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Abstract Complex polynomial optimization problems arise from real-life applica-
tions including radar code design, MIMO beamforming, and quantum mechanics. In
this paper, we study complex polynomial optimization models where the objective
function takes one of the following three forms: (1) multilinear; (2) homogeneous
polynomial; (3) symmetric conjugate form. On the constraint side, the decision vari-
ables belong to one of the following three sets: (1) the m-th roots of complex unity; (2)
the complex unity; (3) the Euclidean sphere. We first discuss the multilinear objective
function. Polynomial-time approximation algorithms are proposed for such problems
with assured worst-case performance ratios, which depend only on the dimensions of
the model. Then we introduce complex homogenous polynomial functions and estab-
lish key linkages between complex multilinear forms and the complex polynomial
functions. Approximation algorithms for the above-mentioned complex polynomial
optimization models with worst-case performance ratios are presented. Numerical
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results are reported to illustrate the effectiveness of the proposed approximation algo-
rithms.

Keywords Polynomial optimization · Complex programming · Complex tensor ·
Approximation algorithm · Tensor relaxation

Mathematics Subject Classification 90C59, 90C10, 15A69, 90C26

1 Introduction

Polynomial optimization has received much attention in the recent years. The rea-
son for this surge of interests is twofold. On the one hand, there is an emerging
wide range of applications for polynomial optimization, for instance from biomed-
ical engineering, control theory, graph theory, investment science, material science,
quantum mechanics, signal processing, speech recognition; for specific references,
see e.g. [20]. On the other hand, polynomial optimization has been found to be deeply
rooted in a theoretical sense. Following the seminal work of Lasserre [19] and Parrilo
[24], sum of squares (SOS) methods have become a cornerstone for general polyno-
mial optimization. Recent developments can be found in the handbook by Anjos and
Lasserre [3]. Since most of polynomial optimization problems are NP-hard, on the
front of approximate solutions, various approximation algorithms have been proposed
for solving certain types of high degree polynomial optimization models; we refer
interested readers to the recent monograph of Li et al. [20].

Hitherto, polynomial optimization models under investigation are mostly in the
domain of real numbers. Motivated by applications from signal processing, in this
paper we set out to study several new classes of discrete and continuous polyno-
mial optimization models in the complex domain. The detailed descriptions of these
models can be found in Sect. 2. As a matter of fact, there are scattered results on
complex polynomial optimization in the literature. When the objective function is
quadratic, the MAX-3-CUT problem is a typical instance for the 3rd roots of unity
constraint. Unity circle constrained complex optimization arises from the study of
robust optimization as well as control theory [5,28]. In particular, complex quadratic
form optimization over unity constraints studied by Toker and Ozbay [28] are called
complex programming. If the degree of complex polynomial is beyond quadratic,
say quartic, several applications in signal processing can be found in the literature.
Maricic et al. [23] proposed a quartic polynomial model for blind channel equal-
ization in digital communication. Aittomäki and Koivunen [1] discussed the prob-
lem of beam-pattern synthesis in array signal processing problem and formulated
it to be a complex quartic minimization problem. Chen and Vaidyanathan [7] stud-
ied MIMO radar waveform optimization with prior information of the extended tar-
get and clutter, by relaxing a quartic complex model. Most recently, Aubry et al.
[4] managed to design a radar waveform sharing an ambiguity function behavior by
resorting to a complex optimization problem. In quantum entanglement, Hilling and
Sudbery [13] formulated a typical problem as a complex form optimization problem
under spherical constraint, which is one of the three classes of models studied in this
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paper. Inspired by their work, Zhang and Qi [30] discussed the quantum eigenvalue
problem, which arises from the geometric measure of entanglement of a multipar-
tite symmetric pure state, in the complex tensor space. In fact, complex polynomial
and complex tensor are interesting on their own. Eigenvalue and eigenvectors in the
complex domain were already proposed and studied by Qi [25], whereas the name
E-eigenvalue was coined. Very recently, Jiang et al. [17] discovered the necessary
and sufficient condition for general conjugate complex polynomial functions that
always take real values (see also Chapter 7.4 in Ph.D. thesis of Jiang [16]), based
on which they extended the definitions of eigenvalues for conjugate type complex
tensors.

