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CHARACTERIZING REAL-VALUED MULTIVARIATE COMPLEX
POLYNOMIALS AND THEIR SYMMETRIC TENSOR

REPRESENTATIONS∗
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Abstract. In this paper we study multivariate polynomial functions in complex variables and
their corresponding symmetric tensor representations. The focus is to find conditions under which
such complex polynomials always take real values. We introduce the notion of symmetric conju-
gate forms and general conjugate forms, characterize the conditions for such complex polynomials
to be real valued, and present their corresponding tensor representations. New notions of eigen-
values/eigenvectors for complex tensors are introduced, extending similar properties from the Her-
mitian matrices. Moreover, we study a property of the symmetric tensors, namely, the largest
eigenvalue (in the absolute value sense) of a real symmetric tensor is equal to its largest singular
value; the result is also known as Banach’s theorem. We show that a similar result holds for the com-
plex case as well. Finally, we discuss some applications of the new notion of eigenvalues/eigenvectors
for the complex tensors.
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1. Introduction. In this paper we set out to study the functions in multivari-
ate complex variables which, however, always take real values. Such functions are
frequently encountered in engineering applications arising from signal processing [3],
electrical engineering, and control theory [37]. It is interesting to note that such com-
plex functions are usually not studied by conventional complex analysis, since they
are typically not even analytic because the Cauchy–Riemann conditions will never be
satisfied unless the function in question is trivial. There has been a surge of research
attention aimed at solving optimization models related to these kinds of complex
functions [3, 34, 35, 16, 19]. Sorber, Van Barel, and De Lathauwer [36] developed a
MATLAB toolbox for optimization problems in complex variables, where either the
complex function in question is pre-assumed to be always real valued [34], or it is the
modulus/norm of a complex function [3, 35]. An interesting question thus arises: Can
such real-valued complex functions be characterized? Indeed there does exist a class of
special complex functions that always take real values: the Hermitian quadratic form
xHAx where A is a Hermitian matrix. In this case, the quadratic structure plays a
key role. This motivates us to search for more general complex polynomial functions
with the same property. Interestingly, such complex polynomials can be completely
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characterized, as we will present in this paper.
As is well known, polynomials can be represented by tensors. The same ques-

tion can be asked about complex tensors. In fact, there is a considerable amount
of recent research attention on the applications of complex tensor optimization. For
instance, Hilling and Sudbery [15] formulated a quantum entanglement problem as a
complex multilinear form optimization under the spherical constraint, and Zhang and
Qi [41] and Ni, Qi, and Bai [26] discussed quantum eigenvalue problems, which arose
from the geometric measure of entanglement of a multipartite symmetric pure state
in the complex tensor space. Examples of complex polynomial optimization include
Aittomaki and Koivunen [1], who formulated the problem of beam-pattern synthesis
in array signal processing as complex quartic polynomial minimization, and Aubry
et al. [3], who modeled a radar signal processing problem by complex polynomial
optimization. Solution methods for complex polynomial optimization can be found
in, e.g., [34, 16, 19]. As mentioned before, polynomials and tensors are known to be
related. In particular in the real domain, homogeneous polynomials (or forms) are bi-
jectively related to symmetric tensors; i.e., the components of the tensor are invariant
under the permutation of its indices. This important class of tensors generalizes the
concept of symmetric matrices. Much like the role played by symmetric matrices in
matrix theory and quadratic optimization, symmetric tensors have a profound role to
play in tensor eigenvalue problems and polynomial optimization. A natural question
can be asked about complex tensors: What is the higher order complex tensor gener-
alization of the Hermitian matrix? In this paper, we manage to identify two classes
of symmetric complex tensors, both of which include Hermitian matrices as a special
case when the order of the tensor is two.

In recent years, the eigenvalue of tensor has become a topic of intensive research
interest. Perhaps a first attempt to generalize eigenvalue decomposition of matri-
ces can be traced back to 2000, when De Lathauwer, De Moor, and Vandewalle [11]
introduced the so-called higher order eigenvalue decomposition. Shortly after that,
Kofidis and Regalia [20] showed that blind deconvolution can be formulated as a non-
linear eigenproblem. A systematic study of eigenvalues of tensors was pioneered by
Lim [23] and Qi [29] independently in 2005. Various applications of tensor eigenval-
ues and the connections to polynomial optimization problems have been proposed;
cf. [30, 27, 41, 7, 26] and the references therein. We refer interested readers to the
survey paper [31] for more details on the spectral theory of tensors and various ap-
plications of tensors. Computation of tensor eigenvalues is an important source for
polynomial optimization [12, 22]. Essentially the problem is to maximize or minimize
a homogeneous polynomial under the spherical constraint, which can also be used to
test the (semi)definiteness of a symmetric tensor.

In this paper we are primarily interested in complex polynomials/tensors that
arise in the context of optimization. By nature of optimization, we are interested in
the complex polynomials that always take real values. However, it is easy to see that if
no conjugate term is involved, then the only class of real-valued complex polynomials
is the set of real constant functions.1 Therefore, the conjugate terms are necessary
for a complex polynomial to be real valued. Hermitian quadratic forms mentioned
earlier belong to this category, which is an active area of research in optimization;
see, e.g., [24, 39, 33]. In the aforementioned papers [30, 27, 7] on eigenvalues of
complex tensors, the associated complex polynomials, however, are not real valued.

1This should be differentiated from the notion of real-symmetric complex polynomial, sometimes
also called real-valued complex polynomial in abstract algebra, i.e., f(x) = f(x).
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The aim of this paper is different. We aim for a systematic study on the nature of
symmetricity for higher order complex tensors which will lead to the property that the
associated polynomials always take real values. The main contribution of this paper
is to give a full characterization for the real-valued conjugate complex polynomials
and to identify two classes of symmetric complex tensors, which have already shown
potentials in the design of algorithms [3, 16, 19]. We also propose two new types of
tensor eigenvalues/eigenvectors for the new classes of complex tensors.

This paper is organized as follows. We start with the preparation of various
notation and terminologies in section 2. In particular, two types of conjugate complex
polynomials are defined, and their symmetric tensor representations are discussed.
Section 3 presents the necessary and sufficient condition for real-valued conjugate
complex polynomials, based on which two types of symmetric complex tensors are
defined, corresponding to the two types of real-valued conjugate complex polynomials.
As an important result in this paper, we then present the definitions and properties of
eigenvalues and eigenvectors for two types of symmetric complex tensors in section 4.
In section 5, we discuss Banach’s theorem, which states that the largest eigenvalue
(in the absolute value sense) of a real symmetric tensor is equal to its largest singular
value, and we extend it to the two new types of symmetric complex tensors. Some
application examples are discussed in section 6 to show the significance in practice of
the theoretical results in this paper. Finally, we conclude this paper by summarizing
our main findings and outlining possible future work in section 7.

2. Preparation. Throughout this paper we use the usual lowercase letters, bold-
face lowercase letters, capital letters, and calligraphic letters to denote scalars, vectors,
matrices, and tensors, respectively, e.g., a scalar a, a vector x, a matrix Q, and a ten-
sor F . We use subscripts to denote their components, e.g., xi being the ith entry of
a vector x, Qij being the (i, j)th entry of a matrix Q, and Fijk being the (i, j, k)th
entry of a third order tensor F . As usual, the field of real numbers and the field of
complex numbers are denoted by R and C, respectively.

For any complex number z = a+ ib ∈ C with a, b ∈ R, its real part and imaginary
part are denoted by Re z := a and Im z := b, respectively. Its modulus is denoted by
|z| := √

zz =
√
a2 + b2, where z := a− ib denotes the conjugate of z. For any vector

x ∈ C
n, we denote xH := xT to be the transpose of its conjugate, and we define it

analogously for matrices. Throughout this paper we uniformly use the 2-norm for
vectors, matrices and tensors in general, which is the usual Euclidean norm. For
example, the norm of a vector x ∈ Cn is defined as ‖x‖ :=

√
xHx, and the norm of a

dth order tensor F ∈ Cn1×···×nd is defined as

‖F‖ :=

√√√√ n1∑
i1=1

· · ·
nd∑

id=1

Fi1...id · Fi1...id .

2.1. Complex forms and their tensor representations. A multivariate
complex polynomial f(x) is a polynomial function of variable x ∈ C

n whose co-
efficients are complex, e.g., f(x1, x2) = x1 + (1 − i)x2

2. A multivariate conjugate
complex polynomial (sometimes abbreviated to conjugate polynomial in this paper)
fC(x) is a polynomial function of variables x,x ∈ Cn, which is differentiated by the
subscript C, standing for “conjugate,” e.g., fC(x1, x2) = x1 + x2 + x1x2 + (1− i)x2

2.
In particular, a general n-dimensional dth degree conjugate complex polynomial can
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be explicitly written as the summation of monomials

fC(x) :=

d∑
�=0

�∑
k=0

∑
1≤i1≤···≤ik≤n

∑
1≤j1≤···≤j�−k≤n

ai1...ik,j1...j�−k
xi1 . . . xikxj1 . . . xj�−k

.

In the above notation for a monomial ai1...ik,j1...j�−k
xi1 . . . xikxj1 . . . xj�−k

, the indices
of the coefficient ai1...ik,j1...j�−k

are always partitioned by a comma to separate them
from those of conjugate variables and of regular variables. In particular, the coefficient
of a monomial that only has conjugate variables such as xi1xi2 will be written as
ai1i2, whose indices after the comma are empty. In this definition, it is obvious that
complex polynomials are a subclass of conjugate complex polynomials. Note that a
pure complex polynomial can never only take real values unless it is a constant. This
observation follows trivially from the basic theorem of algebra.

