g., F ∈ Rn4 ), with subscripts of indices being their
entries (e.g., x1, Ai j ,Fi jk� ∈ R). The boldface capital letters are reserved for sets in
the Euclidean space, e.g., various sets of quatric forms to be introduced later, as well
as Rn4 , the space of n-dimensional fourth-order tensors.

A generic quartic form is a fourth-degree homogeneous polynomial function in n
variables, or specifically the function

f (x) =
∑

1≤i≤ j≤k≤�≤n

Gi jk� xi x j xk x�, (1)

where x = (x1, . . . , xn)T ∈ Rn . Closely related to a quartic form is a fourth-order
super-symmetric tensor F ∈ Rn4 . A tensor is said to be super-symmetric if its entries
are invariant under all permutations of its indices. The set of n-dimensional super-
symmetric fourth-order tensors is denoted by Sn4 . In fact, super-symmetric tensors
are bijectively related to forms. In particular, restricting to fourth-order tensors, for
a given super-symmetric tensor F ∈ Sn4 , the quartic form in (1) can be uniquely
determined by the following operation:

f (x) = F(x, x, x, x) :=
∑

1≤i, j,k,�≤n

Fi jk� xi x j xk x�, (2)
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where x ∈ Rn , Fi jk� = Gi jk�/|Π(i jk�)|, and Π(i jk�) is the set of all distinctive per-
mutations of the indices {i, j, k, �}, and vice versa. This is the same as the one-to-one
correspondence between symmetric matrices and quadratic forms. In the remainder
of this paper, we shall frequently use a super-symmetric tensor F ∈ Sn4 to indicate a
quartic form f (x) or F(x, x, x, x), i.e., the notion of “super-symmetric fourth-order
tensor” and “quartic form” are used interchangeably in this paper.

Given a quartic form F ∈ Sn4 and a matrix X ∈ Rn2 , we may also define the
following operation (in the same spirit as (2)):

F(X, X) :=
∑

1≤i, j,k,�≤n

Fi jk� Xi j Xk�.

We call a fourth-order tensor G ∈ Rn4 partial-symmetric, if

Gi jk� = G j ik� = Gi j�k = Gk�i j ∀ 1 ≤ i, j, k, � ≤ n.

Essentially, this means that the tensor is symmetric for the first and the last two
indices, respectively, and is also symmetric by swapping the first two and the last two
indices. The set of all partial-symmetric fourth-order tensors in Rn4 is denoted by−→
S n4 . Obviously Sn4 �

−→
S n4 � Rn4 if n ≥ 2.

For any fourth-order tensor G ∈ Rn4 , we introduce a symmetrization mapping
sym : Rn4 �→ Sn4 , which is F = sym G with

Fi jk� = 1

|Π(i jk�)|
∑

π∈Π(i jk�)

Gπ ∀ 1 ≤ i, j, k, � ≤ n,

which is the average of all the entries within the same set of indices. Note that this
is different from the tensor symmetrization mapping proposed in [43], where the
symmetry is realized by carefully imbedding the original tensor and its ‘transposes’
into a tensor in a larger dimension.

For any given set S, Int (S) denotes the interior of S. The symbol ‘⊗’ represents
the outer product of vectors or matrices. If F = x ⊗ x ⊗ x ⊗ x for some x ∈ Rn , then
Fi jk� = xi x j xk x�; and if G = X ⊗ X for some X ∈ Rn2 , then Gi jk� = Xi j Xk�. The
symbol ‘•’ denotes the operation of inner product. As a result, we haveF(x, x, x, x) =
F • (x ⊗ x ⊗ x ⊗ x).

2.2 Introducing the Quartic Forms

In this subsection,we shall formally introduce the quartic forms in the super-symmetric
fourth-order tensor space. Let us start with the well-known notion of positive semi-
definite (PSD) and the sum of squares (SOS) of polynomials.

Definition 2.1 A quartic form F ∈ Sn4 is called PSD if

F(x, x, x, x) ≥ 0 ∀ x ∈ Rn . (3)
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The set of all PSD forms in Sn4 is denoted by Sn4+ .

If a quartic formF ∈ Sn4 can bewritten as a sumof squares of polynomial functions,
then these polynomials must be quadratic forms, i.e.,

F(x, x, x, x) =
m∑

i=1

(
xT Ai x

)2 = (x ⊗ x ⊗ x ⊗ x) •
m∑

i=1

Ai ⊗ Ai ,

where Ai ∈ Sn2 , the set of symmetric matrices. However,
∑m

i=1

(
Ai ⊗ Ai

) ∈ −→
S n4 is

only partial-symmetric, andmay not be exactlyF , whichmust be super-symmetric. To
place it in the family Sn4 , a symmetrization operation is required. Since x ⊗ x ⊗ x ⊗ x
is super-symmetric, we still have

(x ⊗ x ⊗ x ⊗ x) • sym

(
m∑

i=1

Ai ⊗ Ai

)
= (x ⊗ x ⊗ x ⊗ x) •

m∑

i=1

Ai ⊗ Ai

= F(x, x, x, x).

Definition 2.2 A quartic form F ∈ Sn4 is called SOS if F(x, x, x, x) is a sum of
squares of quadratic forms, i.e., there exist m symmetric matrices A1, . . . , Am ∈ Sn2

such that

F = sym

(
m∑

i=1

Ai ⊗ Ai

)
=

m∑

i=1

sym
(

Ai ⊗ Ai
)

.

The set of SOS forms in Sn4 is denoted by �2
n,4.

As all SOS forms constitute a convex cone, we have

�2
n,4 = sym cone

{
A ⊗ A | A ∈ Sn2

}
.

In general, for a given F = sym
(∑m

i=1 Ai ⊗ Ai
)
it may be a challenge to write

it explicitly as a sum of squares, although the construction can be done in princi-
ple through SDP, which however may be costly. In this sense, having an SOS form
expressed as a super-symmetric tensor may not always be beneficial, since the super-
symmetry can hide the SOS structure. It is possible that F ∈ �2

n,4 cannot be written
in the form of

∑m
i=1 Ai ⊗ Ai for any Ai ’s (without the symmetrization mapping).

For instance, consider an SOS quartic form in two variables: 6x12x22. After sym-
metrization Fi jk� = 1 for (i jk�) = (1122), (1212), (1221), (2112), (2121), (2211)
and 0 for all other entries, and the corresponding matrix in the variable X =
(X11, X12, X21, X22) is given by

[
0 0 0 1
0 1 1 0
0 1 1 0
1 0 0 0

]
, which obviously is not SOS in terms of

the matrix variable X .
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The difference in fact leads to the next definition of nonnegativity. Since F(X, X)

is a quadratic form, the nonnegativity for quadratic functions carries over. Formally
we introduce this notion below.

Definition 2.3 A quartic form F ∈ Sn4 is called matrix PSD if

F(X, X) ≥ 0 ∀ X ∈ Rn2 .

The set of matrix PSD forms in Sn4 is denoted by Sn2×n2+ .

We remark that the matrix PSD forms is essentially equivalent to the cone of PSD
momentmatrices; see, for example, [29]. However, our definition here ismore straight-
forward.

Related to the sum of squares for quartic forms, we now introduce the notion of
sum of powers of linear forms (SOP): If a quartic form F ∈ Sn4 is SOP, then there are
m vectors a1, . . . , am ∈ Rn such that

F(x, x, x, x) =
m∑

i=1

(
xTai

)4 = (x ⊗ x ⊗ x ⊗ x) •
m∑

i=1

ai ⊗ ai ⊗ ai ⊗ ai .

Definition 2.4 A quartic form F ∈ Sn4 is called SOP if F(x, x, x, x) is a sum of
powers of linear forms, i.e., there exist m vectors a1, . . . , am ∈ Rn such that

F =
m∑

i=1

ai ⊗ ai ⊗ ai ⊗ ai .

The set of SOP forms in Sn4 is denoted by �4
n,4.

As all SOP forms also constitute a convex cone, we denote

�4
n,4 = cone {a ⊗ a ⊗ a ⊗ a | a ∈ Rn} ⊆ �2

n,4.

In the case of quadratic functions, it is well known that for a given homogeneous
form (i.e., a symmetric matrix, for that matter) A ∈ Sn2 , the following two statements
are equivalent:

– A is positive semidefinite (PSD): A(x, x) := xT Ax ≥ 0 for all x ∈ Rn .
– A is a sum of squares (SOS): A(x, x) = ∑m

i=1(xTai )2 (or equivalently A =∑m
i=1 ai ⊗ ai ) for some a1, . . . , am ∈ Rn .

It is therefore clear that the four types of quartic forms defined above are actually
different extensions of the nonnegativity. In particular, PSD forms and matrix PSD
forms are extended from quadratic PSD, while SOS and SOP forms are in the form
of summation of nonnegative polynomials and are extended from quadratic SOS. We
will present later that there is an interesting hierarchical relationship for general n:

�4
n,4 � Sn2×n2+ � �2

n,4 � Sn4+ . (4)
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Recently, a class of polynomials termed the SOS-convex polynomials (cf. Helton
and Nie [21]) has been brought to attention, which is defined as follows (see [4] for
two other equivalent formulations of SOS-convexity):

A multivariate polynomial function f (x) is SOS-convex if its Hessian matrix
H(x) can be factorized as H(x) = (M(x))TM(x) with a polynomial matrix
M(x).

The reader is referred to [3] for applications of the SOS-convex polynomials. In
this paper, we shall focus on Sn4 and investigate SOS-convex quartic forms with the
hierarchy (4). For a quartic formF ∈ Sn4 , it is straightforward to compute its Hessian
matrix H(x) = 12F(x, x, ·, ·), i.e.,

(H(x))i j = 12F(x, x, ei , e j ) ∀ 1 ≤ i, j ≤ n,

where ei ∈ Rn is the vector whose i th entry is 1 and other entries are zeros. Therefore,
H(x) is a quadraticmatrix of x . If H(x) can be decomposed as H(x) = (M(x))TM(x)

with M(x) being a polynomial matrix, then M(x) must be linear with respect to x .

Definition 2.5 A quartic form F ∈ Sn4 is called SOS-convex, if there exists a linear
matrix M(x) of x , such that its Hessian matrix

12F(x, x, ·, ·) = (M(x))TM(x).

The set of SOS-convex forms in Sn4 is denoted by �2
∇2

n,4
.

Helton and Nie [21] proved that if a nonnegative polynomial is SOS-convex then
it must be SOS. In particular, if the polynomial is a quartic form, by denoting the
i th row of the linear matrix M(x) to be xT Ai for i = 1, . . . , m and some matrices
A1, . . . , Am ∈ Rn2 , then (M(x))TM(x) = ∑m

i=1(Ai )TxxT Ai . Therefore,

F(x, x, x, x)= xTF(x, x, ·, ·)x = 1

12
xT(M(x))TM(x)x = 1

12

m∑

i=1

(
xT Ai x

)2∈�2
n,4.