Like its real-case counterpart, complex polynomial optimization is also NP-hard
in general. Therefore, approximation algorithms for complex models are on high
demand. However, in the literature approximation algorithms are mostly considered
for quadratic models only. Ben-Tal et al. [5] first studied complex quadratic optimiza-
tion whose objective function is restricted nonnegative by using complex matrix cube
theorem. Zhang and Huang [29], So et al. [27] considered complex quadratic form
maximization under the m-th roots of unity constraints and unity constraints. Later,
Huang and Zhang [15] also considered bilinear form complex optimization models
under similar constraints. For real valued polynomial optimization problems, Luo and
Zhang [22] first considered approximation algorithms for quartic optimization. At the
same time, Ling et al. [21] considered a special quartic optimization model. Basically,
the problem is to maximize a biquadratic form over two spherical constraints. Signifi-
cant progresses have recently been made by He et al. [10–12], where the authors derived
a series of approximation methods for optimization of any fixed degree polynomial
function under various constrains. So [26] further considered spherically constrained
homogeneous polynomial optimization and proposed a deterministic algorithm with
an improved approximation ratio. For most recent development on approximation
algorithms for homogeneous polynomial optimization, we refer the interested readers
to [9,14].

To the best of our knowledge, there is no result on approximation algorithms for
general degree complex polynomial optimization model. A related work is due to
Doherty and Wehner [8], where the authors studied spherical constrained homoge-
neous polynomial optimization both in the real and the complex domain, and gave
an explicit approximation bound to estimate the optimal value of the problem using
the SOS method, while no approximate solutions were generated there. On the other
hand, it is always a possible practice of transforming a general high degree complex
polynomial to the real case by doubling the problem dimension, and then resorting to
the existing approximation algorithms for the real-valued polynomials [9–12,14,26].
The latter approach, however, may lose the handle on the structure of the problem,
hence loses nice properties of the complex polynomial functions. As a result, the com-
putational costs may increase while the solution qualities may deteriorate. Exploiting
the special structure of the complex model, it is often possible to get better approx-
imation bounds, e.g. [29]. With this in mind, in this paper we shall study the com-
plex polynomial optimization in its direct form. Let us start with some preparations
next.
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2 Models, notations, and organization

Throughout this paper, for any complex number z = a + ib ∈ C with a, b ∈ R,
its real part is denoted by Re z = a, and its modulus by |z| := √

z̄z = √
a2 + b2,

where z̄ := a – ib denotes the conjugate of z For x ∈ C
n , its norm is denoted by

‖x‖ := (∑n
i=1 |xi |2

) 1
2 .

Given a d-th order complex tensor F = (Fi1i2...id ) ∈ C
n1×n2×···×nd , its associated

multilinear form is defined as

L(x1, x2, . . . , xd) :=
n1∑

i1=1

n2∑

i2=1

· · ·
nd∑

id=1

Fi1i2...id x1
i1

x2
i2

. . . xd
id

,

where the variables xk ∈ C
nk for k = 1, 2, . . . , d, with ‘L’ standing for ‘multilinear-

ity’.
Closely related to multilinear form is homogeneous polynomial function, or, more

explicitly

H(x) :=
∑

1≤i1≤i2≤···≤id≤n

ai1i2...id xi1 xi2 . . . xid ,

where the variable x ∈ C
n , with ‘H ’ standing for ‘homogeneous polynomial’.

Associated with any homogeneous polynomial is a super-symmetric complex ten-
sor F ∈ C

nd
; i.e., its entries Fi1i2...id ’s are invariant under permutations of its indices

{i1, i2, . . . , id}. In this sense,

Fi1i2...id = ai1i2...id

|�(i1i2 . . . id)| ∀ 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ n,

where �(i1i2 . . . id) is the set of all distinct permutations of the indices {i1, i2, . . . , id}.
In light of multilinear form L associated with a super-symmetric tensor, homo-

geneous polynomial H is obtained by letting x1 = x2 = · · · = xd ; i.e., H(x) =
L(x, x, . . . , x︸ ︷︷ ︸

d

). Furthermore, He et al. [10] established an essential linkage between

multilinear forms and homogeneous polynomials in the real domain.