Given a dth order complex tensor F ∈ Cn1×···×nd , its associated multilinear form
is defined as

F(x1, . . . ,xd) :=

n1∑
i1=1

· · ·
nd∑

id=1

Fi1...idx
1
i1 . . . x

d
id ,

where xk ∈ Cnk for k = 1, . . . , d. A complex tensor F ∈ Cn1×···×nd is called symmetric
if n1 = · · · = nd (= n) and every component Fi1...id is invariant under all permutations
of the indices {i1, . . . , id}. We remark that conjugation is not involved here when
speaking of symmetricity for complex tensors. Closely related to a symmetric tensor

F ∈ Cnd

is a general dth degree complex homogeneous polynomial function f(x) (or
complex form) of variable x ∈ Cn, i.e.,

(2.1) f(x) := F(x, . . . ,x︸ ︷︷ ︸
d

) =

n∑
i1=1

· · ·
n∑

id=1

Fi1...idxi1 . . . xid .

In fact, symmetric tensors (either in the real domain or in the complex domain)
are bijectively related to homogeneous polynomials; see [10]. In particular, for any
n-dimensional dth degree complex form

f(x) =
∑

1≤i1≤···≤id≤n

ai1...idxi1 . . . xid ,

there is a uniquely defined n-dimensional dth order symmetric complex tensor F ∈
Cnd

with
Fi1...id =

ai1...id
|Π(i1 . . . id)| ∀ 1 ≤ i1 ≤ · · · ≤ id ≤ n

satisfying (2.1), where Π(i1 . . . id) is the set of all distinct permutations of the indices
{i1, . . . , id}. On the other hand, in light of formula (2.1), a complex form f(x) is
easily obtained from the symmetric multilinear form F(x1, . . . ,xd) by letting x1 =
· · · = xd = x.

2.2. Symmetric conjugate forms and their tensor representations. To
discuss higher order conjugate complex forms and complex tensors, let us start with
the well-established properties of Hermitian matrices. Let A ∈ Cn2

with AH = A,
which is not symmetric in the usual sense because AT �= A in general. The conjugate
quadratic form

xHAx =

n∑
i=1

n∑
j=1

Aijxixj
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always takes real values for any x ∈ Cn. In particular, we notice that each monomial
in the above form is the product of one “conjugate” variable xi and one usual (non-
conjugate) variable xj .

To extend the above form to higher degrees, let us consider the following special
class of conjugate polynomials.

Definition 2.1. A symmetric conjugate form of the variable x ∈ Cn is defined
as

(2.2) fS(x) :=
∑

1≤i1≤···≤id≤n

∑
1≤j1≤···≤jd≤n

ai1...id,j1...jdxi1 . . . xidxj1 . . . xjd .

Essentially, fS(x) is the summation of all the possible 2dth degree monomials
that consist of d conjugate variables and d usual variables. Here the subscript “S”
stands for “symmetric.” The following example is a special case of (2.2).

Example 2.2. Given a dth degree complex form h(x)=
∑

1≤i1≤···≤id≤n ci1...idxi1 . . . xid ,
the function

|h(x)|2 =

⎛
⎝ ∑

1≤i1≤···≤id≤n

ci1...idxi1 . . . xid

⎞
⎠

⎛
⎝ ∑

1≤j1≤···≤jd≤n

cj1...jdxj1 . . . xjd

⎞
⎠

=
∑

1≤i1≤···≤id≤n

∑
1≤j1≤···≤jd≤n

(ci1...id · cj1...jd)xi1 . . . xidxj1 . . . xjd

is a 2dth degree symmetric conjugate form.

Notice that |h(x)|2 is actually a real-valued conjugate polynomial. Later, in
section 3, we will show that a symmetric conjugate form fS(x) in (2.2) always
takes real values if and only if the coefficients of any pair of conjugate monomials
xi1 . . . xidxj1 . . . xjd and xj1 . . . xjdxi1 . . . xid are conjugate to each other, i.e.,

ai1...id,j1...jd = aj1...jd,i1...id ∀ 1 ≤ i1 ≤ · · · ≤ id ≤ n, 1 ≤ j1 ≤ · · · ≤ jd ≤ n.

As any complex form uniquely defines a symmetric complex tensor, and vice versa,
we observe a class of tensors representable for symmetric conjugate forms.

Definition 2.3. An even order tensor F ∈ Cn2d

is called partial-symmetric if
for every 1 ≤ i1 ≤ · · · ≤ id ≤ n, 1 ≤ id+1 ≤ · · · ≤ i2d ≤ n

Fj1...jdjd+1...j2d = Fi1...idid+1...i2d

(2.3)

∀ (j1 . . . jd) ∈ Π(i1 . . . id), (jd+1 . . . j2d) ∈ Π(id+1 . . . i2d).

We remark that the so-called partial-symmetricity was studied earlier in alge-
braic geometry by Carlini and Chipalkatti [6] and was also studied in polynomial
optimization [13] in the framework of mixed polynomial forms; i.e., for any fixed first
d indices of the tensor, it is symmetric with respect to its last d indices, and vice versa.
It is clear that partial-symmetricity (2.3) is weaker than the usual symmetricity for
tensors.

Let us formally define the bijection S (taking the first initial of symmetric con-
jugate forms) between symmetric conjugate forms and partial-symmetric complex
tensors, as follows:
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(i) S(F) = fS : Given a partial-symmetric tensor F ∈ Cn2d

with its associated
multilinear form F(x1, . . . ,x2d), the symmetric conjugate form is defined as

fS(x) = F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d

) =

n∑
i1=1

· · ·
n∑

i2d=1

Fi1...idid+1...i2dxi1 . . . xidxid+1
. . . xi2d .

(ii) S−1(fS) = F : Given a symmetric conjugate form fS (2.2), the components

of the partial-symmetric tensor F ∈ Cn2d

are defined by

(2.4) Fj1...jdjd+1...j2d =
ai1...id,id+1...i2d

|Π(i1 . . . id)| · |Π(id+1 . . . i2d)|
for all 1 ≤ i1 ≤ · · · ≤ id ≤ n, 1 ≤ id+1 ≤ · · · ≤ i2d ≤ n, (j1 . . . jd) ∈ Π(i1 . . . id), and
(jd+1 . . . j2d) ∈ Π(id+1 . . . i2d).

Example 2.4. Given a bivariate fourth degree symmetric conjugate form fS(x) =
(1 − i)x1

2x1
2 + 4x1x2x1x2 + 6x1x2x2

2, the corresponding partial-symmetric tensor

F = S−1(fS) ∈ C
24 satisfies that F1111 = 1 − i, F1212 = F1221 = F2112 = F2121 =

1, F1222 = F2122 = 3 and other entries are zeros. Conversely, fS(x) can be obtained
from F((

x1

x2

)
,
(
x1

x2

)
,
(
x1

x2

)
,
(
x1

x2

))
.

According to the mappings defined previously, the following result readily follows.

Lemma 2.5. The bijection S is well-defined; i.e., any n-dimensional 2dth order

partial-symmetric tensor F ∈ Cn2d

uniquely defines an n-dimensional 2dth degree
symmetric conjugate form, and vice versa.

2.3. General conjugate forms and their tensor representations. In (2.2),
for each monomial the numbers of conjugate variables and the usual variables are
always equal. This restriction can be relaxed further.

Definition 2.6. A general conjugate form of the variable x ∈ Cn is defined as

(2.5) fG(x) =

d∑
k=0

∑
1≤i1≤···≤ik≤n

∑
1≤j1≤···≤jd−k≤n

ai1...ik,j1...jd−k
xi1 . . . xikxj1 . . . xjd−k

.

Essentially, fG(x) is the summation of all the possible dth degree monomials,
allowing any number of conjugate variables as well as the usual variables in each
monomial. Here the subscript “G” stands for “general.” Obviously fS(x) is a special
case of fG(x), and fG(x) is a special case of fC(x).

In section 3 we shall show that a general conjugate form fG(x) will always take
real values for all x if and only if the coefficients of each pair of conjugate monomials
are conjugate to each other. To this end, below we shall explicitly treat the conjugate
variables as new variables:

(i) G(F) = fG: Given a symmetric tensor F ∈ C(2n)d with its associated multi-
linear form F(x1, . . . ,xd), the general conjugate form of x ∈ C

n is defined as

(2.6) fG(x) = F
((

x

x

)
, . . . ,

(
x

x

)
︸ ︷︷ ︸

d

)
.

(ii) G−1(fG) = F : Given a general conjugate form fG of x ∈ Cn as (2.5),

the components of the symmetric tensor F ∈ C(2n)d are defined as follows: for any
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1 ≤ j1, . . . , jd ≤ 2n, sort these j�’s in nondecreasing order as 1 ≤ ji1 ≤ · · · ≤ jid ≤ 2n
and let k = argmax1≤�≤d{ji� ≤ n}. Then

Fj1...jd =
aji1 ...jik ,(jik+1

−n)...(jid−n)

|Π(j1 . . . jd)| .(2.7)

Example 2.7. Given a symmetric second order tensor (matrix)

F =

⎛
⎜⎜⎝

i 0 1 0
0 0 2 0
1 2 0 0
0 0 0 3

⎞
⎟⎟⎠ ∈ C

42 ,

the corresponding general conjugate form is

fG(x) = (x1, x2, x1, x2)F (x1, x2, x1, x2)
T = ix1

2 + 2x1x1 + 4x2x1 + 3x2
2.

Conversely, F = G−1(fG) can obtained componentwise by (2.7).

Similar to Lemma 2.5, the following is easily verified; we leave its proof to the
interested reader.

Lemma 2.8. The bijection G is well-defined; i.e., any 2n-dimensional dth order

symmetric tensor F ∈ C
(2n)d uniquely defines an n-dimensional dth degree general

conjugate form, and vice versa.

To conclude this section we remark that a partial-symmetric tensor (represen-
tation for a symmetric conjugate form) is less restrictive than a symmetric tensor
(representation for a general conjugate form), while a symmetric conjugate form is
a special case of a general conjugate form. One should note that the dimensions of
these two tensor representations are actually different.