In addition, the Hessian matrix for an SOS-convex form is obviously positive semi-
definite for any x ∈ Rn . Hence, SOS-convexity implies convexity. Combining these
two facts, we conclude that an SOS-convex form is both SOS and convex, which
motivates us to study the last quartic forms in this paper.

Definition 2.6 Aquartic formF ∈ Sn4 is called convex and SOS, if it is both SOS and
convex. The set of quartic convex and SOS forms in Sn4 is denoted by �2

n,4

⋂
Sn4
cvx.

Here Sn4
cvx is denoted to be the set of all convex quartic forms in Sn4 .
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2.3 Our Contributions and the Organization of the Paper

All sets of quartic forms defined in Sect. 2.2 are clearly convex cones. The remainder
of this paper is organized as follows. In Sect. 3, we start by studying the cones: Sn4+ ,

�2
n,4, S

n2×n2+ , and �4
n,4. We first show that they are all closed, and that they can be

presented in different formulations. As an example, the cone of SOP forms is

�4
n,4=cone {a ⊗ a ⊗ a ⊗ a | a ∈ Rn}=sym cone

{
A ⊗ A | A ∈ Sn2+ , rank(A)=1

}
,

which can also be written as

sym cone
{

A ⊗ A | A ∈ Sn2+
}

,

meaning that the rank-one constraint can be removed without affecting the cone itself.
We know that among these four cones, there are two primal-dual pairs: Sn4+ is dual to

�4
n,4, and �2

n,4 is dual to Sn2×n2+ , and a hierarchical relationship �4
n,4 � Sn2×n2+ �

�2
n,4 � Sn4+ exists. Although all these results can be found in [29,45] thanks to various

representations of quartic forms, it is beneficial to present them in a unified manner
in the super-symmetric tensor space. Moreover, the tensor representation of quartic
forms is interesting on its own. For instance, it sheds some light on how symmetric
property changes the nature of quartic cones. To see this, let us consider an SOS quartic
form

∑m
i=1(xT Ai x)2, which will become matrix PSD if

∑m
i=1 Ai ⊗ Ai is already a

super-symmetric tensor (Theorem 3.3). If we further assume m = 1, then we have
rank(A1) = 1 (Theorem 2.4 in [26]) meaning that A1 ⊗ A1 = a ⊗ a ⊗ a ⊗ a for
some a, is SOP. Besides, explicit examples are also very important for people to get
some concrete feelings about quartic forms. It is worth mentioning that the main work
of Ahmadi and Parrilo [3] is to provide a polynomial which is convex but not SOS-
convex. Here we present an explicit instance of quartic form, which is matrix PSD but
not SOP; see Example 3.2.

In Sect. 4, we further study two more cones: �2
∇2

n,4
and �2

n,4

⋂
Sn4
cvx. Interestingly,

these two new cones can be nicely placed in the hierarchical scheme (4) for general n:

�4
n,4 � Sn2×n2+ � �2

∇2
n,4

�

(
�2

n,4

⋂
Sn4
cvx

)
� �2

n,4 � Sn4+ . (5)

The complexity status of all these cones are summarized in Sect. 5, including some
well-known results in the literature, and our new finding is that testing the convexity is
still NP-hard even for SOS quartic forms (Theorem 5.4). The low-dimensional cases
of these cones are also discussed in Sect. 5. Specially, for the case n = 2, all the
six cones reduce to only two distinctive ones, and for the case n = 3, they reduce
to exactly three distinctive cones. In addition, we study two particular simple quartic
forms:

(
xTx

)2
and

∑n
i=1 xi

4. Since they both belong to �4
n,4, which is the smallest

cone in our hierarchy, one may ask whether or not they belong to the interior of �4
n,4.

It may appear plausible that
∑n

i=1 xi
4 is in the interior of �4

n,4, since it is the quartic
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extension of the quadratic form
∑n

i=1 xi
2. However, it can be shown that

∑n
i=1 xi

4 is

not in Int (Sn4
cvx) � Int (�4

n,4) but in Int (�2
n,4) (Theorem 5.8), and

(
xTx

)2
is actually

in Int (�4
n,4) (Theorem 5.9), implying that

(
xTx

)2
is more ‘positive’ than

∑n
i=1 xi

4.
Finally, in Sect. 6 we discuss applications of quartic conic programming, including

biquadratic assignment problems and eigenvalues of super-symmetric tensors.

3 PSD Forms, SOS Forms, and the Dual Cones

Let us now consider the first four cones of quartic forms introduced in Sect. 2.2: �4
n,4,

Sn2×n2+ , �2
n,4, and Sn4+ .

3.1 Closedness

Proposition 3.1 �4
n,4, Sn2×n2+ , �2

n,4, and Sn4+ are all closed convex cones.

While Sn4+ and Sn2×n2+ are evidently closed, by a similar argument as in [50], it is

also easy to see that the cone of SOS forms �2
n,4 := sym cone

{
A ⊗ A | A ∈ Sn2

}

is closed. The closedness of Sn2×n2+ , �2
n,4, and Sn4+ was also known in polynomial

optimization, e.g., [29]. The closedness of the cone of SOP forms �4
n,4 was proved

in Proposition 3.6 of [45] for general even-degree forms. In fact, we have a slightly
stronger result below:

Lemma 3.2 If D ⊆ Rn is closed, then cone {a ⊗ a ⊗ a ⊗ a | a ∈ D} is closed.

Proof Suppose that F ∈ cl cone {a ⊗ a ⊗ a ⊗ a | a ∈ D}, then there is a sequence
of quartic forms Fk ∈ cone {a ⊗ a ⊗ a ⊗ a | a ∈ D} (k = 1, 2, . . . ), such that F =
limk→∞ Fk . Since the dimension of Sn4 is

(n+3
4

)
, it follows from Carathéodory’s

theorem that for any given Fk , there exists an n ×
((n+3

4

)+ 1
)
matrix Zk , such that

Fk =
(n+3

4 )+1∑

i=1

zk(i) ⊗ zk(i) ⊗ zk(i) ⊗ zk(i),

where zk(i) is the i th column vector of Zk and is a positive multiple of a vector in D.
Now define trFk = ∑n

j=1 Fk
j j j j , then

(n+3
4 )+1∑

i=1

n∑

j=1

(Zk
ji )

4 = trFk → trF .

Thus, the sequence {Zk} is bounded and has a cluster point Z∗, satisfying F =
∑(n+3

4 )+1
i=1 z∗(i)⊗ z∗(i)⊗ z∗(i)⊗ z∗(i). Note that each column of Z∗ is also a positive

multiple of a vector in D; it follows that F ∈ cone {a ⊗ a ⊗ a ⊗ a | a ∈ D}. �
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The cone of SOP forms is closely related to the fourth moment of a multi-
dimensional random variable. Given an n-dimensional random variable ξ =
(ξ1, . . . , ξn)T on the support set D ⊆ Rn with density function p, its fourth moment
is a super-symmetric fourth-order tensor M ∈ Sn4 , whose (i, j, k, �)th entry is

Mi jk� = E
[
ξiξ jξkξ�

] =
∫

D
xi x j xk x� p(x)dx .

Suppose the fourth moment of ξ is finite. By the closedness of �4
n,4, we have

M = E [ξ ⊗ ξ ⊗ ξ ⊗ ξ ]

=
∫

D
(x ⊗ x ⊗ x ⊗ x) p(x)dx

∈ cone
{
a ⊗ a ⊗ a ⊗ a | a ∈ Rn} = �4

n,4.

Conversely, for any M ∈ �4
n,4, there exist m vectors a1, a2, . . . , am ∈ Rn such

that M = ∑m
i=1 ai ⊗ ai ⊗ ai ⊗ ai . By defining an n-dimensional random vector ξ

with Prob
{
ξ = m1/4ai

} = 1/m for i = 1, . . . , m, it is easy to verify that the fourth
moment of ξ is exactly the tensor M. Therefore, the set of all finite fourth moments
of n-dimensional random variables is exactly �4

n,4, similar to the fact that all possible
covariance matrices form the cone of positive semidefinite matrices.

3.2 Alternative Representations

In this subsection, we present some alternative forms of the same cones that we have
discussed. Some of these alternative representations are more convenient to use in
various applications.

Theorem 3.3 For the cones of quartic forms introduced, we have the following equiv-
alent representations:

1. For the cone of SOS forms

�2
n,4 := sym cone

{
A ⊗ A | A ∈ Sn2

}

= sym
{
F ∈ −→

S n4 |F(X, X) ≥ 0 ∀ X ∈ Sn2
}

= sym
{
F ∈ Rn4 |F(X, X) ≥ 0 ∀ X ∈ Sn2

}
;

2. For the cone of matrix PSD forms

Sn2×n2+ :=
{
F ∈ Sn4 |F(X, X) ≥ 0 ∀ X ∈ Rn2

}

=
{
F ∈ Sn4 |F(X, X) ≥ 0 ∀ X ∈ Sn2

}

= Sn4
⋂

cone
{

A ⊗ A | A ∈ Sn2
}

;
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3. For the cone of SOP forms

�4
n,4 := cone

{
a ⊗ a ⊗ a ⊗ a | a ∈ Rn} = sym cone

{
A ⊗ A | A ∈ Sn2+

}
.

Recall that
−→
S n4 is the set of partial-symmetric fourth-order tensors inRn4 , defined

in Sect. 2.1. The remainder of this subsection is devoted to the proof of Theorem 3.3.

Let us first study the equivalent representations for �2
n,4 and Sn2×n2+ . To verify a

matrix PSD form, we should check the operations of quartic forms on matrices. In
fact, the matrix PSD forms can be extended to the space of partial-symmetric tensors−→
S n4 . It is not hard to verify that for any F ∈ −→

S n4 , it holds that

F(X, Y ) = F(XT, Y ) = F(X, Y T) = F(Y, X) ∀ X, Y ∈ Rn2 , (6)

which implies that F(X, Y ) is invariant under the transpose operation as well as the
operation to swap the X and Y matrices. Indeed, it is easy to see that the partial-
symmetry of F is a necessary and sufficient condition for (6) to hold. We have the

following property for matrix PSD forms in
−→
S n4 , similar to that for Sn2×n2+ in Theo-

rem 3.3.