Lemma 2.1 Suppose x1, x2, . . . , xd ∈ R
n, and ξ1, ξ2, . . . , ξd are i.i.d. symmetric

Bernoulli random variables (taking 1 and −1 with equal probability). For any super-
symmetric tensor F ∈ R

nd
with its associated multilinear form L and homogeneous

polynomial H, it holds that

E

[
d∏

i=1

ξi H

(
d∑

k=1

ξk xk

)]

= d!L(x1, x2, . . . , xd).
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With Lemma 2.1 in place, tensor relaxation [10] is proposed to solve homogeneous
polynomial optimization problems, by relaxing the objective function to a multilinear
form.

In terms of the optimization, the real part of the above functions (multilinear form
and homogeneous polynomial) is usually considered. In [16,17], the conjugate partial-
symmetric complex tensors were introduced, which are extended from Hermitian
matrices.

Definition 2.2 An even order complex tensor F ∈ C
n2d

is called conjugate partial-
symmetric if for all 1 ≤ i1, . . . , i2d ≤ n,

(1) Fi1...id id+1...i2d = Fid+1...i2d i1...id and
(2) Fi1...id id+1...i2d = F j1... jd jd+1... j2d ∀ ( j1 . . . jd) ∈ �(i1 . . . id), ( jd+1 . . . j2d) ∈

�(id+1 . . . i2d)

Associated with any conjugate partial-symmetric tensor, the following symmetric
conjugate form

C(x, x) : = L(x, . . . , x︸ ︷︷ ︸
d

, x, . . . , x︸ ︷︷ ︸
d

)=
∑

1≤i1,...,id , j1,..., jd≤n

Fi1...id j1... jd xi1 . . . xid x j1 . . . x jd

always takes real value for any x ∈ C
n . Besides, any symmetric conjugate form C

uniquely determines a conjugate partial-symmetric tensor. For details, one is referred
to [17] or Chapter 7.4 of [16]. In the above expression, ‘C’ signifies ‘conjugate’.

The following commonly encountered constraint sets for complex polynomial opti-
mization are considered in this paper:

• The m-th roots of unity constraint: �m = {
1, ωm, . . . , ωm−1

m

}
, where ωm = ei 2π

m =
cos 2π

m + i sin 2π
m . Denote �n

m = {x ∈ C
n | xi ∈ �m, i = 1, 2, . . . , n}.

• The unity constraint: �∞ = {z ∈ C | |z| = 1}. Denote �n∞ = {x ∈ C
n | xi ∈ �∞,

i = 1, 2, . . . , n}.
• The complex spherical constraint: Sn = {x ∈ C

n | ‖x‖ = 1} .

Throughout this paper we assume m ≥ 3, to ensure that the decision variables being
considered are essentially complex.

In this paper, we shall discuss various complex polynomial optimization models.
The objective function will be one of the three afore-mentioned complex polynomial
functions (L , H , and C), or their real parts whenever is applicable; the constraint set is
one of the three kinds as discussed above. The organization of the paper is as follows.
Maximizing multilinear form over three types of constraint sets will be discussed
in Sect. 3, i.e., models (Lm), (L∞) and (L S), with the subscription indicating the
constraint for: the m-th roots of unity, the unity, and the complex sphere, respectively.
Section 4 deals with maximization of homogeneous polynomial over three types of
constraints, i.e., models (Hm), (H∞) and (HS). Section 5 discusses maximization of
symmetric conjugate form over three types of constraints, i.e., models (Cm), (C∞) and
(CS). Finally in Sect. 6, we conduct some numerical tests and report the performance
of the algorithm studied in this paper.

123



224 B. Jiang et al.

Table 1 Organization of the paper and the approximation results

Section Model Theorem Approximation performance ratio

3.1 (Lm ) 3.4 τd−2
m (2τm − 1)

(∏d−2
k=1 nk

)− 1
2 where τm = m2

4π
sin2 π

m

3.2 (L∞) 3.6 0.7118
(
π
4

)d−2
(∏d−2

k=1 nk

)− 1
2

3.3 (L S) 3.7
(∏d−2

k=1 nk

)− 1
2

4.1 (Hm ) 4.3, 4.4 τd−2
m (2τm − 1) d!d−d n− d−2

2

4.2 (H∞) 4.5 0.7118( π
4 )d−2d!d−d n− d−2

2

4.3 (HS) 4.6 d!d−d n− d−2
2

5.1 (Cm ) 5.3, 5.4 τ2d−2
m (2τm − 1)(d!)2(2d)−2d n−(d−1)