3. Real-valued conjugate forms and their tensor representations. In this
section, we study the two types of conjugate complex forms introduced in section 2:
symmetric conjugate forms and general conjugate forms.

3.1. Real-valued conjugate polynomials. Let us first focus on polynomials
and present the following general characterization of real-valued conjugate complex
polynomials.

Theorem 3.1. A conjugate complex polynomial function is real valued if and only
if the coefficients of any pair of its conjugate monomials are conjugate to each other;
i.e., any two monomials auC(x) and bvC(x), with a and b being their coefficients,
satisfying uC(x) = vC(x) must have that a = b.

The above condition actually implies that the coefficient of any self-conjugate
monomial must be real. Applying Theorem 3.1 to the two classes of conjugate forms
that we just introduced, the conditions for them to always take real values can now
be characterized.

Corollary 3.2. A symmetric conjugate form

fS(x) =
∑

1≤i1≤···≤id≤n

∑
1≤j1≤···≤jd≤n

ai1...id,j1...jdxi1 . . . xidxj1 . . . xjd

is real valued if and only if

(3.1) ai1...id,j1...jd = aj1...jd,i1...id ∀ 1 ≤ i1 ≤ · · · ≤ id ≤ n, 1 ≤ j1 ≤ · · · ≤ jd ≤ n.
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A general conjugate form

fG(x) =

d∑
k=0

∑
1≤i1≤···≤ik≤n

∑
1≤j1≤···≤jd−k≤n

ai1...ik,j1...jd−k
xi1 . . . xikxj1 . . . xjd−k

is real valued if and only if

ai1...ik,j1...jd−k
= aj1...jd−k,i1...ik

∀ 1 ≤ i1 ≤ · · · ≤ ik ≤ n, 1 ≤ j1 ≤ · · · ≤ jd−k ≤ n, 0 ≤ k ≤ d.

Let us now prove Theorem 3.1. We first show the “if” part of the theorem, which
is quite straightforward. To see this, for any pair of conjugate monomials (including
self-conjugate monomial as a special case) of a conjugate complex polynomial: auC(x)
and buC(x) with a, b ∈ C being their coefficients, if a = b, then

auC(x) + buC(x) = auC(x) + auC(x) = auC(x) + auC(x) = auC(x) + buC(x),

implying that auC(x) + buC(x) is real valued. Since all the conjugate monomials
of a conjugate complex polynomial can be partitioned by conjugate pairs and self-
conjugate monomials, the result follows immediately.

To proceed to the “only if” part of the theorem, let us first consider an easier
case of univariate conjugate polynomials.

Lemma 3.3. A univariate conjugate complex polynomial
∑d

�=0

∑�
k=0 bk,�−kx

kx�−k

= 0 for all x ∈ C if and only if all its coefficients are zeros, i.e., bk,�−k = 0 for all
0 ≤ � ≤ d and 0 ≤ k ≤ �.

Proof. Let x = ρeiθ with ρ ≥ 0 and θ ∈ [0, 2π), and the identity can be rewritten
as

(3.2)

d∑
�=0

(
�∑

k=0

bk,�−ke
i(�−2k)θ

)
ρ� = 0.

For any fixed θ, the function can be viewed as a polynomial with respect to ρ. There-
fore the coefficient of the highest degree monomial ρd must be zero, i.e.,

d∑
k=0

bk,d−ke
i(d−2k)θ = 0 ∀ θ ∈ [0, 2π).

Consequently we have, for any θ ∈ [0, 2π),

d∑
k=0

Re (bk,d−k) cos((d− 2k)θ)−
d∑

k=0

Im (bk,d−k) sin((d− 2k)θ) = 0,(3.3)

d∑
k=0

Im (bk,d−k) cos((d− 2k)θ) +
d∑

k=0

Re (bk,d−k) sin((d− 2k)θ) = 0.(3.4)

The first and second parts of (3.3) can be simplified, respectively, as

d∑
k=0

Re (bk,d−k) cos((d− 2k)θ)

=

⎧⎨
⎩

∑ d−1
2

k=0 Re (bk,d−k + bd−k,k) cos((d − 2k)θ) d is odd,∑ d−2
2

k=0 Re (bk,d−k + bd−k,k) cos((d − 2k)θ) + Re (bd/2,d/2) d is even
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and

d∑
k=0

Im (bk,d−k) sin((d− 2k)θ) =

� d−1
2 �∑

k=0

Im (bk,d−k − bd−k,k) sin((d− 2k)θ).

By the orthogonality of the trigonometric functions, the above further leads to

Re (bk,d−k + bd−k,k) = Im (bk,d−k − bd−k,k) = 0 ∀ k = 0, 1, . . . , d.

Similarly, (3.4) implies

Re (bk,d−k − bd−k,k) = Im (bk,d−k + bd−k,k) = 0 ∀ k = 0, 1, . . . , d.

Combining the above two sets of identities yields

bk,d−k = 0 ∀ k = 0, 1, . . . , d.

The degree of the function in (3.2) (in terms of ρ) is then reduced by 1. The desired
result follows obviously.

Let us now extend Lemma 3.3 to general multivariate conjugate polynomials.

Lemma 3.4. An n-dimensional dth degree conjugate complex polynomial

fC(x) =

d∑
�=0

�∑
k=0

∑
1≤i1≤···≤ik≤n

∑
1≤j1≤···≤j�−k≤n

bi1...ik,j1...j�−k
xi1 . . . xikxj1 . . . xj�−k

= 0

for all x ∈ C
n if and only if all its coefficients are zeros, i.e., bi1...ik,j1...j�−k

= 0 for
all 0 ≤ � ≤ d, 0 ≤ k ≤ �, 1 ≤ i1 ≤ · · · ≤ ik ≤ n, and 1 ≤ j1 ≤ · · · ≤ jd−k ≤ n.

Proof. We shall prove the result by induction on the dimension n. The case n = 1
is already shown in Lemma 3.3. Suppose the claim holds for all positive integers no
greater than n − 1. Then for the dimension n, the conjugate polynomial fC(x) can
be rewritten according to the degrees of x1 and x1 as

fC(x) =

d∑
�=0

�∑
k=0

x1
kx1

�−kh�k
C (x2, . . . , xn).

For any given x2, . . . , xn ∈ C, taking fC as a univariate conjugate polynomial of x1,
by Lemma 3.3 we have

h�k
C (x2, . . . , xn) = 0 ∀ 0 ≤ � ≤ d, 0 ≤ k ≤ �.

For any given (�, k), as h�k
C (x2, . . . , xn) is a conjugate polynomial of dimension at most

n− 1, by the induction hypothesis all the coefficients of h�k
C are zeros. Observing that

all the coefficients of fC are distributed in the coefficients of h�k
C for all (�, k), the

result is proven for dimension n.

With Lemma 3.4 at hand, we can finally complete the “only if” part of Theo-
rem 3.1. Suppose a conjugate polynomial f(x) is real valued for all x ∈ Cn. Clearly
we have f(x)− f(x) = 0 for all x ∈ Cn, i.e.,

d∑
�=0

�∑
k=0

∑
1≤i1≤···≤ik≤n

∑
1≤j1≤···≤j�−k≤n

(
bi1...ik,j1...j�−k

− bj1...j�−k,i1...ik

)
xi1 . . . xikxj1 . . . xj�−k

= 0.
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By Lemma 3.4 it follows that bi1...ik,j1...j�−k
− bj1...j�−k,i1...ik = 0 for all 0 ≤ � ≤ d,

0 ≤ k ≤ �, 1 ≤ i1 ≤ · · · ≤ ik ≤ n, and 1 ≤ j1 ≤ · · · ≤ jd−k ≤ n, proving the “only if”
part of Theorem 3.1.

With Theorem 3.1, in particular Corollary 3.2, we are in a position to charac-
terize the tensor representations for real-valued conjugate forms. Before concluding
this subsection, let us present an alternative representation of real-valued symmetric
conjugate forms, as a consequence of Corollary 3.2.

Proposition 3.5. A symmetric conjugate form fS(x) is real valued if and only
if

fS(x) =

m∑
k=1

αk|hk(x)|2,

where hk(x) is a complex form and αk ∈ R for all 1 ≤ k ≤ m.

Proof. The “if” part is trivial. Next we prove the “only if” part of the proposition.
If fS(x) is real valued, by Corollary 3.2 we have (3.1). Then for any 1 ≤ i1 ≤ · · · ≤
id ≤ n and 1 ≤ j1 ≤ · · · ≤ jd ≤ n, the sum of the conjugate pair satisfies

ai1...id,j1...jdxi1 . . . xidxj1 . . . xjd + aj1...jd,i1...idxj1 . . . xjdxi1 . . . xid

= ai1...id,j1...jdxi1 . . . xidxj1 . . . xjd + ai1...id,j1...jdxj1 . . . xjdxi1 . . . xid

= |xi1 . . . xid + ai1...id,j1...jdxj1 . . . xjd |2 − |xi1 . . . xid |2 − |ai1...idj1...jdxj1 . . . xjd |2.

Summing up all such pairs (taking half if it is a self-conjugate pair), the conclusion
follows.

Similarly we have the following result for general conjugate forms.

Proposition 3.6. A general conjugate form fG(x) is real valued if and only if

fG(x) =

m∑
k=1

αk|hk(x)|2,

where hk(x) is a complex polynomial and αk ∈ R for all 1 ≤ k ≤ m.

3.2. Conjugate partial-symmetric tensors. As any symmetric conjugate
form uniquely defines a partial-symmetric tensor (Lemma 2.5), it is interesting to see
more structured tensor representations for real-valued symmetric conjugate forms.