Lemma 3.4 For partial-symmetric fourth-order tensors, it holds that

−→
S n2×n2+ :=

{
F ∈ −→

S n4 |F(X, X) ≥ 0 ∀ X ∈ Rn2
}

=
{
F ∈ −→

S n4 |F(X, X) ≥ 0 ∀ X ∈ Sn2
}

(7)

= cone
{

A ⊗ A | A ∈ Sn2
}

. (8)

Proof Observe that for any skew-symmetric Y ∈ Rn2 , i.e., Y T = −Y , we have

F(X, Y ) = −F(X,−Y ) = −F(X, Y T) = −F(X, Y ) ∀ X ∈ Rn2 ,

which implies that F(X, Y ) = 0. As any square matrix can be written as the sum
of a symmetric matrix and a skew-symmetric matrix, say for Z ∈ Rn2 , by letting
X = (Z + ZT)/2 which is symmetric, and Y = (Z − ZT)/2 which is skew-symmetric,
we have Z = X + Y . Therefore,

F(Z , Z) = F(X + Y, X + Y ) = F(X, X) + 2F(X, Y ) + F(Y, Y ) = F(X, X).

This implies the equivalence between F(X, X) ≥ 0 ∀ X ∈ Rn2 and F(X, X) ≥
0 ∀ X ∈ Sn2 , which proves (7).

To prove (8), first note that

cone
{

A ⊗ A | A ∈ Sn2
}

⊆ {F ∈ −→
S n4 |F(X, X) ≥ 0 ∀ X ∈ Rn2}.
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Conversely, given any G ∈ −→
S n4 with G(X, X) ≥ 0 ∀ X ∈ Rn2 , we may rewrite G as

an n2 × n2 symmetric matrix MG . Therefore,

(vec (X))TMG vec (X) = G(X, X) ≥ 0 ∀ X ∈ Rn2 ,

which implies that MG is positive semidefinite. Let MG = ∑m
i=1 zi (zi )T, where

zi =
(

zi
11, . . . , zi

1n, . . . , zi
n1, . . . , zi

nn

)T ∀ 1 ≤ i ≤ m.

Note that for any 1 ≤ k, � ≤ n, Gk��k = ∑m
i=1 zi

k�zi
�k , Gk�k� = ∑m

i=1(z
i
k�)

2 and
G�k�k = ∑m

i=1(z
i
�k)

2, as well as Gk��k = Gk�k� = G�k�k by partial-symmetry of G. We
have

m∑

i=1

(zi
k� − zi

�k)
2=

m∑

i=1

(zi
k�)

2+
m∑

i=1

(zi
�k)

2−2
m∑

i=1

zi
k�zi

�k =Gk�k� + G�k�k − 2Gk��k = 0,

which implies that zi
k� = zi

�k for any 1 ≤ k, � ≤ n. Therefore, we may construct a

symmetric matrix Zi ∈ Sn2 , such that vec (Zi ) = zi for all 1 ≤ i ≤ m. We have
G = ∑m

i=1 Zi ⊗ Zi , and so (8) is proven. �
For the first part of Theorem 3.3, the first identity follows from (8) by applying

the symmetrization operation on both sides. The second identity is quite obvious.
Essentially, for any F ∈ Rn4 , we may make it partial-symmetric by averaging the

corresponding entries, to be denoted by F0 ∈ −→
S n4 . It is easy to see that F0(X, X) =

F(X, X) for all X ∈ Sn2 since X ⊗ X ∈ −→
S n4 , which implies that

sym
{
F∈Rn4 |F(X, X)≥0 ∀ X∈Sn2

}
⊆ sym

{
F∈−→

S n4 |F(X, X)≥0∀X∈Sn2
}

.

The reverse inclusion is trivial.
For the second part of Theorem 3.3, it follows from (7) and (8) by restricting to

Sn4 . Let us now turn to prove the last part of Theorem 3.3, which is an alternative
representation of the SOP forms. Obviously, we need only to show that

sym cone
{

A ⊗ A | A ∈ Sn2+
}

⊆ cone
{
a ⊗ a ⊗ a ⊗ a | a ∈ Rn} .

Since there is a one-to-one mapping from quartic forms to fourth-order super-
symmetric tensors, it suffices to show that for any A ∈ Sn2+ , the function (xT Ax)2

can be written as a form of
∑m

i=1(xTai )4 for some a1, . . . , am ∈ Rn . Note that the
so-called Hilbert’s identity (see, for example, Barvinok [5]) asserts the following:

For any fixed positive integers d and n, there always exist m real vectors
a1, . . . , am ∈ Rn such that (xTx)d = ∑m

i=1(xTai )2d .
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In the original Hilbert’s identity, m is exponential in n. However, by Caratheodory’s
theorem m can be bounded above by

(n+2d−1
2d

) + 1. We refer the interested readers
to Chapters 8 and 9 of [45] for more details. Recently, Jiang et al. [25] proposed a
polynomial-time algorithm to find such polynomial-size representations when d = 2.
Since we have A ∈ Sn2+ , replacing x by A1/2y in Hilbert’s identity when d = 2,
one gets (yT Ay)2 = ∑m

i=1(yT A1/2ai )4. The desired decomposition follows, and this
proves the last part of Theorem 3.3.

3.3 Duality

In this subsection, we shall discuss the duality relationships among these four cones
of quartic forms. Note that Sn4 is the ground tensor space within which the duality is
defined, unless otherwise specified.

Theorem 3.5 The cone of PSD forms and the cone of SOP forms are a primal-dual

pair, i.e., �4
n,4 =

(
Sn4+
)∗

and Sn4+ =
(
�4

n,4

)∗
. The cone of SOS forms and the cone

of matrix PSD forms are a primal-dual pair, i.e., Sn2×n2+ =
(
�2

n,4

)∗
and �2

n,4 =
(
Sn2×n2+

)∗
.

Remark that the primal-dual relationship between�4
n,4 and S

n4+ was already proved
in Theorem 3.7 of [45] for general even-degree forms. The primal-dual relationship

between Sn2×n2+ and �2
n,4 was also mentioned in Theorem 3.16 of [45] for general

even-degree forms. Here we give the proof in the language of tensors. Let us start
by discussing the primal-dual pair �4

n,4 and Sn4+ . In Proposition 1 of [50], Sturm and

Zhang proved that for the quadratic forms, {A ∈ Sn2 | xT Ax ≥ 0 ∀ x ∈ D} and
cone {aaT | a ∈ D} are a primal-dual pair for any closed D ⊆ Rn . We observe that
a similar structure holds for the quartic forms as well. The first part of Theorem 3.5
then follows from next lemma.

Lemma 3.6 If D ⊆ Rn is closed, then Sn4+ (D) := {F ∈ Sn4 |F(x, x, x, x) ≥ 0 ∀ x ∈
D} and cone {a ⊗ a ⊗ a ⊗ a | a ∈ D} are a primal-dual pair, i.e.,

Sn4+ (D) = (cone {a ⊗ a ⊗ a ⊗ a | a ∈ D})∗ (9)

and

(
Sn4+ (D)

)∗ = cone {a ⊗ a ⊗ a ⊗ a | a ∈ D}.

Proof Since cone {a ⊗ a ⊗ a ⊗ a | a ∈ D} is closed by Lemma 3.2, we only need
to show (9). In fact, if F ∈ Sn4+ (D), then F • (a ⊗ a ⊗ a ⊗ a) = F(a, a, a, a) ≥ 0
for all a ∈ D. Thus, F • G ≥ 0 for all G ∈ cone {a ⊗ a ⊗ a ⊗ a | a ∈ D},
which implies that F ∈ (cone {a ⊗ a ⊗ a ⊗ a | a ∈ D})∗. Conversely, if F ∈
(cone {a ⊗ a ⊗ a ⊗ a | a ∈ D})∗, thenF •G ≥ 0 for all G ∈ cone {a ⊗a ⊗a ⊗a | a ∈
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D}. In particular, by letting G = x ⊗ x ⊗ x ⊗ x , we have F(x, x, x, x) =
F • (x ⊗ x ⊗ x ⊗ x) ≥ 0 for all x ∈ D, which implies that F ∈ Sn4+ (D). �

Let us turn to the primal-dual pair of Sn2×n2+ and �2
n,4. For technical reasons, we

shall momentarily lift the ground space from Sn4 to the space of partial-symmetric

tensors
−→
S n4 . This enlarges all the dual objects. To distinguish these two dual objects,

let us use the notation ‘K
−→∗ ’ to indicate the dual of convex cone K ∈ Sn4 ⊆ −→

S n4

generated in the space
−→
S n4 , while ‘K∗’ is the dual of K generated in the space Sn4 .

Lemma 3.7 For partial-symmetric tensors, the cone
−→
S n2×n2+ is self-dual with respect

to the space
−→
S n4 , i.e.,

−→
S n2×n2+ =

(−→
S n2×n2+

)−→∗
.

Proof According to Proposition 1 of [50] and the partial-symmetry of
−→
S n4 , we have

(
cone

{
A ⊗ A | A ∈ Sn2

})−→∗ =
{
F ∈ −→

S n4 |F(X, X) ≥ 0 ∀ X ∈ Sn2
}

.

By Lemma 3.4, we have

−→
S n2×n2+ =

{
F ∈ −→

S n4 |F(X, X) ≥ 0 ∀ X ∈ Sn2
}

= cone
{

A ⊗ A | A ∈ Sn2
}

.

Thus,
−→
S n2×n2+ is self-dual with respect to the space

−→
S n4 . �

Notice that by definition and Lemma 3.7, we have

�2
n,4 = sym cone

{
A ⊗ A | A ∈ Sn2

}
= sym

−→
S n2×n2+ = sym

(−→
S n2×n2+

)−→∗
,

and by the alternative representation in Theorem 3.3, we have

Sn2×n2+ = Sn4
⋂

cone
{

A ⊗ A | A ∈ Sn2
}

= Sn4
⋂−→

S n2×n2+ .

Therefore, the duality between Sn2×n2+ and�2
n,4 follows immediately from the follow-

ing lemma.

Lemma 3.8 If K ⊆ −→
S n4 is a closed convex cone and K

−→∗ is its dual with respect to

the space
−→
S n4 , then K

⋂
Sn4 and symK

−→∗ are a primal-dual pair with respect to the

space Sn4 , i.e.,
(
K
⋂

Sn4
)∗ = symK

−→∗ and K
⋂

Sn4 =
(
symK

−→∗
)∗

.

Proof For any G ∈ symK
−→∗ ⊆ Sn4 , there is a G′ ∈ K

−→∗ ⊆ −→
S n4 , such that G =

sym G′ ∈ Sn4 . We then have Gi jk� = 1
3 (G′

i jk� + G′
ik j� + G′

i�jk). Thus, for any F ∈
K
⋂

Sn4 ⊆ Sn4 , it follows that
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F • G =
∑

1≤i, j,k,�≤n

Fi jk�(G′
i jk� + G′

ik j� + G′
i�jk)

3

=
∑

1≤i, j,k,�≤n

Fi jk�G′
i jk� + Fik j�G′

ik j� + Fi�jkG′
i�jk

3

= F • G′ ≥ 0.