5.2 (C∞) 5.5 0.7118
(
π
4

)2d−2
(d!)2(2d)−2d n−(d−1)

5.2 (CS) 5.6 (d!)2(2d)−2d n−(d−1)

As a matter of notation, for any maximization problem (P) : maxx∈X p(x), we
denote v(P) to be the optimal value, and v(P) to be the optimal value of its minimiza-
tion counterpart (minx∈X p(x)).

Definition 2.3 (1) A maximization problem (P) : maxx∈X p(x) admits a polynomial-
time approximation algorithm with approximation ratio τ ∈ (0, 1], if v(P) ≥ 0
and a feasible solution x̂ ∈ X can be found in polynomial-time, such that
p(x̂) ≥ τv(P).

(2) A maximization problem (P) : maxx∈X p(x) admits a polynomial-time approx-
imation algorithm with relative approximation ratio τ ∈ (0, 1], if a feasible
solution x̂ ∈ X can be found in polynomial-time, such that p(x̂) − v(P) ≥
τ

(
v(P) − v(P)

)
.

In this paper, we reserve τ to denote the approximation ratio. All the optimization
models considered in this paper are NP-hard in general, even restricting the domain to
be real. We shall propose polynomial-time approximation algorithms with worst-case
performance ratios for the models concerned, when the degree of these polynomial
functions, d or 2d, is fixed. These approximation ratios depend only on the dimensions
of the problems, or are data-independent. We shall start off by presenting Table 1 which
summarizes the approximation results and the organization of the paper.

3 Complex multilinear form optimization

Let us consider optimization of complex multilinear forms, under three types of con-
straints described in Sect. 2. Specifically, the models under consideration are:

123



Approximation methods for complex polynomial optimization 225

(Lm) max Re L(x1, x2, . . . , xd)

s.t. xk ∈ �
nk
m , k = 1, 2, . . . , d;

(L∞) max Re L(x1, x2, . . . , xd)

s.t. xk ∈ �
nk∞, k = 1, 2, . . . , d;

(L S) max Re L(x1, x2, . . . , xd)

s.t. xk ∈ Snk , k = 1, 2, . . . , d.

Associated with multilinear form objective is a d-th order complex tensor F ∈
C

n1×n2×···×nd . Without loss of generality, we assume that n1 ≤ n2 ≤ · · · ≤ nd

and F 	= 0. The multilinear form optimization models are interesting on their own.
For example, typical optimization problem in quantum entanglement problem [13] is
in the formulation of (L S).

3.1 Multilinear form in the m-th roots of unity

When d = 2, (Lm) is already NP-hard, even for m = 2. In this case, (Lm) is to compute

∞ 
→ 1-norm of a matrix, and the best approximation bound is 2 ln(1+√
2)

π
≈ 0.56

due to Alon and Naor [2]. Huang and Zhang [15] studied general m when d = 2,
and proposed polynomial-time randomized approximation algorithm with constant
worst-case performance ratio. Specifically the ratio is m2

4π
(1 − cos 2π

m ) − 1 = 2τm − 1

for m ≥ 3, where τm := m2

8π
(1 − cos 2π

m ) = m2

4π
sin2 π

m throughout this paper.
To proceed to the general degree d, let us start with the case d = 3.

(L3
m) max Re L(x, y, z)

s.t. x ∈ �
n1
m , y ∈ �

n2
m , z ∈ �

n3
m .

Denote W = xy
T
. It is easy to observe that Wi j = xi y j ∈ �m for all (i, j), implying

W ∈ �
n1×n2
m . The above problem can be relaxed to

(L2
m) max Re L̂(W, z) := Re

∑n1
i=1

∑n2
j=1

∑n3
k=1 Fi jk Wi j zk

s.t. W ∈ �
n1×n2
m , z ∈ �

n3
m .