Definition 3.7. An even order tensor F ∈ Cn2d

is called conjugate partial-sym-
metric if

(i) Fi1...idid+1...i2d = Fj1...jdjd+1...j2d for all (j1 . . . jd) ∈ Π(i1 . . . id) and (jd+1 . . . j2d)
∈ Π(id+1 . . . i2d), and

(ii) Fi1...idid+1...i2d = Fid+1...i2di1...id

hold for all 1 ≤ i1 ≤ · · · ≤ id ≤ n and 1 ≤ id+1 ≤ · · · ≤ i2d ≤ n.

We remark that when d = 1, a conjugate partial-symmetric tensor is simply
a Hermitian matrix. For a general even degree, the square matrix flattening of a

conjugate partial-symmetric tensor, i.e., flattening a tensor in Cn2d

to a matrix in

C(nd)2 by grouping the tensor’s first d modes into the rows of the matrix and its
last d modes into the columns of the matrix, is actually a Hermitian matrix. The
conjugate partial-symmetric tensors and the real-valued symmetric conjugate forms
are connected as follows.
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Proposition 3.8. Any n-dimensional 2dth order conjugate partial-symmetric ten-

sor F ∈ Cn2d

uniquely defines (under S) an n-dimensional 2dth degree real-valued
symmetric conjugate form, and vice versa (under S−1).

Proof. For any conjugate partial-symmetric tensor F , fS = S(F) satisfies

fS(x) = F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d

) =

n∑
i1=1

· · ·
n∑

i2d=1

Fi1...idid+1...i2dxi1 . . . xidxid+1
. . . xi2d

=
n∑

i1=1

· · ·
n∑

i2d=1

Fi1...idid+1...i2dxi1 . . . xidxid+1
. . . xi2d

=

n∑
i1=1

· · ·
n∑

i2d=1

Fid+1...i2di1...idxid+1
. . . xi2dxi1 . . . xid

= fS(x),

implying that fS is real valued.
On the other hand, for any real-valued symmetric conjugate form fS(x) in (2.2),

it follows from Corollary 3.2 that ai1...id,j1...jd = aj1...jd,i1...id holds for all the possible
(i1, . . . , id, j1, . . . , jd). By (2.4), its tensor representation F = S−1(fS) with

Fi1...idid+1...i2d =
ai1...id,id+1...i2d

|Π(i1 . . . id)| · |Π(id+1 . . . i2d)|
satisfies condition (ii) of Definition 3.7, proving the conjugate partial-symmetricity of
F .

Below is a useful property for conjugate partial-symmetric tensors, in the same
vein as Proposition 3.5 for the real-valued symmetric conjugate forms.

Proposition 3.9. An even order tensor F ∈ Cn2d

is conjugate partial-symmetric
if and only if

F =
m∑

k=1

αkHk ⊗Hk,

where Hk ∈ Cnd

is symmetric and αk ∈ R for all 1 ≤ k ≤ m.

Proof. According to Definition 3.7, it is straightforward to verify that
∑m

k=1 αkHk⊗
Hk is conjugate partial-symmetric, proving the “if” part of the proposition. Let us
now prove the “only if” part.

By Proposition 3.8, S(F) is a real-valued symmetric conjugate form. Further, by
Proposition 3.5, S(F) can be written as

F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d

) =

m∑
k=1

αk|hk(x)|2,

where hk(x) is a complex form and αk ∈ R for k = 1, . . . ,m. Let Hk ∈ Cnd

be the
symmetric complex tensor associated with the complex form hk(x) for k = 1, . . . ,m;
i.e.,

Hk(x, . . . ,x︸ ︷︷ ︸
d

) = hk(x).
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We have
(3.5)
|hk(x)|2 = hk(x)hk(x) = Hk(x, . . . ,x︸ ︷︷ ︸

d

)Hk(x, . . . ,x︸ ︷︷ ︸
d

) = (Hk ⊗Hk)(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d

).

Thus, the symmetric conjugate form S
(∑m

k=1 αkHk ⊗Hk

)
satisfies(

m∑
k=1

αkHk ⊗Hk

)
(x, . . . ,x︸ ︷︷ ︸

d

,x, . . . ,x︸ ︷︷ ︸
d

) =

m∑
k=1

αk(Hk ⊗Hk)(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d

)

=

m∑
k=1

αk|hk(x)|2

= F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d

),

that is, S
(∑m

k=1 αkHk ⊗Hk

)
= S(F). Since S is bijective, we have F =

∑m
k=1 αkHk⊗

Hk.

3.3. Conjugate super-symmetric tensors. Similarly as for real-valued sym-
metric conjugate forms, we have the following tensor representations for real-valued
general conjugate forms.

Definition 3.10. An even-dimensional tensor F ∈ C(2n)d is called conjugate
supersymmetric if

(i) F is symmetric, and
(ii) Fi1...id = Fj1...jd holds for all 1 ≤ i1, . . . , id, j1, . . . , jd ≤ 2n with |ik − jk| = n

for k = 1, . . . , d.

We remark that the conjugate super-symmetricity is actually stronger than the
ordinary symmetricity for complex tensors since a second condition in Definition 3.10
is required. Actually, this condition is to ensure that the general conjugate form

G(F)(x) = F
((

x

x

)
, . . . ,

(
x

x

)
︸ ︷︷ ︸

d

)

is real valued. This is because if |ik−jk| = n holds for k = 1, . . . , d, then the monomial
with coefficient Fi1...id and the monomial with coefficient Fj1...jd in the above form
are actually a conjugate pair by noticing that the position of a conjugate variable xi

and that of a usual variable xi in the vector
(
x
x

)
differ by exactly n for every i. Under

the mapping G defined in section 2.3, it is straightforward to verify the following
tensor representations for real-valued general conjugate forms.

Proposition 3.11. Any 2n-dimensional dth order conjugate super-symmetric ten-

sor F ∈ C
(2n)d uniquely defines (under G) an n-dimensional dth degree real-valued

general conjugate form, and vice versa (under G−1).

4. Eigenvalues and eigenvectors of complex tensors. As mentioned ear-
lier, Lim [23] and Qi [29] independently proposed to systematically study the eigen-
values and eigenvectors for real tensors. Subsequently, the topic has attracted much
attention due to the potential applications in such areas as magnetic resonance imag-
ing, polynomial optimization theory, quantum physics, statistical data analysis, and
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higher order Markov chains. After that, this study was also extended to complex
tensors [30, 27, 7] without considering the conjugate variables. Zhang and Qi in [41]
proposed the so-called Q-eigenvalues of complex tensors.

Definition 4.1 (see Zhang and Qi [41]). A scalar λ is called a Q-eigenvalue of a
symmetric complex tensor H if there exists a vector x called Q-eigenvector, such that

(4.1)

⎧⎪⎪⎨
⎪⎪⎩

H(•,x, . . . ,x︸ ︷︷ ︸
d−1

) = λx,

xHx = 1,
λ ∈ R.

Throughout this paper, the notation “•” stands for a position left for a vector
entry. In Definition 4.1, as the corresponding complex tensor does not have conjugate-
type symmetricity, the Q-eigenvalue does not specialize to the classical eigenvalues of
Hermitian matrices. In particular, λ ∈ R is required in the system (4.1). Later on, Ni,
Qi, and Bai [26] defined the notion of a unitary symmetric eigenvalue (US-eigenvalue)
and demonstrated a relation with the geometric measure of quantum entanglement.

Definition 4.2 (see Ni, Qi, and Bai [26]). A scalar λ is called a US-eigenvalue
of a symmetric complex tensor H if there exists a vector x called a US-eigenvector,
such that

(4.2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H(•,x, . . . ,x︸ ︷︷ ︸
d−1

) = λx,

H(•,x, . . . ,x︸ ︷︷ ︸
d−1

) = λx,

xHx = 1.

In fact, the Q-eigenvalue and the US-eigenvalue are essentially the same.

Proposition 4.3. (λ,x) is a Q-eigenvalue and Q-eigenvector pair if and only if
(λ,x) is a US-eigenvalue and US-eigenvector pair.

Proof. First, Definition 4.2 implies that a US-eigenvalue is always real. To see
this, premultiplying xT to the first equation of (4.2) gives

H(x, . . . ,x︸ ︷︷ ︸
d

) = λxTx = λ,

and premultiplying xT to the second equation of (4.2) yields

H(x, . . . ,x︸ ︷︷ ︸
d

) = λxTx = λ.

Therefore λ = λ and so λ ∈ R. This actually implies that the first and second
equations of (4.2) are the same by applying the conjugation to the second one. Thus,
(4.2) is equivalent to ⎧⎪⎪⎨

⎪⎪⎩
H(•,x, . . . ,x︸ ︷︷ ︸

d−1

) = λx,

xHx = 1,
λ ∈ R.

The claimed equivalence is obvious by comparing the above system with (4.1).
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In terms of eigenvalues, Definitions 4.1 and 4.2 are the same. Now with all the
new notions introduced in the previous sections—in particular the bijection between
conjugate partial-symmetric tensors and real-valued symmetric conjugate forms, and
the bijection between conjugate super-symmetric tensors and real-valued general con-
jugate forms—we are able to present new definitions and properties of eigenvalues for
complex tensors, which are naturally related to that of Hermitian matrices.

4.1. Definitions and properties of eigenvalues. Let us first introduce two
types of eigenvalues for conjugate partial-symmetric tensors and conjugate super-
symmetric tensors.

Definition 4.4. λ ∈ C is called a C-eigenvalue of a conjugate partial-symmetric
tensor F if there exists a vector x ∈ Cn called C-eigenvector, such that

(4.3)

⎧⎨
⎩

F(•,x, . . . ,x︸ ︷︷ ︸
d−1

,x, . . . ,x︸ ︷︷ ︸
d

) = λx,

xHx = 1.

Definition 4.5. λ ∈ C is called a G-eigenvalue of a conjugate super-symmetric
tensor F if there exists a vector x ∈ Cn called G-eigenvector, such that

(4.4)

⎧⎪⎪⎨
⎪⎪⎩

F
((•

•
)
,

(
x

x

)
, . . . ,

(
x

x

)
︸ ︷︷ ︸

d−1

)
= λ

(
x

x

)
,

xHx = 1.