Therefore, G ∈
(
K
⋂

Sn4
)∗
, implying that symK

−→∗ ⊆
(
K
⋂

Sn4
)∗
.

Moreover, ifF ∈
(
symK

−→∗
)∗ ⊆ Sn4 , then for any G′ ∈ K

−→∗ ⊆ −→
S n4 , we have G =

sym G′ ∈ symK
−→∗ , and G′ •F = G •F ≥ 0. Therefore, F ∈

(
K

−→∗
)−→∗ = clK = K,

which implies that
(
symK

−→∗
)∗ ⊆

(
K
⋂

Sn4
)
. Finally, the duality relationship holds

by the bipolar theorem and the closedness of these cones. �

3.4 The Hierarchical Structure

The last part of this section is to present a hierarchy among these four cones of quartic
forms. The main result is summarized in the theorem below.

Theorem 3.9 If n ≥ 4, then

�4
n,4 � Sn2×n2+ � �2

n,4 � Sn4+ .

For the low-dimension cases (n ≤ 3), we shall present it in Sect. 5.2. Evidently,
an SOS form is PSD, implying �2

n,4 ⊆ Sn4+ . By invoking the duality operation and

using Theorem 3.5, we have �4
n,4 ⊆ Sn2×n2+ , while by the alternative representation

in Theorem 3.3, we have Sn2×n2+ = Sn4 ⋂ cone
{

A ⊗ A | A ∈ Sn2
}
, and by the very

definition we have �2
n,4 = sym cone

{
A ⊗ A | A ∈ Sn2

}
. Therefore, Sn2×n2+ ⊆ �2

n,4.

Finally, the strict containing relationship is a result of the following examples.

Example 3.1 (Quartic forms in Sn4+ \ �2
n,4 when n = 4) Let g1(x) = x12(x1 −

x4)2 + x22(x2 − x4)2 + x32(x3 − x4)2 + 2x1x2x3(x1 + x2 + x3 − 2x4) and g2(x) =
x12x22 + x22x32 + x32x12 + x44 − 4x1x2x3x4, then both g1(x) and g2(x) are in
S4

4

+ \ �2
4,4.

Historically, g1(x) is called the Robinson form [48] and g2(x) is due to Choi and
Lam [14,15]. We refer the interested readers to [46] for more information.

Example 3.2 (A quartic form in Sn2×n2+ \ �4
n,4 when n = 4). Construct F ∈ S4

4
,

whose only nonzero entries (taking into account the super-symmetry) are F1122 = 4,
F1133 = 4, F2233 = 4, F1144 = 9, F2244 = 9, F3344 = 9, F1234 = 6, F1111 = 29,
F2222 = 29, F3333 = 29, and F4444 = 3 + 25

7 . One may verify straightforwardly
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that F can be decomposed as
∑7

i=1 Ai ⊗ Ai , with A1 =
⎡

⎢⎣

√
7 0 0 0
0

√
7 0 0

0 0
√
7 0

0 0 0 5√
7

⎤

⎥⎦, A2 =
[
0 2 0 0
2 0 0 0
0 0 0 3
0 0 3 0

]
, A3 =

[
0 0 2 0
0 0 0 3
2 0 0 0
0 3 0 0

]
, A4 =

[
0 0 0 3
0 0 2 0
0 2 0 0
3 0 0 0

]
, A5 =

[−2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 1

]
, A6 =

[ 3 0 0 0
0 −2 0 0
0 0 3 0
0 0 0 1

]
, and

A7 =
[ 3 0 0 0
0 3 0 0
0 0 −2 0
0 0 0 1

]
. According to Theorem 3.3, we have F ∈ S4

2×42+ . Recall g2(x) in

Example 3.1, which is PSD. Denote G to be the super-symmetric tensor associated
with g2(x), thus G ∈ S4

4

+ . One computes that G •F = 4 + 4 + 4+ 3+ 25
7 − 24 < 0.

By the duality relationship as stipulated in Theorem 3.5, we conclude that F /∈ �4
4,4.

Example 3.3 (A quartic form in �2
n,4 \ Sn2×n2+ when n = 3). Let g3(x) = 2x14 +

2x24 + 1
2 x34 + 6x12x32 + 6x22x32 + 6x12x22, which is obviously SOS. Now recycle

the notation and denote G ∈ �2
3,4 to be the super-symmetric tensor associated with

g3(x), and we have G1111 = 2, G2222 = 2, G3333 = 1
2 , G1122 = 1, G1133 = 1, and

G2233 = 1. If we let X = Diag (1, 1,−4) ∈ S3
2
, then

G(X, X) =
∑

1≤i, j,k,�≤3

Gi jk� Xi j Xk� =
∑

1≤i,k≤3

Gi ikk Xii Xkk

=
⎛

⎝
1
1

−4

⎞

⎠
T ⎡

⎣
2 1 1
1 2 1
1 1 1

2

⎤

⎦

⎛

⎝
1
1

−4

⎞

⎠ = −2,

implying that G /∈ S3
2×32+ .

We remark that an example of �2
n,4 \ Sn2×n2+ even exists for n = 2, e.g., (x12 − x22)2.

However, the above example serves another purpose; see Example 4.2.

4 Cones Related to Convex Quartic Forms

In this section, we study the cone of SOS-convex quartic forms �2
∇2

n,4
and the cone of

quartic forms which are both SOS and convex �2
n,4

⋂
Sn4
cvx. The aim is to incorporate

these two new cones into the hierarchical structure as depicted in Theorem 3.9.

Theorem 4.1 If n ≥ 6, then

�4
n,4 � Sn2×n2+ � �2

∇2
n,4

�

(
�2

n,4

⋂
Sn4
cvx

)
� �2

n,4 � Sn4+ . (10)

First, it is obvious that
(
�2

n,4

⋂
Sn4
cvx

)
⊆ �2

n,4. Moreover, the following exam-

ple shows that an SOS form is not necessarily convex, which suggests that(
�2

n,4

⋂
Sn4
cvx

)
� �2

n,4 when n ≥ 2.
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Example 4.1 (A quartic form in �2
n,4 \Sn4

cvx when n = 2). Let g4(x) = (xT Ax)2 with

A ∈ Sn2 , and its Hessian matrix is ∇2g4(x) = 8AxxT A + 4xT Ax A. In particular, by
letting A = [−3 0

0 1

]
and x = (0

1

)
, we have ∇2 f (x) = [

0 0
0 8

]+ [−12 0
0 4

]
� 0, implying

that g4(x) is not convex.

Next we prove the assertion that Sn2×n2+ � �2
∇2

n,4
when n ≥ 3. To this end, let us

first quote a result on the SOS-convex functions due to Ahmadi and Parrilo [3]:

If f (x) is a polynomial with its Hessian matrix being ∇2 f (x), then f (x) is
SOS-convex if and only if yT∇2 f (x)y is a sum of squares in (x, y).

For a quartic form F(x, x, x, x), its Hessian matrix is 12F(x, x, ·, ·). Therefore, F
is SOS-convex if and only if F(x, x, y, y) is a sum of squares in (x, y). Now if

F ∈ Sn2×n2+ , then by Theorem 3.3 we may find matrices A1, . . . , Am ∈ Sn2 such that
F = ∑m

t=1 At ⊗ At . We have

F(x, x, y, y) = F(x, y, x, y) =
m∑

t=1

∑

1≤i, j,k,�≤n

xi y j xk y� At
i j At

k�

=
m∑

t=1

⎛

⎝
∑

1≤i, j≤n

xi y j At
i j

⎞

⎠

⎛

⎝
∑

1≤k,�≤n

xk y� At
k�

⎞

⎠

=
m∑

t=1

(
xT At y

)2
,

which is a sum of squares in (x, y), hence SOS-convex. This proves Sn2×n2+ ⊆ �2
∇2

n,4
,

and the example below rules out the equality when n ≥ 3.

Example 4.2 (A quartic form in �2
∇2

n,4
\ Sn2×n2+ when n = 3). Recall g3(x) = 2x14 +

2x24 + 1
2 x34 + 6x12x32 + 6x22x32 + 6x12x22 in Example 3.3, which is shown not to

be matrix PSD. Moreover, it is straightforward to compute that

∇2g3(x) = 24

⎛

⎝
x1
x2
x3
2

⎞

⎠

⎛

⎝
x1
x2
x3
2

⎞

⎠
T

+ 12

⎛

⎝
0
x3
x2

⎞

⎠

⎛

⎝
0
x3
x2

⎞

⎠
T

+12

⎛

⎝
x3
0
x1

⎞

⎠

⎛

⎝
x3
0
x1

⎞

⎠
T

+ 12

⎡

⎣
x22 0 0
0 x12 0
0 0 0

⎤

⎦ � 0,

which implies that g3(x) is SOS-convex.

Finally, we shall discuss �2
∇2

n,4
�

(
�2

n,4

⋂
Sn4
cvx

)
in (10). Recall in Sect. 2.2, an

SOS-convex homogeneous quartic polynomial function is both SOS and convex (see
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also [3]), which implies that�2
∇2

n,4
⊆
(
�2

n,4

⋂
Sn4
cvx

)
. However, the gap between�2

∇2
n,4

and �2
n,4

⋂
Sn4
cvx was not clear until recently Ahmadi and Parrilo [4] completely char-

acterized the gap between convexity and SOS-convexity. In particular, the following
example in [4] rules out the possibility of their equivalence for n ≥ 6.

Example 4.3 (A quartic form in (�2
n,4

⋂
Sn4
cvx) \ �2

∇2
n,4

when n = 6). Let

g5(x) = x1
4 + x2

4 + x3
4 + x4

4 + x5
4 + x6

4 + x1
2x6

2 + x2
2x4

2 + x3
2x5

2

+ 2
(

x1
2x2

2 + x1
2x3

2 + x2
2x3

2 + x4
2x5

2 + x4
2x6

2 + x5
2x6

2
)

+ 1

2

(
x1

2x4
2 + x2

2x5
2 + x3

2x6
2
)

− (x1x2x4x5 + x1x3x4x6 + x2x3x5x6) .

It is easy to see that g5(x) is SOS. Moreover, it was shown in [4] that g5(x) is convex
but not SOS-convex. Thus, g5(x) is both convex and SOS while not SOS-convex.

This completes the proof for Theorem 4.1. The relationship among these six cones
of quartic forms is depicted in Fig. 1, where a primal-dual pair is painted by the same
color.