This is exactly (Lm) with d = 2, which admits a polynomial-time approximation
algorithm with approximation ratio 2τm − 1 in [15]. Denote the approximate solution
of (L2

m) to be (Ŵ , ẑ), i.e.,

Re L̂(Ŵ , ẑ) ≥ (2τm − 1)v(L2
m) ≥ (2τm − 1)v(L3

m). (1)

The key step is to recover (x, y) from Ŵ . For this purpose, we introduce the fol-
lowing decomposition routine (DR).

DR (Decomposition routine) 3.1

• Input: Ŵ ∈ �
n1×n2
m .
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• Construct

W̃ =
[

I Ŵ/
√

n1

Ŵ HH/
√

n1 Ŵ HHŴ/n1

]

 0 (Hermitian positive semidefinite).

• Randomly generate

(
ξ

η

)
∼ N (0, W̃ ).

• For i = 1, 2, . . . , n1, let

x̂i := ω	
m if arg ξi ∈

[
	

m
2π,

	 + 1

m
2π

)
for some 	 ∈ Z;

and for j = 1, 2, . . . , n2, let

ŷ j := ω−	
m if arg η j ∈

[
	

m
2π,

	 + 1

m
2π

)
for some 	 ∈ Z.

• Output: (x̂, ŷ) ∈ �
n1+n2
m .

It was shown in [29] that

E[x̂i ŷ j ] = m(2 − ωm − ω−1
m )

8π2

m−1∑

	=0

ω	
m

(
arccos

(
−Re ω−	

m W̃i,n1+ j

))2
. (2)

There are some useful properties regarding (2) as shown below; the proofs can be
found in the Appendix.

Lemma 3.2 Define Fm : C 
→ C with Fm(x) := m(2−ωm−ω−1
m )

8π2

∑m−1
	=0 ω	

m(
arccos

(−Re ω−	
m x

))2
.

(1) If a ∈ C and b ∈ �m, then Fm(ab) = bFm(a).
(2) If a ∈ R, then Fm(a) ∈ R.

As (Ŵ , ẑ) is a feasible solution of (L2
m), Ŵi j ∈ �m . By Lemma 3.2, we have for

all (i, j)

E[x̂i ŷ j ] = Fm(W̃i,n1+ j ) = Fm(Ŵi j/
√

n1) = Ŵi j Fm(1/
√

n1)andFm(1/
√

n1) ∈ R.

(3)

We are now able to evaluate the objective value of (x̂, ŷ, ẑ):

E
[
Re L(x̂, ŷ, ẑ)

] = E

⎡

⎣
n1∑

i=1

n2∑

j=1

n3∑

k=1

Re Fi jk x̂i ŷ j ẑk

⎤

⎦
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=
n1∑

i=1

n2∑

j=1

n3∑

k=1

Re Fi jk E
[
x̂i ŷ j

]
ẑk

=
n1∑

i=1

n2∑

j=1

n3∑

k=1

Re Fi jk Ŵi j Fm(1/
√

n1)ẑk

= Fm
(
1/

√
n1

) n1∑

i=1

n2∑

j=1

n3∑

k=1

Re Fi jk Ŵi j ẑk

= Fm
(
1/

√
n1

)
Re L̂(Ŵ , ẑ).

Furthermore, according to the Appendix of [29], we have

Fm
(
1/

√
n1

) ≥ m2(1 − cos 2π
m )

8π
√

n1
= τm√

n1
. (4)

Combined with (1), we finally get

E
[
Re L(x̂, ŷ, ẑ)

] = Fm
(
1/

√
n1

)
Re L̂(Ŵ , ẑ) ≥ τm√

n1
(2τm − 1)v(L3

m).

Theorem 3.3 When d = 3, (Lm) admits a polynomial-time randomized approxima-
tion algorithm with approximation ratio τm (2τm−1)√

n1
.

By a similar method and using induction, the above discussion is readily extended
to any fixed degree d.

Theorem 3.4 (Lm) admits a polynomial-time randomized approximation algorithm

with approximation ratio τ(Lm) := τ d−2
m (2τm − 1)

(∏d−2
k=1 nk

)− 1
2
, i.e., a feasible

solution (x̂1, x̂2, . . . , x̂d) can be found in polynomial-time, such that

E
[
Re L(x̂1, x̂2, . . . , x̂d)

]
≥ τ(Lm)v(Lm).