In fact, the two types of eigenvalues defined above are always real, although they
are defined in the complex domain. This property generalizes the well-known property
of Hermitian matrices. In particular, Definition 4.4 includes eigenvalues of Hermitian
matrices as a special case when d = 1.

Proposition 4.6. Every C-eigenvalue of a conjugate partial-symmetric tensor is
always real; so is every G-eigenvalue of a conjugate super-symmetric tensor.

Proof. Suppose (λ,x) is a C-eigenvalue and C-eigenvector pair of a conjugate
partial-symmetric tensor F . Multiplying xT on both sides of the first equation in (4.3),
we get

F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d

) = λxTx = λ.

As F is conjugate partial-symmetric, the left-hand side of the above equation is real
valued, and so is λ.

Next, suppose (λ,x) is a G-eigenvalue and G-eigenvector pair of a conjugate super-

symmetric tensor F . Multiplying
(
x
x

)T
on both sides of the first equation in (4.4)

yields

F
((

x

x

)
, . . . ,

(
x

x

)
︸ ︷︷ ︸

d

)
= λ

(
x

x

)T(
x

x

)
= 2λxHx = 2λ.

As F is conjugate super-symmetric, the left-hand side of the above equation is real
valued, and so is λ.

As a consequence of Proposition 4.6, one can similarly define the C-eigenvalue
λ ∈ R and its corresponding C-eigenvector x ∈ Cn for a conjugate partial-symmetric
tensor F equivalently as follows.
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Proposition 4.7. λ ∈ C is a C-eigenvalue of a conjugate partial-symmetric ten-
sor F if and only if there exists a vector x ∈ Cn, such that

(4.5)

⎧⎨
⎩

F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d−1

, •) = λx,

xHx = 1.

One important property of the Z-eigenvalues for real symmetric tensors is that
they can be fully characterized by the KKT solutions of a certain optimization prob-
lem [23, 29]. At first glance, this property may not hold for C-eigenvalues and G-
eigenvalues since the real-valued complex functions are not analytic. Therefore, direct
extension of the KKT condition of an optimization problem with such an objective
function may not be valid. However, this class of functions is indeed analytic if
we treat the complex variables and their conjugates as a whole due to the so-called
Wirtinger calculus [32] developed in the early 20th century. In the optimization con-
text, without noticing the Wirtinger calculus, Brandwood [5] first proposed the notion
of a complex gradient. In particular, the gradient of a real-valued complex function
can be taken as

(
∂
∂x ,

∂
∂x

)
. Interested readers are referred to [34] for more discussions

on the Wirtinger calculus in optimization with complex variables.
With the help of Wirtinger calculus, we are able to characterize C-eigenvalues

and C-eigenvectors in terms of the KKT solutions. Therefore many optimization tech-
niques can be applied to find the C-eigenvalues/eigenvectors for a conjugate partial-
symmetric tensor.

Proposition 4.8. x ∈ Cn is a C-eigenvector associated with a C-eigenvalue λ ∈
R for a conjugate partial-symmetric tensor F if and only if x is a KKT point of the
optimization problem

max
xHx=1

F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d

)

with Lagrange multiplier being dλ and the corresponding objective value being λ.

Proof. By the multilinearity of F , the gradient on x of the real-valued symmetric
conjugate form associated with F is given by

F(x, . . . ,x︸ ︷︷ ︸
d

, •,x, . . . ,x︸ ︷︷ ︸
d−1

) + · · ·+ F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d−1

, •) = d · F(x, . . . ,x︸ ︷︷ ︸
d

, •,x, . . . ,x︸ ︷︷ ︸
d−1

),

due to the partial-symmetry of F .
Denote μ to be the Lagrange multiplier associated with the constraint xHx = 1.

The KKT condition gives rise to the equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d · F(•,x, . . . ,x︸ ︷︷ ︸
d−1

,x, . . . ,x︸ ︷︷ ︸
d

)− μx = 0,

d · F(x, . . . ,x︸ ︷︷ ︸
d

, •,x, . . . ,x︸ ︷︷ ︸
d−1

)− μx = 0,

xHx = 1.

The conclusion follows immediately by comparing the above with (4.3) and (4.5).

Similarly, we have the following characterization.
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Proposition 4.9. x ∈ Cn is a G-eigenvector associated with a G-eigenvalue λ ∈
R for a conjugate super-symmetric tensor F if and only if x is a KKT point of the
optimization problem

max
xHx=1

F
((

x

x

)
, . . . ,

(
x

x

)
︸ ︷︷ ︸

d

)

with Lagrange multiplier being dλ and the corresponding objective value being λ.

4.2. Eigenvalues of complex tensors and their relations. Although the
definitions of the C-eigenvalue, the G-eigenvalue, the previously defined Q-eigenvalue,
and the US-eigenvalue involve different tensor spaces, they are indeed closely related.
Our main result in this section essentially states that the Q-eigenvalue and the US-
eigenvalue are special cases of the C-eigenvalue, and the C-eigenvalue is a special case
of the G-eigenvalue.

Theorem 4.10. Denote H ∈ Cnd

to be a complex tensor and define F = H⊗H ∈
C

n2d

. It holds that
(i) H is symmetric if and only if F is conjugate partial-symmetric;
(ii) if H is symmetric, then all the C-eigenvalues of F are nonnegative;
(iii) if H is symmetric, then λ2 is a C-eigenvalue of F if and only if λ is a Q-

eigenvalue (or a US-eigenvalue) of H.

Proof. (i) This equivalence can be easily verified by the definition of conjugate
partial-symmetricity (Definition 3.7).

(ii) Let x ∈ Cn be a C-eigenvector associated with a C-eigenvalue λ ∈ R of F .
By multiplying x on both sides of the first equation in (4.3), we obtain

λ = F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d

) = (H⊗H)(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d

) = H(x, . . . ,x︸ ︷︷ ︸
d

) · H(x, . . . ,x︸ ︷︷ ︸
d

)

= |H(x, . . . ,x︸ ︷︷ ︸
d

)|2 ≥ 0.

(iii) Since the Q-eigenvalue is the same as the US-eigenvalue, we only prove the
former case. Suppose x ∈ Cn is a Q-eigenvector associated with a Q-eigenvalue λ ∈ R

of H. By (4.1) we have xHx = 1 and H(•,x, . . . ,x) = λx, and so

H(x, . . . ,x︸ ︷︷ ︸
d

) = λxTx = λ.

Using a derivation similar to that in the proof of (ii), we get

F(•,x, . . . ,x︸ ︷︷ ︸
d−1

,x, . . . ,x︸ ︷︷ ︸
d

) = H(•,x, . . . ,x︸ ︷︷ ︸
d−1

) · H(x, . . . ,x︸ ︷︷ ︸
d

)

= H(•,x, . . . ,x︸ ︷︷ ︸
d−1

) · λ = λx · λ = λ2x,

implying that λ2 is a C-eigenvalue of F .
On the other hand, suppose x ∈ Cn is a C-eigenvector associated with a nonneg-
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ative C-eigenvalue λ2 of F . Then by (4.5) we have xHx = 1 and

H(x, . . . ,x︸ ︷︷ ︸
d

) · H(•,x, . . . ,x︸ ︷︷ ︸
d−1

) = H(x, . . . ,x︸ ︷︷ ︸
d

) · H(x, . . . ,x︸ ︷︷ ︸
d−1

, •)

= F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d−1

, •) = λ2x,(4.6)

where the first equality is due to the symmetricity ofH. This leads to |H(x, . . . ,x)|2 =

λ2. Let H(x, . . . ,x) = λeiθ with some fixed θ ∈ [0, 2π), and further define y =

xe−iθ/d. We then get

H(y, . . . ,y︸ ︷︷ ︸
d

) = H(xe−iθ/d, . . . ,xe−iθ/d︸ ︷︷ ︸
d

) = (e−iθ/d)dH(x, . . . ,x︸ ︷︷ ︸
d

) = e−iθλeiθ = λ.

Now we are able to verify that y is a Q-eigenvector associated with Q-eigenvalue λ of

H. Observing yHy = (xe−iθ/d)Hxe−iθ/d = 1, and by (4.6),

λ2x = H(x, . . . ,x︸ ︷︷ ︸
d

) · H(•,x, . . . ,x︸ ︷︷ ︸
d−1

)

= λeiθH(•,yeiθ/d, . . . ,yeiθ/d︸ ︷︷ ︸
d−1

)

= λe−iθ(eiθ/d)d−1H(•,y, . . . ,y︸ ︷︷ ︸
d−1

),

we finally get

H(•,y, . . . ,y︸ ︷︷ ︸
d−1

) = λxeiθ/d = λyeiθ/deiθ/d = λy.

As we saw in section 2, by definition, a symmetric conjugate form is a special
general conjugate form. Hence in terms of their tensor representations, a conju-
gate partial-symmetric tensor is a special case of conjugate super-symmetric tensor,
although they live in different tensor spaces. To study the relationship between the
C-eigenvalue and the G-eigenvalue, let us embed a conjugate partial-symmetric tensor

F ∈ Cn2d

to the space of C(2n)2d . The conjugate super-symmetric tensor G ∈ C(2n)2d

corresponding to F is then defined by

(4.7) Gj1...j2d =

{ Fi1...i2d/
(
2d
d

)
, (j1 . . . j2d) ∈ Π(i1, . . . , id, id+1 + n, . . . , i2d + n);

0 otherwise.

For example, when d = 1, a conjugate partial-symmetric tensor is simply a Her-
mitian matrix A ∈ Cn2

. Then its embedded conjugate super-symmetric tensor is( O A/2

AT/2 O

) ∈ C(2n)2 , and clearly we have

xTAx =

(
x

x

)T (
O A/2

AT/2 O

)(
x

x

)
.