The two newly introduced cones in this section are related to the convexity prop-
erties. In fact, the relationship among convexity, SOS-convexity, and SOS is an
interesting subject which attractedmany speculations recently. Prior to g5(x) in Exam-
ple 4.3 byAhmadi and Parrilo [4], in [3] the same authors first gave an explicit example
of a degree eight form in three variables, which was shown to be both convex and SOS
while not SOS-convex by means of numerical verification. For a complete character-
ization of all dimensions and degrees for convex forms that are not SOS-convex, the
readers are refereed to [4].

For the relationship between the cone of convex forms and the cone of SOS forms,
Example 4.1 has ruled out the possibility that �2

n,4 ⊆ Sn4
cvx, while Blekherman [7]

Fig. 1 Hierarchy for the cones of nonnegative quartic forms
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proved that Sn4
cvx is not contained in �2

n,4 either. Therefore, these two cones are indeed
distinctive. According to Blekherman [7], the cone of convex forms is actually much
bigger than the cone of SOS forms for quartic forms when n is sufficiently large.
However, at this point we are not aware of any explicit instance of Sn4

cvx \�2
n,4. In fact,

according to a recent working paper of Ahmadi et al. [1], such instances exist only
when n ≥ 4. Therefore, the following challenge remains:

Question 4.1 Find an explicit instance of a form in Sn4
cvx \ �2

n,4, i.e., a quartic convex
form that is not SOS.

Some more words on convex quartic forms are in order here. As mentioned in
Sect. 2.2, for a quartic formF ∈ Sn4

cvx, its Hessian matrix is 12F(x, x, ·, ·). Therefore,
F is convex if and only if F(x, x, ·, ·) � 0 for all x ∈ Rn , which is equivalent to
F(x, x, y, y) ≥ 0 for all x, y ∈ Rn . In fact, it is also equivalent to F(X, Y ) ≥ 0 for
all X, Y ∈ Sn2+ . To see why, we first decompose the positive semidefinite matrices X
and Y , and let X = ∑n

i=1 xi (xi )T and Y = ∑n
j=1 y j (y j )T (see, for example, Sturm

and Zhang [50]). Then

F(X, Y ) = F
⎛

⎝
n∑

i=1

xi (xi )T,

n∑

j=1

y j (y j )T

⎞

⎠

=
∑

1≤i, j≤n

F
(

xi (xi )T, y j (y j )T
)

=
∑

1≤i, j≤n

F
(

xi , xi , y j , y j
)

≥ 0,

if F(x, x, y, y) ≥ 0 for all x, y ∈ Rn . Note that the converse is trivial, as it reduces
to the case that X and Y are both rank-one positive semidefinite matrices. Thus, we
have the following equivalence for the quartic convex forms.

Proposition 4.2 For a given quartic form F ∈ Sn4 , the following statements are
equivalent:

– F(x, x, x, x) is convex;
– F(x, x, ·, ·) is positive semidefinite for all x ∈ Rn;
– F(x, x, y, y) ≥ 0 for all x, y ∈ Rn;
– F(X, Y ) ≥ 0 for all X, Y ∈ Sn2+ .

Before concluding this section, we would like to mention the dual of the cone of
convex quartic forms, which was studied earlier in [7,47]. According to Theorem 3.10
in [47], the dual of Sn4

cvx can be described in the super-symmetric tensor format as
follows.

Proposition 4.3 The cone Sn4
cvx and the cone

sym cone
{
a ⊗ a ⊗ b ⊗ b | a, b ∈ Rn}
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are a primal-dual pair.

Its proof can be constructed similarly to that of Theorem 3.5 by paying attention
to the super-symmetry and that F(x, x, y, y) ≥ 0 for all x, y ∈ Rn stipulated in
Proposition 4.2 for any convex form F . Alternatively, one may consult [47] for a
presentation involving only polynomials.

5 Complexities, Low-Dimensional Cases, and the Interiors of the
Quartic Cones

In this section, we study the computational complexity issues for the membership
queries regarding these cones of quartic forms. Unlike their quadratic counterparts
where the positive semidefiniteness can be checked in polynomial time, the case for
the quartic cones are substantially subtler. We also study the low-dimension cases of
these cones, as a complement to the result on the hierarchic relationship displayed in
Theorem 4.1. Finally, the interiors for some quartic cones are studied.

5.1 Complexity

Let us start with some easy cases. It is well known that deciding whether or not a
polynomial function is SOS can be done by resorting to checking the feasibility of an
SDP problem. As we all know, an SDP problem can be solved to arbitrary accuracy
in polynomial time. Therefore, defining the ε-weak member of the SOS cone as the
ε-optimal solution of the associated SDP feasibility problem, the weak membership
query for �2

n,4 can be done in polynomial time. Moreover, the strong membership for

Sn2×n2+ can be verified in polynomial time. In fact, for any quartic form F ∈ Sn4 , we
may rewriteF as ann2×n2 matrix, to be denoted by MF , and thenTheorem3.3 assures

that F ∈ Sn2×n2+ if and only if MF is positive semidefinite, which can be checked in
polynomial time by computing the characteristic polynomial of MF and then checking
if the signs of its coefficients alternate [24]. Furthermore, as discussed in Sect. 4, a
quartic formF is SOS-convex if andonly if yT

(∇2F(x, x, x, x)
)

y = 12F(x, x, y, y)

is SOS in (x, y), which can be again reduced to the feasibility of an SDP. Therefore,
the weak membership checking problem for �2

∇2
n,4

can be carried out in polynomial

time as well. Summarizing, we have:

Proposition 5.1 The strong membership query for Sn2×n2+ can be done in polynomial
time, while the weak membership for the cones �2

n,4 and �2
∇2

n,4
can be verified in

polynomial time.

Unfortunately, the membership checking problems for all the other cones that we
have discussed so far are difficult. To see why, let us introduce a famous cone of
quadratic functions: the copositive cone

C :=
{

A ∈ Sn2 | xT Ax ≥ 0 ∀ x ∈ Rn+
}

,
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whose membership query is known to be co-NP-complete. The dual of the copositive
cone is the cone of completely positive matrices, defined as

C∗ := cone
{

xxT | x ∈ Rn+
}

.

Recently, Dickinson and Gijben [17] provided a formal proof for the NP-hardness
of the membership problem forC∗. The following result on the membership checking
problem on Sn4+ is well known in the literature (see, for example, [30]). Herewe present
a proof based on a reduction using the membership query of the copositive cone C.
This reduction method can also be found in Chapter 5 of [40].

Proposition 5.2 It is NP-hard to check whether a quartic form belongs to Sn4+ (the
cone of PSD forms).

Proof Given a matrix A ∈ Sn2 , we construct an F ∈ Sn4 , whose only nonzero entries
are

Fi ikk = Fikik = Fikki = Fkiik = Fkiki = Fkkii =
{ Aik

3 i �= k
Aik i = k.

(11)

For any x ∈ Rn ,

F(x, x, x, x) =
∑

1≤i<k≤n

(Fi ikk + Fikik + Fikki + Fkiik + Fkiki + Fkkii ) xi
2xk

2

+
n∑

i=1

Fi i i i xi
4

=
∑

1≤i,k≤n

Aik xi
2xk

2

= (x ◦ x)T A(x ◦ x), (12)

where the symbol ‘◦’ represents the Hadamard product. Denote y = x ◦ x ≥ 0, and
then F(x, x, x, x) ≥ 0 if and only if yT Ay ≥ 0. Therefore, A ∈ C if and only if
F ∈ Sn4+ and the reduction is complete. �

Proposition 5.3 It is NP-hard to check if a quartic form belongs to �4
n,4 (the cone of

SOP forms).

Proof Similarly, the problem can be reduced to checking the membership of the
completely positive cone C∗. In particular, given any matrix A ∈ Sn2 , construct an
F ∈ Sn4 , whose only nonzero entries are defined exactly as in (11). If A ∈ C∗, then
A = ∑m

t=1 at (at )T for some a1, . . . , am ∈ Rn+. By the construction of F , we have

Fi ikk = Fikik = Fikki = Fkiik = Fkiki = Fkkii =
{∑m

t=1
at

i at
k

3 i �= k∑m
t=1

(
at

i

)2
i = k.
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Denote At = Diag (at ) ∈ Sn2+ for all 1 ≤ t ≤ m. It is straightforward to verify that

F =
m∑

t=1

sym
(

At ⊗ At) = sym

(
m∑

t=1

At ⊗ At

)
.

Therefore, by Theorem 3.3 we have F ∈ �4
n,4.

Conversely, if A /∈ C∗, then there exits a vector y ∈ Rn+, such that yT Ay < 0.
Define a vector x ∈ Rn+ with xi = √

yi for all 1 ≤ i ≤ n. By (12), we have

F • (x ⊗ x ⊗ x ⊗ x) = F(x, x, x, x) = (x ◦ x)T A(x ◦ x) = yT Ay < 0.

Therefore, by the duality relationship in Theorem 3.5, we have F /∈ �4
n,4. Since

A ∈ C∗ if and only if F ∈ �4
n,4 and so it follows that �4

n,4 is a hard cone. �
Proposition 5.3 and its variations were also well known in the literature in dif-

ferent contexts; see Section 11 of [23]. The above proof, however, emphasizes the
representation in the space of super-symmetric tensors. Related to the membership
query, Nie [38] recently proposed some numerical methods to actually compute an
SOP-decomposition.

In recent years, Burer [8] showed that a large class of mixed-binary quadratic pro-
grams can be formulated as copositive programs where a linear function is minimized
over a linearly constrained subset of the cone of completely positive matrices. Later,
Burer andDong [9] extended this equivalence to general nonconvex quadratically con-
strained quadratic program whose feasible region is nonempty and bounded. From the
proof of Proposition 5.3, the cone of completely positive matrices can be imbedded
into the cone of SOP forms. Evidently, these mixed-binary quadratic programs can
also be formulated as linear conic program with the cone �4

n,4. In fact, the modeling

power of�4
n,4 is much greater, which we shall discuss in Sect. 6 for further illustration.

Before concluding this subsection, afinal remarkon the cone�2
n,4

⋂
Sn4
cvx is in order.

Recall the recent breakthrough [2] mentioned in Sect. 1, that checking the convexity
of a quartic form is strongly NP-hard. However, if we are given more information, that
the quartic form to be considered is a sum of squares, will this make the membership
easier? The answer is still no, as the following theorem asserts.

Theorem 5.4 Deciding the convexity of an SOS form is strongly NP-hard. In partic-
ular, it is strongly NP-hard to check if a quartic form belongs to �2

n,4

⋂
Sn4
cvx.

Proof LetG = (V,E) be a graph withV being the set of n vertices andE being the set
of edges. Define the following biquadratic form associated with graph G as follows:

bG(x, y) := 2
∑

(i, j)∈E
xi x j yi y j .