Proof The proof is based on induction on the degree d. The conclusion for the case
where d = 2 or d = 3 is known to be true. The inductive step can be similarly derived
from Theorem 3.3.

For general d, denote W = x1(xd)
T

and (Lm) is then relaxed to

(Ld−1
m ) max Re L̂(W, x2, . . . , xd−1)

s.t. W ∈ �
n1×nd
m , xk ∈ �

nk
m , k = 2, 3, . . . , d − 1,
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where Re L̂(W, x2, . . . , xd−1) :=� ∑n1
i1=1

∑n2
i2=1 · · · ∑nd

id=1 Fi1i2...id Wi1id x2
i2

. . . xd−1
id−1

.

By induction we are able to find (Ŵ , x̂2, . . . , x̂d−1), such that

E
[
Re L̂(Ŵ , x̂2, . . . , x̂d−1)

]
≥ τ d−3

m (2τm − 1)

(
d−2∏

k=2

nk

)− 1
2

v(Ld−1
m )

≥ τ d−3
m (2τm − 1)

(
d−2∏

k=2

nk

)− 1
2

v(Lm).

Applying DR 3.1 with input Ŵ and output (x̂1, x̂d), and using (3) and (4), we conclude
that

E
[
Re L(x̂1, x̂2, . . . , x̂d)

]
= E

[
Re L̂

(
x̂1(x̂d)T, x̂2, . . . , x̂d−1

)]

= E
[
Re L̂

(
E

[
x̂1(x̂d)T

∣∣Ŵ
]
, x̂2, . . . , x̂d−1

)]

= E
[
Re L̂

(
Ŵ Fm

(
1/

√
n1

)
, x̂2, . . . , x̂d−1

)]

= Fm
(
1/

√
n1

)
E

[
Re L̂(Ŵ , x̂2, . . . , x̂d−1)

]

≥ τm√
n1

· τ d−3
m (2τm − 1)

(
d−2∏

k=2

nk

)− 1
2

v(Lm)

= τ(Lm)v(Lm). ��

3.2 Multilinear form with unity constraints

Let us now turn to the optimization model with unity constraint (L∞), which can be
taken as the model (Lm) when m → ∞:

(L∞) max Re L(x1, x2, . . . , xd)

s.t. xk ∈ �
nk∞, k = 1, 2, . . . , d.

When d = 2, (L∞) was studied in [15] and a polynomial-time approximation
algorithm with approximation ratio 0.7118 was presented. To treat the high degree
case, one may again apply induction in the proof of Theorem 3.4. However, DR 3.1
should be slightly modified in order to apply the decomposition procedure for �∞.

DR (Decomposition routine) 3.5

• Input: Ŵ ∈ �
n1×n2∞ .

• Construct W̃ =
[

I Ŵ/
√

n1

Ŵ H/
√

n1 Ŵ HŴ/n1

]

 0.

• Randomly generate
(
ξ
η

) ∼ N (0, W̃ ).
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• Let x̂i = ei arg ξi for i = 1, 2, . . . , n1, and let ŷ j = e−i arg η j for j = 1, 2, . . . , n2.
• Output: (x̂, ŷ) ∈ �

n1+n2∞ .

The estimation of (x̂, ŷ) is then

E[x̂i ŷ j ] = F∞(W̃i,n1+ j ) = F∞(Ŵi j/
√

n1) ∀ (i, j).

It was calculated in [29] that

F∞(a) := lim
m→∞ Fm(a) = π

4
a + π

2

∞∑

k=1

((2k)!)2

24k+1(k!)4(k + 1)
|a|2ka.

Similar as in Lemma 3.2:

F∞(ab) = bF∞(a) ∀ a ∈ C, b ∈ �∞,

F∞(a) ∈ R ∀ a ∈ R,

F∞(a) ≥ π

4
a ∀ a > 0.

By applying the result in [15] for case d = 2 and using a similar argument as
Theorem 3.4, we have the following main result of this subsection.

Theorem 3.6 (L∞) admits a polynomial-time randomized approximation algorithm

with approximation ratio τ(L∞) := 0.7118
(

π
4

)d−2
(∏d−2

k=1 nk

)− 1
2
.