In general it is straightforward to verify that

(4.8) F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d

) = G
((

x

x

)
, . . . ,

(
x

x

)
︸ ︷︷ ︸

2d

)
.
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Based on this, we are led to the following relationship between the C-eigenvalue and
the G-eigenvalue.

Theorem 4.11. If G ∈ C(2n)2d is a conjugate super-symmetric tensor induced

by a conjugate partial-symmetric tensor F ∈ Cn2d

according to (4.7), then λ is a
C-eigenvalue of F if and only if λ/2 is a G-eigenvalue of G.

Proof. First, by taking the gradient
(

∂
∂x ,

∂
∂x

)
on both sides of (4.8), we have that

(
d · F(•,

d−1︷ ︸︸ ︷
x, . . . ,x,

d︷ ︸︸ ︷
x, . . . ,x)

d · F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d−1

, •)
)

= 2d · G
((•

•
)
,

(
x

x

)
, . . . ,

(
x

x

)
︸ ︷︷ ︸

2d−1

)
.

Next, according to Definition 4.4 and Proposition 4.7, λ is a C-eigenvalue of F if and
only if there exists a vector x ∈ C

n such that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F(•,x, . . . ,x︸ ︷︷ ︸
d−1

,x, . . . ,x︸ ︷︷ ︸
d

) = λx,

F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d−1

, •) = λx,

xHx = 1.

Finally, according to Definition 4.5, λ/2 is a G-eigenvalue of G if and only if there
exists a vector x ∈ Cn such that⎧⎪⎪⎨

⎪⎪⎩
G
((•

•
)
,

(
x

x

)
, . . . ,

(
x

x

)
︸ ︷︷ ︸

2d−1

)
= λ

2

(
x

x

)
,

xHx = 1.

The conclusion follows immediately by combining the above three facts.

5. Extending Banach’s theorem to real-valued conjugate forms. A clas-
sical result originally due to Banach [4] states that if L(x1, . . . ,xd) is a continuous
symmetric d-linear form, then
(5.1)

sup{|L(x1, . . . ,xd)| | ‖x1‖ ≤ 1, . . . , ‖xd‖ ≤ 1} = sup{|L(x, . . . ,x︸ ︷︷ ︸
d

)| | ‖x‖ ≤ 1}.

In the space of real tensors where x ∈ Rn and L is a multilinear form defined by a

real symmetric tensor L ∈ Rnd

, (5.1) states that the largest singular value [23] of L
is equal to the largest eigenvalue [29] (in the absolute value sense) of L, i.e.,
(5.2) max

(xk)Txk=1,xk∈Rn, k=1,...,d
L(x1, . . . ,xd) = max

xTx=1,x∈Rn
|L(x, . . . ,x︸ ︷︷ ︸

d

)|.

Alternatively, (5.2) is essentially equivalent to the fact that the best rank-one ap-
proximation of a real symmetric tensor can be obtained at a symmetric rank-one
tensor [8, 40]. A recent development on this topic for special classes of real symmet-
ric tensors can be found in [9]. In this section, we shall extend Banach’s theorem
to symmetric conjugate forms (the conjugate partial-symmetric tensors) and general
conjugate forms (the conjugate super-symmetric tensors).
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5.1. Equivalence for conjugate super-symmetric tensors. Let us start
with conjugate super-symmetric tensors, which are a generalization of conjugate
partial-symmetric tensors. A key observation leading to the equivalence (Theorem 5.2)
is the following result.

Lemma 5.1. For a given real tensor F ∈ R
nd

, if F(x1, . . . ,xd) = F(xπ(1), . . . ,xπ(d))
for every x1, . . . ,xd ∈ Rn and every permutation π of {1, . . . , d}, then F is symmetric.

Our first result in this section extends (5.2) to any conjugate super-symmetric
tensors in the complex domain.

Theorem 5.2. For any conjugate super-symmetric tensor G ∈ C(2n)d , we have

(5.3) max
xHx=1

∣∣∣∣G
((

x

x

)
, . . . ,

(
x

x

)
︸ ︷︷ ︸

d

)∣∣∣∣ = max
(xk)Hxk=1, k=1,...,d

ReG
((

x1

x1

)
, . . . ,

(
xd

xd

))
.

Proof. Let yk =
(
Rexk

Imxk

) ∈ R2n for k = 1, . . . , d. We observe that ReG((
x1

x1

)
, . . . ,(

xd

xd

))
is also a multilinear form with respect to y1, . . . ,yd. As a result, we are able

to find a real tensor F ∈ R(2n)d such that

(5.4) F(
y1, . . . ,yd

)
= ReG

((
x1

x1

)
, . . . ,

(
xd

xd

))
.

As G is conjugate super-symmetric, for any y1, . . . ,yd ∈ R2n and any permutation π
of {1, . . . , d}, one has

F(
y1, . . . ,yd

)
= ReG

((
x1

x1

)
, . . . ,

(
xd

xd

))

= ReG
((

xπ(1)

xπ(1)

)
, . . . ,

(
xπ(d)

xπ(d)

))
= F(

yπ(1), . . . ,yπ(d)
)
.

By Lemma 5.1 we have that the real tensor F is symmetric. Finally, noticing that
(yk)Tyk = (xk)Hxk for k = 1, . . . , d, the conclusion follows immediately by apply-
ing (5.2) to F and then using the equality (5.4).

5.2. Equivalence for conjugate partial-symmetric tensors. For extending

Banach’s theorem to a conjugate partial-symmetric tensor F ∈ Cn2d

, one could hope
to proceed as follows. Since it is a special case of the conjugate super-symmetric

tensor, one can embed F into a conjugate super-symmetric tensor G ∈ C
(2n)2d us-

ing (4.7). Then, by applying Theorem 5.2 to G and rewriting the real part of its

associated multilinear form ReG((
x1

x1

)
, . . . ,

(
x2d

x2d

))
in terms of F , we may have an

equivalent expression as (5.3). However, this expression is not succinct. Taking the
case d = 2 (degree 4), for example, it is straightforward to verify from (4.7) that

ReG
((

x1

x1

)
,

(
x2

x2

)
,

(
x3

x3

)
,

(
x4

x4

))
=

1

6

(
F(x1,x2,x3,x4) + F(x1,x3,x2,x4) + F(x1,x4,x2,x3)

+F(x2,x3,x1,x4) + F(x2,x4,x1,x3) + F(x3,x4,x1,x2)
)

:= f ′
S(x

1,x2,x3,x4),
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and this would lead to

max
xHx=1

|F(x,x,x,x)| = max
(xk)Hxk=1, k=1,2,3,4

f ′
S(x

1,x2,x3,x4).

Instead, one would hope to get
(5.5)

max
xHx=1

|F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d

)| = max
(xk)Hxk=1, k=1,...,2d

ReF(x1, . . . ,xd,xd+1, . . . ,x2d).

However, this does not hold in general. The main reason is that

G
((

x1

x1

)
, . . . ,

(
x2d

x2d

))
�= F(x1, . . . ,xd,xd+1, . . . ,x2d),

which is easily observed since its left-hand side is invariant under the permutation
of (x1, . . . ,x2d), while its right-hand side is not. In particular, (5.5) only holds for
d = 1, viz. Hermitian matrices; see the following proposition and Example 5.4.

Proposition 5.3. For any Hermitian matrix Q ∈ Cn×n, it holds that

(L) max
zHz=1

zHQz = max
xHx=yHy=1

RexTQy. (R)

Furthermore, for any optimal solution (x∗,y∗) of (R) with x∗ + y∗ �= 0, (x∗ +
y∗)/‖x∗ + y∗‖ is an optimal solution of (L) as well.

Proof. Denote v(L) and v(R) to be the optimal values of (L) and (R), respectively.
Noticing that RexTQy = 1

2 (x
TQy + xTQy), by the optimality condition of (R) we

have that

(5.6)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Qy∗ − 2λx∗ = 0,
Qy∗ − 2λx∗ = 0,
Qx∗ − 2μy∗ = 0,
Qx∗ − 2μy∗ = 0,
(x∗)Hx∗ = 1,
(y∗)Hy∗ = 1,

where λ and μ are the Lagrangian multipliers of the constraints xHx = 1 and yHy = 1,
respectively.

Premultiplying the first two equations in (5.6) with (x∗)T and (x∗)T, respectively,
and summing them up leads to

2Re (x∗)TQy∗ = (x∗)TQy∗+(x∗)TQy∗ = 2λ(x∗)Tx∗+2λ(x∗)Tx∗ = 4λ(x∗)Hx∗ = 4λ.

Similarly, the summation of the third and fourth equations in (5.6) leads to

2Re (x∗)TQy∗ = 4μ,

which further leads to

(5.7) v(R) = Re (x∗)TQy∗ = 2λ = 2μ.

Moreover, the summation of the first and fourth equations in (5.6) yields

Q(y∗ + x∗)− 2λ(x∗ + y∗) = 0,



REAL-VALUED COMPLEX POLYNOMIALS AND TENSORS 401

which further leads to

(5.8) (y∗ + x∗)HQ(y∗ + x∗) = 2λ(y∗ + x∗)H(x∗ + y∗) = 2λ‖x∗ + y∗‖2.

Let z∗ = (x∗ + y∗)/‖x∗ + y∗‖. Clearly z∗ is a feasible solution of (L). By (5.8)
and (5.7) we have

(z∗)HQz∗ = 2λ = Re (x∗)TQy∗ = v(R).

This implies that v(L) ≥ v(R). Notice that (R) is a relaxation of (L) and hence
v(L) ≤ v(R). Therefore we conclude that v(R) = v(L), and an optimal solution z∗ of
(L) is constructed from an optimal solution (x∗,y∗) of (R).