Ling et al. [34] showed that max‖x‖2=‖y‖2=1 bG(x, y) = 1− 1
α(G)

, where α(G) is the
stability number of the graphG. Therefore, maximizing bG(x, y) subject to ‖x‖2 = 1
and ‖y‖2 = 1 is strongly NP-hard. Let us define
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bG,λ(x, y) := λ(xTx)(yTy) − bG(x, y) = λ(xTx)(yTy) − 2
∑

(i, j)∈E
xi x j yi y j .

Then, determining the nonnegativity of bG,λ(x, y) in (x, y) is also strongly NP-hard,
due to the fact that the problemmax‖x‖2=‖y‖2=1 bG(x, y) can be polynomially reduced
to it. Let us now construct a quartic form in (x, y) as

fG,λ(x, y) := bG,λ(x, y)+n2

⎛

⎝
n∑

i=1

xi
4+

n∑

i=1

yi
4+

∑

1≤i< j≤n

xi
2x j

2+
∑

1≤i< j≤n

yi
2y j

2

⎞

⎠ .

Observe that

fG,λ(x, y)=gG,λ(x, y)+
∑

(i, j)∈E
(xi x j − yi y j )

2 + (n2 − 1)
∑

(i, j)∈E
(xi

2x j
2 + yi

2y j
2),

where
gG,λ(x, y) := λ(xTx)(yTy)+n2

(∑n
i=1(xi

4 + yi
4)+∑(i, j)/∈E(xi

2x j
2 + yi

2y j
2)
)
.

Therefore, fG,λ(x, y) is SOS in (x, y). Moreover, according to Theorem 2.3 of [2]
with γ = 2, we know that fG,λ(x, y) is convex if and only if bG,λ(x, y) is nonnegative.
The latter being strongly NP-hard, therefore checking the convexity of the SOS form
fG,λ(x, y) is also strongly NP-hard. �
We remark that the construction in the above proof is similar to that of [2] except that
we chose the biquadratic form gG,λ(x, y) to ensure the resulting quartic form to be
SOS. Theorem 5.4 also implies that the reduction in [2] cannot produce convex forms
that are not SOS, although it can produce convex forms that are not SOS-convex.

To conclude this part, the chain of containing relationship as shown in Fig. 1 is
useful especiallywhen some of the cones are hard,while others are ‘easy.’One obvious
possible application is to use an easy cone either as restriction or as relaxation of a hard
one. Such scheme is likely to be useful in the design of approximation algorithms.

5.2 The Low-Dimensional Cases

The chain of containing relations (10) holds for general dimension n. However, for
some particular choices of n, these relations may appear to be slightly different. In
this subsection, we discuss quartic forms in low-dimensional cases: n = 2 and n = 3.
Specifically, when n = 2, the six cones of quartic forms reduce to two distinctive
ones; while n = 3, they reduce to three distinctive cones. Most of the results in this
subsection are found to scatter in the literature (e.g., Proposition 6.1 of [47]); the aim
here is to bring them under one theme.

Proposition 5.5 For the cone of bivariate quartic forms, it holds that

�4
2,4 = S2

2×22+ = �2
∇2
2,4

=
(
�2

2,4

⋂
S2

4

cvx

)
� �2

2,4 = S2
4

+ .
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Proof Onewell-known fact in algebra is the equivalence between nonnegative univari-
ate polynomials and the SOS univariate polynomials. In the homogenization setting,
the result extends to the bivariate forms in the quartic case,which is exactly�2

2,4 = S2
4

+ .
This is also an obvious consequence ofHilbert’s [22] result on the equivalence between
nonnegativity and SOS for bivariate quartic polynomials. Now, the duality relationship

in Theorem 3.5 leads to �4
2,4 = S2

2×22+ . Next let us focus on the relationship between

S2
2×22+ and �2

2,4

⋂
S2

4

cvx. In fact, we shall prove below that S2
4

cvx ⊆ S2
2×22+ , i.e., any

bivariate convex quartic form is matrix PSD.
For bivariate convex quartic form F with

F1111 = a1,F1112 = a2,F1122 = a3,F1222 = a4,F2222 = a5,

we have f (x) = F(x, x, x, x) = a1x14+4a2x13x2+6a3x12x22+4a4x1x23+a5x24,
and

∇2 f (x) = 12

[
a1x12 + 2a2x1x2 + a3x22 a2x12 + 2a3x1x2 + a4x22

a2x12 + 2a3x1x2 + a4x22 a3x12 + 2a4x1x2 + a5x22

]
� 0 ∀ x1, x2 ∈ R.

(13)
Denote A1 = [ a1 a2

a2 a3

]
, A2 = [ a2 a3

a3 a4

]
and A3 = [ a3 a4

a4 a5

]
, and (13) is equivalent to

[
xT A1x xT A2x
xT A2x xT A3x

]
� 0 ∀ x ∈ R2. (14)

According to Theorem 4.8 and the subsequent discussions in [35], it follows that (14)

is equivalent to
[

A1 A2

A2 A3

]
� 0. Therefore,

F(X, X) = (vec (X))T
[

A1 A2

A2 A3

]
vec (X) ≥ 0 ∀ X ∈ R22 ,

implying that F is matrix PSD. This proves S2
2×22+ = �2

2,4

⋂
S2

4

cvx. Finally, Exam-

ple 4.1 for �2
2,4 \ S24cvx leads to �2

2,4

⋂
S2

4

cvx �= �2
2,4. �

We remark that the relation�2
∇2
2,4

=
(
�2

2,4

⋂
S2

4

cvx

)
can be generalized to any even-

degree bivariate forms other than quartics; seeTheorem5.4 in [4] and the fact that every
SOS-convex form is SOS (Lemma 8 in [21]). In addition, the proof of Proposition 5.5
actually implies a stronger statement�4

2,4 = S2
4

cvx, whichwas previously shown in [18]
and [44]. Our proof here takes along a different and simpler route by using matrix PSD
forms as a bridge to establish the equivalence between convexity and SOP for quartic
forms.

It remains to consider the case n = 3. Our previous discussion concluded that

�2
3,4 = S3

4

+ , and so by duality �4
3,4 = S3

2×32+ . Moreover, in a recent working paper
Ahmadi et al. [1] showed that every tri-variate convex quartic polynomial is SOS-

convex, implying �2
∇2
3,4

=
(
�2

3,4

⋂
S3

4

cvx

)
. Thus, we have at most three distinctive

123



186 Found Comput Math (2017) 17:161–197

cones of quartic forms. Example 4.1 in �2
2,4 \ S24cvx and Example 4.2 in �2

∇2
3,4

\ S32×32+
show that there are in fact three distinctive cones.

Proposition 5.6 For the cone of tri-variate quartic forms, it holds that

�4
3,4 = S3

2×32+ � �2
∇2
3,4

=
(
�2

3,4

⋂
S3

4

cvx

)
� �2

3,4 = S3
4

+ .

5.3 Interiors of the Cones

Unlike the cone of nonnegative quadratic forms, where its interior is completely
decided by the positive definiteness, the interior of quartic forms ismuchmore compli-
cated.Herewe study twoparticular simple quartic forms:

(
xTx

)2
whose corresponding

tensor is sym (I ⊗ I ), and
∑n

i=1 xi
4 whose corresponding tensor is denoted by I. Even

for these two simple forms, to decide whether they belong to the interior of certain
quartic forms is already nontrivial. The results in this subsection can be found in
Reznick [45], in the context of polynomials, while the framework here is the space of
fourth-order super-symmetric tensors.

First, it is easy to see that both sym (I ⊗ I ) and I are in the interior of Sn4+ . This is
because the inner product between I and any nonzero form in �4

n,4 (the dual cone of

Sn4+ ) is positive. The same situation holds for sym (I ⊗ I ). Besides, they are both in
�4

n,4 according to Theorem 3.3. Then, one may want to know whether they are both

in the interior of �4
n,4. At a first glance, one may think that I is in the interior of �4

n,4
as it is analogous to the identity matrix in the space of symmetric matrices. However,
this is not the case. In fact, it was shown in [45] (Theorem 3.14) that any quartic form
in the interior of �4

n,4 has to be written as a sum of at least
(n+1

2

)
fourth powers of

linear forms in the shortest possible representation, which clearly rules I out as an
element in the interior.

Proposition 5.7 It holds that sym (I ⊗ I ) ∈ Int (Sn2×n2+ ) and I /∈ Int (Sn2×n2+ ).

Before providing the proof, let us first discuss the definition of Int (Sn2×n2+ ). Following

Definition 2.3, one may define a quartic form F ∈ Int (Sn2×n2+ ) if

F(X, X) > 0 ∀ X ∈ Rn2 \ O. (15)

However, this condition is sufficient but not necessary. Since for any F ∈ Sn4 and
any skewness matrix Y , we have F(Y, Y ) = 0 according to the proof of Lemma 3.4,

which leads to empty interior for Sn2×n2+ if we strictly follow (15). Noticing that

Sn2×n2+ =
{
F ∈ Sn4 |F(X, X) ≥ 0 ∀ X ∈ Sn2

}
byTheorem3.3, the interior ofSn2×n2+

shall be correctly defined as follows, which is easy to verify by checking the standard
definition of the cone interior.

Definition 5.1 A quartic form F ∈ Int (Sn2×n2+ ) if and only if F(X, X) > 0 for any

X ∈ Sn2 \ O .
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Proof of Proposition 5.7 For any X ∈ Sn2 \ O , we observe that sym (I ⊗ I )(X, X) =
2(tr (X))2 + 4 tr (X XT) > 0, implying that sym (I ⊗ I ) ∈ Int (Sn2×n2+ ).

To prove the second part, we let Y ∈ Sn2 \ O with diag (Y ) = 0. Then, we have

I(Y, Y ) = ∑n
i=1 Y 2

i i = 0, implying that I /∈ Int (Sn2×n2+ ). �

The following theorems help to position I and sym (I ⊗ I ) in the interior of a
particular cone in the hierarchy (10), respectively.

Theorem 5.8 It holds that I /∈ Int (Sn4
cvx) and I ∈ Int (�2

n,4).

Proof To prove the first part, we denote quartic form Fε to be Fε(x, x, x, x) =∑n
i=1 x4i − εx21 x22 , which is perturbed from I. By Proposition 4.2, Fε ∈ Sn4

cvx if and
only if

Fε(x, x, y, y) =
n∑

i=1

x2i y2i − ε

6

(
x21 y22 + x22 y21 + 4x1x2y1y2

)
≥ 0 ∀ x, y ∈ Rn .

However, choosing x̂ = (1, 0, 0, . . . , 0) and ŷ = (0, 1, 0, . . . , 0) leads to
Fε(x̂, x̂, ŷ, ŷ) = − ε

6 < 0 for any ε > 0. Therefore, Fε /∈ Sn4
cvx, implying that

I /∈ Int (Sn4
cvx).