Example 5.4. Let F ∈ C24 , with F1122 = F2211 = 1 and other entries being zeros.
Clearly F is conjugate partial-symmetric. In this case (5.5) fails to hold because

(i) |F(x,x,x,x)| = |x1
2x2

2 + x2
2x1

2| ≤ 2|x1|2|x2|2 ≤ 1
2 (|x1|2 + |x2|2)2 = 1

2 for
any x ∈ C2 with xHx = 1;

(ii) F(x,y, z,w) = x1y1z2w2 + x2y2z1w1 = 1 for x = y = (1, 0)T and z = w =
(0, 1)T.

Thus, Banach’s theorem (5.5) does not hold in general for conjugate partial-
symmetric tensors. A natural question arises: Is there any reasonable condition to
ensure the identity holds? Recall from Proposition 3.9 that every conjugate partial-

symmetric tensor can be written as
∑m

k=1 αkHk ⊗Hk, where Hk ∈ C
nd

is symmetric
and αk ∈ R for all 1 ≤ k ≤ m. If further we have all αk’s being nonnegative,
then (5.5) is true. Before presenting this result, we first need the following type of
Banach’s theorem for symmetric complex tensors, whose proof can be constructed
almost identically to that of Theorem 5.2.

Proposition 5.5. If F ∈ Cnd

is symmetric, then

(5.9) max
xHx=1

ReF(x, . . . ,x︸ ︷︷ ︸
d

) = max
(xk)Hxk=1, k=1,...,d

ReF(x1, . . . ,xd).

Theorem 5.6. If a conjugate partial-symmetric tensor F ∈ Cn2d

written as∑m
k=1 αkHk ⊗Hk satisfies that αk ≥ 0 for all 1 ≤ k ≤ m, then

(L′) max
xHx=1

F(x, . . . ,x︸ ︷︷ ︸
d

,x, . . . ,x︸ ︷︷ ︸
d

) = max
(xk)Hxk=1, k=1,...,2d

ReF(x1, . . . ,x2d). (R′)

Proof. Let us first introduce a sandwiched optimization model:

(M ′) max
yHy=zHz=1

ReF(y, . . . ,y︸ ︷︷ ︸
d

, z, . . . , z︸ ︷︷ ︸
d

).

Denote v(L′), v(M ′), and v(R′) to be the optimal values of (L′), (M ′), and (R′),
respectively. Clearly, (R′) is a relaxation of (M ′), and (M ′) is a relaxation of (L′),
implying that v(L′) ≤ v(M ′) ≤ v(R′).

Next, let (x1
∗, . . . ,x

2d
∗ ) be an optimal solution of (R′). Consider the problem

max
yHy=1

ReF(y, . . . ,y︸ ︷︷ ︸
d

,xd+1
∗ , . . . ,x2d

∗ ),
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whose optimal solution is denoted by y∗. Noticing that F(•, . . . , •,xd+1
∗ , . . . ,x2d

∗ )
∈ Cd is symmetric, by Proposition 5.5, we have

ReF(y∗, . . . ,y∗︸ ︷︷ ︸
d

,xd+1
∗ , . . . ,x2d

∗ ) = max
yHy=1

ReF(y, . . . ,y︸ ︷︷ ︸
d

,xd+1
∗ , . . . ,x2d

∗ )

= max
(xk)Hxk=1, k=1,...,d

ReF(x1, . . . ,xd,xd+1
∗ , . . . ,x2d

∗ )

≥ ReF(x1
∗, . . . ,x

2d
∗ ) = v(R′).

For the same reason, we have

max
zHz=1

ReF(y∗, . . . ,y∗︸ ︷︷ ︸
d

, z, . . . , z︸ ︷︷ ︸
d

) = max
(xk)Hxk=1, k=d+1,...,2d

ReF(y∗, . . . ,y∗︸ ︷︷ ︸
d

,xd+1, . . . ,x2d)

≥ ReF(y∗, . . . ,y∗︸ ︷︷ ︸
d

,xd+1
∗ , . . . ,x2d

∗ ) ≥ v(R′),

implying that v(M ′) ≥ v(R′).
Finally, let (y∗, z∗) be an optimal solution of (M ′). Since αk ≥ 0 for all 0 ≤ k ≤

m, we have

ReF(y∗, . . . ,y∗︸ ︷︷ ︸
d

, z∗, . . . , z∗︸ ︷︷ ︸
d

)

= Re

(
m∑

k=1

αkHk ⊗Hk

)
(y∗, . . . ,y∗︸ ︷︷ ︸

d

, z∗, . . . , z∗︸ ︷︷ ︸
d

)

=
m∑

k=1

αkRe (Hk(y
∗, . . . ,y∗︸ ︷︷ ︸

d

) · Hk(z
∗, . . . , z∗︸ ︷︷ ︸

d

))

≤
m∑

k=1

αk|Hk(y
∗, . . . ,y∗︸ ︷︷ ︸

d

)| · |Hk(z
∗, . . . , z∗︸ ︷︷ ︸

d

)|

≤
m∑

k=1

αk

2

(
|Hk(y

∗, . . . ,y∗︸ ︷︷ ︸
d

)|2 + |Hk(z
∗, . . . , z∗︸ ︷︷ ︸

d

)|2
)

=
1

2

m∑
k=1

αk

(
(Hk ⊗Hk)(y

∗, . . . ,y∗︸ ︷︷ ︸
d

,y∗, . . . ,y∗︸ ︷︷ ︸
d

) + (Hk ⊗Hk)(z
∗, . . . , z∗︸ ︷︷ ︸

d

, z∗, . . . , z∗︸ ︷︷ ︸
d

)

)

=
1

2

(
F(y∗, . . . ,y∗︸ ︷︷ ︸

d

,y∗, . . . ,y∗︸ ︷︷ ︸
d

) + F(z∗, . . . , z∗︸ ︷︷ ︸
d

, z∗, . . . , z∗︸ ︷︷ ︸
d

)

)

≤ max

{
F(y∗, . . . ,y∗︸ ︷︷ ︸

d

,y∗, . . . ,y∗︸ ︷︷ ︸
d

),F(z∗, . . . , z∗︸ ︷︷ ︸
d

, z∗, . . . , z∗︸ ︷︷ ︸
d

)

}
,

where the positivity of αk’s is exploited when invoking the triangle inequality in the
first inequality. This implies that either

F(y∗, . . . ,y∗︸ ︷︷ ︸
d

,y∗, . . . ,y∗︸ ︷︷ ︸
d

) or F(z∗, . . . , z∗︸ ︷︷ ︸
d

, z∗, . . . , z∗︸ ︷︷ ︸
d

)

attains v(M ′), proving that v(L′) ≥ v(M ′). Therefore we have v(L′) = v(M ′) =
v(R′).



REAL-VALUED COMPLEX POLYNOMIALS AND TENSORS 403

We remark that the condition for αk’s being nonnegative in F in Theorem 5.6 is
actually the condition for the real-valued symmetric conjugate form S(F) being a sum
of squares (SOS) of complex polynomials; see the relation between Propositions 3.5
and 3.9. In the field of polynomial optimization, checking whether a polynomial is
SOS can be done by the feasibility of a semidefinite program. In fact, there is an easy
sufficient condition for the condition on F in Theorem 5.6 to hold: the square matrix
flattening of F is Hermitian positive semidefinite. Interested readers are referred
to [17] for details.

6. Applications. The theoretical results developed in the previous sections are
also useful in practice. In this section, we shall discuss some concrete problems that
can be formulated as real-valued complex polynomial optimization models. In par-
ticular, these problems can be cast as finding the largest C-eigenvalue of a conjugate
partial-symmetric tensor or the largest G-eigenvalue of a conjugate super-symmetric
tensor.

One challenge of these eigenvalue optimization problems is that the variables
are coupled in the complex polynomial objective function. However, the extended
Banach’s theorem in section 5, specifically Theorems 5.2 and 5.6, guarantee that we
can separate the variables without losing the optimality. This enables us to focus on
the multilinear (block) optimization model

max
(xk)Hxk=1, k=1,...,d

ReG
((

x1

x1

)
, . . . ,

(
xd

xd

))

for a conjugate super-symmetric tensor G, or

max
(xk)Hxk=1, k=1,...,2d

ReF(x1, . . . ,x2d)

for a certain conjugate partial-symmetric tensor F . One great advantage of the above
models is that the optimization over one block variable is easy when other blocks
are fixed. Therefore, some efficient solution methods tailored for these models can
be applied, such as the block coordinate decent method [25] and the maximum block
improvement method [8]. Conversely, the extended Banach’s theorem in section 5
provides an alternative way to solving the symmetric multilinear optimization model
by resorting to some approaches tailored for symmetric tensor problems such as the
power method [21] and the semidefinite programming method [28, 18]. In particular,
as the search space can be restricted to symmetric solutions, the latter equivalent
model significantly reduces the number of decision variables, which is beneficial to
many practical algorithms such as semidefinite programs.

6.1. Ambiguity function shaping for radar waveform. The ambiguity func-
tion of the waveform is often used to probe the environment in radar system. By
controlling both the Doppler and the range resolutions of the system, it can regulate
the interference power produced by unwanted returns [3]. To be specific, suppose v0
is the normalized target Doppler frequency and s = (s1, . . . , sn)

T ∈ Cn is the radar

code to be optimized. There are n0 interfering scatterers, and the matrix Jr ∈ Rn2

for r ∈ {0, 1, . . . , n− 1} is defined as

(Jr)ij =

{
1, i− j = r,
0, i− j �= r,

∀ 1 ≤ i, j ≤ n.
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The ambiguity function of s for the time-lag r ∈ {0, 1, . . . , n− 1} and the normalized
Doppler frequency v ∈ [− 1

2 ,
1
2

]
is given by

gs(r, v) =
1

‖s‖2
∣∣sHJr(s
 p(v))

∣∣2 ,
where p(v) = (1, ei2πv, . . . , ei2(n−1)πv)T and 
 denotes the Hadamard product; inter-
ested readers are referred to [3] for more details of the ambiguity function and radar
waveform design.