For the second part, recall that the dual cone of �2
n,4 is S

n2×n2+ . It suffices to show

thatI ·F > 0 for anyF ∈ Sn2×n2+ \O, or equivalentlyI ·F = 0 forF ∈ Sn2×n2+ implies

F = O. Now rewrite F as an n2 × n2 symmetric matrix MF . Clearly, F ∈ Sn2×n2+
implies MF � 0, with its diagonal components Fi j i j ≥ 0 for any i, j , in particular
Fi i i i ≥ 0 for any i . Combing this fact and the assumption that I ·F = ∑n

i=1 Fi i i i = 0

yeildsFi i i i = 0 for any i . Next, we noticed that for any i �= j , the matrix
[ Fi i i i Fi i j j
F j j i i F j j j j

]

is a principle minor of the positive semidefinite matrix MF ; as a result Fi i j j = 0 for
any i �= j . SinceF is super-symmetric, we further haveFi j i j = Fi i j j = 0. Therefore,
diag (MF ) = 0, which combining MF � 0 leads to MF = O . Hence, F = O and
the conclusion follows. �

Remark that I /∈ Int (Sn4
cvx) can also be observed from the fact that the Hessian matrix

of the polynomial
∑n

i=1 xi
4 is not everywhere positive definite.

Theorem 5.9 It holds that sym (I ⊗ I ) ∈ Int (�4
n,4).

Proof By the duality relationship between �4
n,4 and Sn4+ , it suffices to show that any

F ∈ Sn4+ with sym (I ⊗ I ) · F = 0 implies F = O. For this qualified F , we have
F(x, x, x, x) ≥ 0 for any x ∈ Rn . For any given i , let xi = 1 and other entries be
zeros, and it leads to

Fi i i i ≥ 0 ∀ i. (16)
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Next, let ξ ∈ Rn whose entries are i.i.d. symmetric Bernoulli random variables, i.e.,
Prob{ξi = 1} = Prob{ξi = −1} = 1

2 for all i . Then, it is easy to compute

E[F(ξ, ξ, ξ, ξ)] =
n∑

i=1

Fi i i i + 6
∑

1≤i< j≤n

Fi i j j ≥ 0. (17)

Besides, for any given i �= j , let η ∈ Rn where ηi and η j are independent symmetric
Bernoulli random variables and other entries are zeros. Then

E[F(η, η, η, η)] = Fi i i i + F j j j j + 6Fi i j j ≥ 0 ∀ i �= j. (18)

Since we assume sym (I ⊗ I ) · F = 0, it follows that

n∑

i=1

Fi i i i + 2
∑

1≤i< j≤n

Fi i j j = 1

3

⎛

⎝
n∑

i=1

Fi i i i + 6
∑

1≤i< j≤n

Fi i j j

⎞

⎠+ 2

3

n∑

i=1

Fi i i i = 0.

(19)
Combining (16), (17), and (19), we get

Fi i i i = 0 ∀ i. (20)

It further leads to Fi i j j ≥ 0 for any i �= j by (18). Combining this result again
with (19) and (20), we get

Fi i j j = 0 ∀ i �= j. (21)

Now it suffices to prove Fi i i j = 0 for all i �= j , Fi i jk = 0 for all distinctive i, j, k,
and Fi jk� = 0 for all distinctive i, j, k, �. To this end, for any given i �= j , let x ∈ Rn

where xi = t2 and x j = 1
t and other entries are zeros. By (20) and (21), it follows

that

F(x, x, x, x) = 4Fi i i j x3i x j + 4Fi j j j xi x3j = 4Fi i i j t5 + 4Fi j j j/t ≥ 0 ∀ i �= j.

Letting t → ±∞, we get
Fi i i j = 0 ∀ i �= j. (22)

For any given distinctive i, j, k, let x ∈ Rn whose only nonzero entries are xi , x j and
xk , and we have

F(x, x, x, x) = 12Fi i jk x2i x j xk + 12F j j ik x2j xi xk + 12Fkki j x2k xi x j ≥ 0

∀ distinctive i, j, k.

Taking x j = 1, xk = ±1 in the above leads to ±(Fi i jk x2i + F j j ik xi ) + Fkki j xi ≥ 0
for any xi ∈ R, and we get

Fi i jk = 0 ∀ distinctive i, j, k. (23)
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Finally, for any given distinctive i, j, k, �, let x ∈ Rn whose only nonzero entries are
xi , x j , xk and x�, and we have

F(x, x, x, x) = 24Fi jk� xi x j xk x� ≥ 0 ∀ distinctive i, j, k, �.

Taking xi = x j = xk = 1 and x� = ±1 leads to

Fi jk� = 0 ∀ distinctive i, j, k, �. (24)

Combining equations (20), (21), (22), (23), and (24) yields F = O. �
We remark that a generalization of Theorem 5.9 (to any even degree) can be found in
Theorem 8.15 of [45].

6 Quartic Conic Programming

The study of quartic forms in the previous sections gives rise some new modeling
opportunities. In this section, we shall discuss quartic conic programming, i.e., opti-
mizing a linear function over the intersection of an affine subspace and a cone of
quartic forms. In particular, we shall investigate the following quartic conic program-
ming model:

(QC P) max C • X
s.t. Ai • X = bi , i = 1, . . . , m

X ∈ �4
n,4,

where C,Ai ∈ Sn4 and bi ∈ R for i = 1, . . . , m. As we will see later, a large class
of non-convex quartic polynomial optimization models can be formulated as a special
class of (QC P). In fact, we will study a few concrete examples to show the modeling
power of the quartic forms that we introduced.

6.1 Quartic Polynomial Optimization

Quartic polynomial optimization received much attention in the recent years; see,
for example, [19,20,31,34,36,49]. Essentially, all the models studied involve opti-
mization of a quartic polynomial function subject to some linear and/or homogenous
quadratic constraints, including spherical constraints, binary constraints, and the inter-
section of co-centered ellipsoids. Belowwe consider a very general quartic polynomial
optimization model:

(P) max p(x)

s.t. (ai )Tx = bi , i = 1, . . . , m
xT A j x = c j , j = 1, . . . , l
x ∈ Rn,
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where p(x) is a general inhomogeneous quartic polynomial function.
We first homogenize p(x) by introducing a new homogenizing variable, say xn+1,

which is set to one, and get a homogeneous quartic form

p(x) = F(x̄, x̄, x̄, x̄) = F • (x̄ ⊗ x̄ ⊗ x̄ ⊗ x̄) ,

where F ∈ S(n+1)4 , x̄ = ( x
xn+1

)
and xn+1 = 1. By adding some redundant constraints,

we have an equivalent formulation of (P):

max F (x̄, x̄, x̄, x̄)

s.t. (ai )Tx = bi ,
(
(ai )Tx

)2 = bi
2,
(
(ai )Tx

)4 = bi
4, i = 1, . . . , m

xT A j x = c j ,
(
xT A j x

)2 = c j
2, j = 1, . . . , l

x̄ = (x
1

) ∈ Rn+1.

The objective function of the above problem can be taken as a linear function of
x̄ ⊗ x̄ ⊗ x̄ ⊗ x̄ , and we introduce new variables of a super-symmetric fourth-order
tensor X̄ ∈ S(n+1)4 . The notations x , X , and X extract part of the entries of X̄ , which
are defined as:

x ∈ Rn, xi = X̄i,n+1,n+1,n+1 ∀ 1 ≤ i ≤ n,

X ∈ Sn2 , Xi, j = X̄i, j,n+1,n+1 ∀ 1 ≤ i, j ≤ n,

X ∈ Sn4 , Xi, j,k,� = X̄i, j,k,� ∀ 1 ≤ i, j, k, � ≤ n.

Essentially they can be treated as linear constraints on X̄ . Now by taking X̄ = x̄ ⊗
x̄ ⊗ x̄ ⊗ x̄ , X = x ⊗ x ⊗ x ⊗ x , and X = x ⊗ x , we may equivalently represent the
above problem as a quartic conic programming model with a rank-one constraint:

(Q) max F • X̄
s.t. (ai )Tx = bi , (ai ⊗ ai ) • X = bi

2, (ai ⊗ ai ⊗ ai ⊗ ai ) • X = bi
4, i = 1, . . . , m

A j • X = c j , (A j ⊗ A j ) • X = c j
2, j = 1, . . . , l

X̄n+1,n+1,n+1,n+1 = 1, X̄ ∈ �4
n+1,4, rank(X̄ ) = 1.

Dropping the rank-one constraint, we obtain a relaxation problem, which is exactly in
the form of quartic conic program (QC P):

(RQ) max F • X̄
s.t. (ai )Tx = bi , (ai ⊗ ai ) • X = bi

2, (ai ⊗ ai ⊗ ai ⊗ ai ) • X = bi
4, i = 1, . . . , m

A j • X = c j , (A j ⊗ A j ) • X = c j
2, j = 1, . . . , l

X̄n+1,n+1,n+1,n+1 = 1, X̄ ∈ �4
n+1,4.

Interestingly, the relaxation from (Q) to (RQ) is not lossy; or, to put it differently,
(RQ) is a tight relaxation of (Q), under some mild conditions.

Theorem 6.1 If A j ∈ Sn2+ for all 1 ≤ j ≤ l in the model (P), then (RQ) is equivalent
to (P) in the sense that: 1. they have the same optimal value; 2. if X̄ is optimal to (RQ),
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then x is in the convex hull of the optimal solution of (P). Moreover, the minimization
counterpart of (P) is also equivalent to the minimization counterpart of (RQ).

This result shows that (P) is in fact a conic quartic program (QC P) when the
matrices A j ’s in (P) are positive semidefinite. Notice that the model (P) actually
includes quadratic inequality constraints xT A j x ≤ c j as its subclasses, for one can
always add a slack variable y j ∈ R with xT A j x + y j

2 = c j , while reserving the new
data matrix

[
A j 0
0 1

]
in the quadratic term still being positive semidefinite. The proof of

Theorem 6.1 is dedicated to “Appendix”.
As mentioned before, Burer [8] established the equivalence between a large class

of mixed-binary quadratic programs and copositive programs. Theorem 6.1 may be
regarded as a quartic extension of Burer’s result. The virtue of this equivalence is to
alleviate the highly non-convex objective and/or constraints of (QC P) and retain the
problem in convex form, although the difficulty is all absorbed into the dealing of the
quartic cone, which is nonetheless a convex one. Note that this is characteristically
a property for polynomial of degree higher than 2: the SDP relaxation for similar
quadratic models can never be tight.