Denote by rk the time-lag of the kth scatterer, and let vk be the normalized
Doppler frequency of the kth scatterer. The latter is usually modeled as a random
variable uniformly distributed around a mean frequency v̂k with some tolerance εk

2 ;
i.e., vk is a uniform distribution in

[
v̂k − εk

2 , v̂k +
εk
2

]
. Consequently, the disturbance

power at the output of the matched filter is given by

n0∑
k=1

σk
2‖s‖2E [gs(rk, vk − v0)] + σ2‖s‖2,(6.1)

where σ2 is the variance of the circular white noise, and σk
2 is the echo mean power

produced by the kth scatterer. To simplify the notation, all the following normalized
Doppler frequencies are expressed in terms of the difference with respect to v0. We
discretize the normalized Doppler interval [− 1

2 ,
1
2 ) into m bins, denoted by discrete

frequencies xj = − 1
2 + j

m for j ∈ {0, 1, . . . ,m}. Let

Δk =

{
j :

[
xj − 1

2m
,xj +

1

2m

)⋂[
v̂k − εk

2
, v̂k +

εk
2

]
�= ∅

}
.

Then the above statistical expectations can be approximated by the sample means
over Δk, i.e.,

E [gs(rk, vk)] ≈ 1

|Δk|
∑
j∈Δk

gs(rk, xj).

Plugging the above expression into (6.1), the total disturbance power at the output
of the matched filter can be rewritten as

φ(s) =
n−1∑
r=0

m∑
j=1

ρ(r, k)|sHJr(s
 p(xj))|2,

where ρ(r, k) =
∑n0

k=1 δr,rk1Δk
(j)

σ2
k

|Δk| , with δr,rk being the Kronecker delta and

1Δk
(j) an indicator function.
To obtain phase-only modulated waveforms, an optimization model to minimize

φ(s) subject to constant modulus constraints was proposed in [3]: min|si|=1, i=1,...,n φ(s).
Another modeling strategy is to account for the finite energy transmitted by the radar
and assume that ‖s‖2 = 1. However, this single constraint does not provide any kind
of control on the shape of the resulting coded waveform. To circumvent this drawback,
one practical approach is to enforce a similarity constraint (see [2] for more details):

(6.2) ‖s− s0‖2 ≤ γ,

where s0 is a known code which shares some nice properties such as a constant modula
and a reasonable range resolution. Moreover, since any feasible s satisfies ‖s‖ = 1
and

‖s− s0‖2 = ‖s‖2 + ‖s0‖2 − (sHs0 + (s0)Hs) = 1 + ‖s0‖2 − (sHs0 + (s0)Hs),
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therefore ‖s− s0‖2 ≤ γ is equivalent to −(sHs0+(s0)Hs) ≤ γ− 1−‖s0‖2. Typically,
the similarity constraint (6.2) is not a hard constraint; it aims to restrict the searching
area within some neighborhood of s0, and the size of the neighborhood is controlled
by γ. Motivated by the aforementioned equivalence, a similar result can be achieved
by penalizing the quantity −(sHs0 + (s0)Hs) in the objective, and we arrive at the
formulation

(6.3) min
‖s‖=1

(
φ(s)− ρ(sHs0 + (s0)Hs)2‖s‖2)

with penalty parameter ρ. Notice that the objective function in (6.3) is a real-valued
quartic conjugate complex form. If s∗ is the optimal solution and so is −s∗, then we
can choose one of them to make sure that (s∗)Hs0 + (s0)Hs∗ > 0. The model (6.3) is
obviously finding the smallest C-eigenvalue of a conjugate partial-symmetric tensor,
which can also be viewed as finding the smallest G-eigenvalue of a conjugate super-
symmetric tensor as mentioned in Theorem 4.11.

6.2. The best rank-one approximation of a complex tensor. Many mod-
ern engineering problems can be cast as a multilinear least squares regression given
as

(6.4) min
zk∈Cnk , k=1,...,d

1

2
‖z1 ⊗ · · · ⊗ zd −F‖2,

where F ∈ Cn1×···×nd is a given nonzero complex tensor. For instance, in quantum
entanglement the geometric measure of a given d-partite pure state F is defined
by (6.4); see [38, 26] for details.

In fact, (6.4) can be also categorized as a G-eigenvalue problem for a conjugate
super-symmetric tensor. To see this, first it is easy to see that (6.4) is equivalent to

min
λ∈R, ‖zk‖=1, k=1,...,d

‖λz1 ⊗ · · · ⊗ zd −F‖2.

When all zk’s with ‖zk‖ = 1 for k = 1, . . . , d are fixed, the optimal λ satisfies

min
λ∈R

‖λz1 ⊗ · · · ⊗ zd −F‖2 = min
λ∈R

(‖F‖2 − 2λReF(z1, . . . , zd) + λ2
)

= ‖F‖2 − (ReF(z1, . . . , zd))2.

Therefore, by multilinearity, (6.4) is equivalent to

(6.5) max
‖zk‖=1, k=1,...,d

|ReF(z1, . . . , zd)| = max
‖zk‖=1, k=1,...,d

ReF(z1, . . . , zd).

Let us now consider a relaxation of the above model:

(6.6) max∑d
k=1 ‖zk‖2=d

ReF(z1, . . . , zd).

A key observation is that this relaxation is actually tight. To see this, suppose
(z1∗, . . . , zd∗) is an optimal solution of (6.6). Trivially we have ReF(z1∗, z2∗, . . . , zd∗) > 0
as F is nonzero, and so ‖zk

∗‖ �= 0 for k = 1, . . . , d. By noticing

(
d∏

k=1

‖zk
∗‖2

)1/d

≤ 1

d

d∑
k=1

‖zk
∗‖2 = 1,
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we have that
∏d

k=1 ‖zk
∗‖ ≤ 1, and so

ReF
(

z1
∗

‖z1∗‖
, . . . ,

zd
∗

‖zd∗‖
)

= Re
F(z1

∗, . . . , z
d
∗)∏d

k=1 ‖zk∗‖
≥ ReF(z1

∗, z
2
∗, . . . , z

d
∗).

Therefore, the feasible solution
(
z1
∗/‖z1

∗‖, . . . , zd
∗/‖zd

∗‖
)
of (6.5) is already optimal to

the relaxation model (6.6), proving the equivalence between (6.5) and (6.6).
Finally, to formulate (6.6) as a G-eigenvalue optimization problem, let us denote

z =
(
(z1)T, . . . , (zd)T

)T ∈ Cnd and construct a symmetric complex tensorH ∈ C(nd)d

such that

H(z, . . . , z︸ ︷︷ ︸
d

) = F(z1, . . . , zd).

Thus, (6.6) can be rewritten as

max
‖z‖=√

d
ReH(z, . . . , z︸ ︷︷ ︸

d

) = max
‖z‖=√

d

1

2

⎛
⎝H(z, . . . , z︸ ︷︷ ︸

d

) +H(z, . . . , z︸ ︷︷ ︸
d

)

⎞
⎠

= max
‖x‖=1

√
dd

2

⎛
⎝H(x, . . . ,x︸ ︷︷ ︸

d

) +H(x, . . . ,x︸ ︷︷ ︸
d

)

⎞
⎠

= max
‖x‖=1

G
((

x

x

)
, . . . ,

(
x

x

)
︸ ︷︷ ︸

d

)
,

where G ∈ C(2nd)d is a conjugate super-symmetric tensor. The multilinear least square
model (6.4) is shown to be a special case of the G-eigenvalue optimization problem.

7. Conclusion. This paper focuses on complex polynomial functions that incor-
porate conjugate variables. We introduced two types of conjugate complex forms and
their symmetric tensor representations. Necessary and sufficient conditions for these
conjugate complex forms to be real valued are presented, based on which two types
of symmetric complex tensors are introduced. We present new definitions of eigen-
values/eigenvectors, namely, the C-eigenvalue and the G-eigenvalue, which generalize
the existing concepts of eigenvalues in the literature. Extensions of the Banach-type
theorem [4] on these complex tensors are discussed as well. To give the readers a
comprehensive picture, Table 1 summarizes the main contents.

An important aspect of polynomials is the theory of nonnegativity. Most existing
results only apply for polynomials in real variables, for the reason that such polyno-
mials are real valued. Since we have the full characterization of real-valued conjugate
complex polynomials introduced in this paper, the question about their nonnegativity
naturally arises, particularly the relationship between nonnegativity and SOS. In the
real domain, this problem was completely solved by Hilbert [14] in 1888. However,
the relationship between nonnegative complex polynomials and SOS has not been
established explicitly in the literature as far as we know. This could be the subject of
future research using the notion of conjugate polynomials. Moreover, the new notions
of symmetric complex tensors and the eigenvalues/eigenvectors might hopefully at-
tract future modeling opportunities, and the newly developed properties, in particular
the extension of Banach’s result, would be helpful in solution methods for complex
polynomial optimization.
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Table 1

Summary of the symmetric conjugate form and the general conjugate form.

Section Subject Results

2.2 Symmetric conjugate form and partial-
symmetric tensor

Def. 2.1, Def. 2.3, Lemma 2.5

3.2 Real-valued symmetric conjugate form and
conjugate partial-symmetric tensor

Cor. 3.2, Def. 3.7, Prop. 3.8

4.1 C-eigenvalue and C-eigenvector Def. 4.4, Prop. 4.7, Prop. 4.8

5.2 Banach-type theorem Prop. 5.3, Theorem 5.6

2.3 General conjugate form and symmetric tensor Def. 2.6, Lemma 2.8

3.3 Real-valued general conjugate form and conju-
gate super-symmetric tensor

Cor. 3.2, Def. 3.10, Prop. 3.11

4.1 G-eigenvalue and G-eigenvector Def. 4.5, Prop. 4.9

5.1 Banach-type theorem Theorem 5.2
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