6.2 Biquadratic Assignment Problems

The biquadratic assignment problem (B Q AP) is a generalization of the quadratic
assignment problem (Q AP), which is to minimize a quartic polynomial of an assign-
ment matrix:

(B Q AP) min
∑

1≤i, j,k,�,s,t,u,v≤n Ai jk�Bstuv Xis X jt Xku X�v

s.t.
∑n

i=1 Xi j = 1, j = 1, . . . , n∑n
j=1 Xi j = 1, i = 1, . . . , n

Xi j ∈ {0, 1}, i, j = 1, . . . , n

X ∈ Rn2 ,

where A,B ∈ Rn4 . This problem was first considered by Burkard et al. [11] and
was shown to have applications in the VLSI synthesis problem. After that, several
heuristics for (B Q AP) were developed by Burkard and Cela [10], and Mavridou et
al. [37].

In this subsection, we shall show that (B Q AP) can be formulated as a quartic conic
program (QC P). First notice that the objective function of (B Q AP) is a fourth-order
polynomial function with respect to the variables Xi j ’s, where X is taken as an n2-
dimensional vector. The assignment constraints

∑n
i=1 Xi j = 1 and

∑n
j=1 Xi j = 1

are clearly linear equality constraints. Finally by imposing a new variable x0 ∈ R, and
the binary constraints Xi j ∈ {0, 1} is equivalent to

(
Xi j

x0

)T [ 1 −1
−1 1

](
Xi j

x0

)
= 1

4
and x0 = 1

2
,
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where the coefficient matrix in the quadratic term is indeed positive semidefinite.
Applying Theorem 6.1, we have the following result:

Corollary 6.2 The biquadratic assignment problem (B Q AP) can be formulated as
a quartic conic program (QC P).

6.3 Eigenvalues of Fourth-Order Super-Symmetric Tensor

The notion of eigenvalue for matrices has been extended to tensors, proposed by
Lim [32] and Qi [41] independently; see also [33]. Versatile extensions turned out to
be possible, amongwhich themost popular one is called Z-eigenvalue (in the notion by
Qi [41]). Restricting to the space of fourth-order super-symmetric tensors Sn4 , λ ∈ R is
called a Z-eigenvalue of the super-symmetric tensor F ∈ Sn4 , if the following system
holds

{F(x, x, x, ·) = λ x,

xTx = 1,

where x ∈ Rn is the corresponding eigenvector with respect to λ. Notice that the
Z-eigenvalues are the usual eigenvalues for a symmetric matrix, when restricting to
the space of symmetric matrices Sn2 . We refer interested readers to [32,41] for various
other definitions of tensor eigenvalues and [42] for their applications in polynomial
optimizations.

Observe that x is a Z-eigenvector of the fourth-order tenor F if and only if x is a
KKT point to following polynomial optimization problem:

(E) max F(x, x, x, x)

s.t. xTx = 1.

Furthermore, x is the Z-eigenvector with respect to the largest (respective smallest)
Z-eigenvalue of F if and only if x is optimal to (E) (respective the minimization
counterpart of (E)). As the quadratic constraint xTx = 1 satisfies the condition in
Theorem 6.1, we reach the following conclusion:

Corollary 6.3 The problem of finding a Z-eigenvector with respect to the largest or
smallest Z-eigenvalue of a fourth-order super-symmetric tensor F can be formulated
as a quartic conic program (QC P).

To conclude this section, as well as the whole paper, we remark here that quartic
conic problems have many potential applications, alongside their many intriguing
theoretical properties. The hierarchical structure of the quartic cones that we presented
in the previous sections paves a way for possible relaxation methods to be viable. For
instance, according to the hierarchy relationship (10), by relaxing the cone �4

n,4 to

an easy cone Sn2×n2+ lends a hand to solve the quartic conic optimization problem
approximately. Such relaxations are different from the existing ones (e.g., [31,36])
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for approximation algorithms for polynomial optimization models. The quality of
such new solution methods and possible enhancements remain to be a topic for future
research.
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Appendix: Proof of Theorem 6.1

Here we only prove the equivalent relation for the maximization problems since the
proof for their minimization counterparts is exactly the same. That is, we shall prove
the equivalence between (Q) and (RQ).

To start with, let us first investigate the feasible regions of these two problems, to be
denoted by feas (Q) and feas (RQ), respectively. The relationship between feas (Q)

and feas (RQ) is revealed by the following lemma.

Lemma 6.4 It holds that conv (feas (Q)) ⊆ feas (RQ) = conv (feas (Q))+P, where

P := cone

{(
x

0

)
⊗
(

x

0

)
⊗
(

x

0

)
⊗
(

x

0

)∣∣∣∣
(ai )Tx = 0 ∀ 1 ≤ i ≤ m,

xT A j x = 0 ∀ 1 ≤ j ≤ l

}
⊆ �4

n+1,4.

Proof First, it is obvious that conv (feas (Q)) ⊆ feas (RQ) as (RQ) is a relaxation of
(Q) and feas (RQ) is convex. Next, we notice that the recession cone of feas (RQ) is
equal to

⎧
⎪⎪⎨

⎪⎪⎩
X̄ ∈ �4

n+1,4

∣∣∣∣∣∣∣∣

Xn+1,n+1,n+1,n+1 = 0,

(ai )Tx = 0, (ai ⊗ ai ) • X = 0, (ai ⊗ ai ⊗ ai ⊗ ai ) • X = 0 ∀ 1 ≤ i ≤ m,

A j • X = 0, (A j ⊗ A j ) • X = 0 ∀ 1 ≤ j ≤ l

⎫
⎪⎪⎬

⎪⎪⎭
.

Observing that X̄ ∈ �4
n+1,4 and Xn+1,n+1,n+1,n+1 = 0, it is easy to see that x = 0

and X = 0. Thus, the recession cone of feas (RQ) is reduced to

⎧
⎨

⎩X̄ ∈ �4
n+1,4

∣∣∣∣∣∣

Xn+1,n+1,n+1,n+1 = 0, x = 0, X = 0,
(ai ⊗ ai ⊗ ai ⊗ ai ) • X = 0 ∀ 1 ≤ i ≤ m,

(A j ⊗ A j ) • X = 0 ∀ 1 ≤ j ≤ l

⎫
⎬

⎭ ⊇ P,

which proves feas (RQ) ⊇ conv (feas (Q)) + P.
Finally, we shall show the inverse inclusion, i.e., feas (RQ) ⊆ conv (feas (Q))+P.

Suppose X̄ ∈ feas (RQ), and it can be decomposed as

X̄ =
∑

k∈K

(
yk

αk

)
⊗
(

yk

αk

)
⊗
(

yk

αk

)
⊗
(

yk

αk

)
, (25)
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where αk ∈ R, yk ∈ Rn for all k ∈ K . Immediately we have

∑

k∈K

αk
4 = Xn+1,n+1,n+1,n+1 = 1. (26)

Now divide the index set K into two parts K0 := {k ∈ K | αk = 0} and K1 := {k ∈
K | αk �= 0}, and let zk = yk/αk for all k ∈ K1. The decomposition (25) is then
equivalent to

X̄ =
∑

k∈K1

αk
4
(

zk

1

)
⊗
(

zk

1

)
⊗
(

zk

1

)
⊗
(

zk

1

)
+
∑

k∈K0

(
yk

0

)
⊗
(

yk

0

)
⊗
(

yk

0

)
⊗
(

yk

0

)
.

If we can prove that

(
zk

1

)
⊗
(

zk

1

)
⊗
(

zk

1

)
⊗
(

zk

1

)
∈ feas (Q) ∀ k ∈ K1 (27)

(
yk

0

)
⊗
(

yk

0

)
⊗
(

yk

0

)
⊗
(

yk

0

)
∈ P ∀ k ∈ K0 (28)

then by (26), we shall have X̄ ∈ conv (feas (Q)) + P, proving the inverse inclusion.
In the following, we shall prove (27) and (28). Since X̄ ∈ feas (RQ), together with

x = ∑
k∈K αk

3yk , X = ∑
k∈K αk

2yk ⊗ yk and X = ∑
k∈K yk ⊗ yk ⊗ yk ⊗ yk , we

obtain the following equalities:

∑

k∈K

αk
3(ai )Tyk = bi ,

∑

k∈K

αk
2
(
(ai )Tyk

)2 = bi
2,
∑

k∈K

(
(ai )Tyk

)4 = bi
4 ∀ 1 ≤ i ≤ m

∑

k∈K

αk
2(yk)T A j yk = c j ,

∑

k∈K

(
(yk)T A j yk

)2 = c j
2 ∀ 1 ≤ j ≤ l.

As a direct consequence of the above equalities and (26), we have

(
∑

k∈K

αk
2 · αk(a

i )Tyk

)2

= bi
2 =

(
∑

k∈K

αk
4

)(
∑

k∈K

αk
2
(
(ai )Tyk

)2
)

∀ 1≤ i ≤ m

(
∑

k∈K

αk
2
(
(ai )Tyk

)2
)2

= bi
4 =

(
∑

k∈K

αk
4

)(
∑

k∈K

(
(ai )Tyk

)4
)

∀ 1≤ i ≤ m

(
∑

k∈K

αk
2(yk)T A j yk

)2

= c j
2 =

(
∑

k∈K

αk
4

)(
∑

k∈K

(
(yk)T A j yk

)2
)

∀ 1≤ j ≤ l.
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Noticing that the equalities hold for the above Cauchy–Schwarz inequalities, it follows
that for every 1 ≤ i ≤ m and every 1 ≤ j ≤ l, there exist δi , εi , θ j ∈ R, such that

δiαk
2 = αk(a

i )Tyk, εiαk
2 =

(
(ai )Tyk

)2
and θ jαk

2 = (yk)T A j yk ∀ k ∈ K .

(29)
If αk = 0, then (ai )Tyk = 0 and (yk)T A j yk = 0, which implies (28). Moreover, due
to (29) and (26),

δi = δi

(
∑

k∈K

αk
4

)
=
∑

k∈K

δiαk
2 · αk

2 =
∑

k∈K

αk(a
i )Tyk · αk

2 = bi ∀ 1 ≤ i ≤ m.

Similarly, we have θ j = c j for all 1 ≤ j ≤ l. If αk �= 0, noticing zk = yk/αk , it
follows from (29) that

(ai )Tzk = (ai )Tyk/αk = δi = bi ∀ 1 ≤ i ≤ m

(zk)T A j zk = (yk)T A j yk/αk
2 = θ j = c j ∀ 1 ≤ j ≤ l,

which implies (27). �
To prove Theorem 6.1, we notice that if A j is positive semidefinite, then

xT A j x = 0 ⇐⇒ A j x = 0.

Therefore,
(x
0

)⊗(x
0

)⊗(x
0

)⊗(x
0

) ∈ P implies that x is a recession direction of the feasible
region for (P). Applying this property and using a similar argument of Theorem 2.6
in [8], Theorem 6.1 follows immediately.
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