3.3 Multilinear form with spherical constraints

Let us turn to our last model for multilinear form optimization:

(L S) max Re L(x1, x2, . . . , xd)

s.t. xk ∈ Snk , k = 1, 2, . . . , d.

Model (L S) is also known as computing the largest singular value (the real part) of a d-
th order complex tensor F . The case when F is real was widely studied [6,10,20,26]. In
particular, He et al. [10] introduced the recursive procedure and eigen-decomposition

based approximation algorithm with approximation ratio
(∏d−2

k=1 nk

)− 1
2
. Using a sim-

ilar argument, we have the following result.

Theorem 3.7 (L S) admits a deterministic polynomial-time approximation algorithm

with approximation ratio τ(L S) :=
(∏d−2

k=1 nk

)− 1
2
.

When d = 2, (L S) is to compute the largest singular value of a complex matrix,
and is therefore solvable in polynomial-time, which also follows as a consequence of
Theorem 3.7. The proof of Theorem 3.7 is similar to that of [10] for the real case.
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The main ingredients include establishing the initial step for the case d = 2, and
then establishing a decomposition routine, which is shown as follows, to enable the
induction.

DR (Decomposition routine) 3.8

• Input: Ŵ ∈ C
n1×n2 .

• Find the left singular vector x̂ ∈ Sn1 and the right singular vector ŷ ∈ Sn2 corre-
sponding to the largest singular value of Ŵ .

• Output: x̂ ∈ Sn1 , ŷ ∈ Sn2 .

4 Complex homogeneous polynomial optimization

This section is concerned with the optimization of complex homogeneous polynomial
H(x), associated with super-symmetric complex tensor F ∈ C

nd
. Specifically, the

models under considerations are:

(Hm) max Re H(x)

s.t. x ∈ �n
m;

(H∞) max Re H(x)

s.t. x ∈ �n∞;
(HS) max Re H(x)

s.t. x ∈ Sn .

Denote L to be the multilinear form associated with F , and then H(x) =
L(x, x, . . . , x︸ ︷︷ ︸

d

). By applying the tensor relaxation method established in [10], the

above models are then relaxed to the following multilinear form optimization models
discussed in Sect. 3:

(L Hm) max Re L(x1, x2, . . . , xd)

s.t. xk ∈ �n
m, k = 1, 2, . . . , d;

(L H∞) max Re L(x1, x2, . . . , xd)

s.t. xk ∈ �n∞, k = 1, 2, . . . , d;
(L HS) max Re L(x1, x2, . . . , xd)

s.t. xk ∈ Sn, k = 1, 2, . . . , d.

The approximation results in Sect. 3 can return good approximation solutions for
these relaxed models. The key next step is to obtain good solutions for the original
homogeneous polynomial optimizations. Similar to Lemma 2.1, we establish a linkage
between functions L and H in the complex domain. The proof of Lemma 4.1 can be
found in the Appendix.

Lemma 4.1 Let m ∈ {3, 4, . . . ,∞}. Suppose x1, x2, . . . , xd ∈ C
n, and F ∈ C

nd
is

a super-symmetric complex tensor with its associated multilinear form L and homo-
geneous polynomial H. If ξ1, ξ2, . . . , ξd are i.i.d. uniform distribution on �m, then

123



Approximation methods for complex polynomial optimization 231

E

[
d∏

i=1

ξi H

(
d∑

k=1

ξk xk

)]

= d!L(x1, x2 . . . , xd) and E

[
d∏

i=1

ξi H

(
d∑

k=1

ξk xk

)]

= 0.

4.1 Homogeneous polynomial in the m-th roots of unity

Let us now focus on the model (Hm) : maxx∈�n
m

Re H(x). By Lemma 4.1, for any
fixed x̂1, x̂2, . . . , x̂d ∈ C

n , we can find β1, β2, . . . , βd ∈ �m in polynomial-time,
such that

Re
d∏

i=1

βi H

(
1

d

d∑

k=1

βk x̂k

)

≥ Re d−dd!L(x̂1, x̂2, . . . , x̂d). (5)

For any 1 ≤ i ≤ n, if x̂ k
i ∈ �m for all 1 ≤ k ≤ d, then 1

d

∑d
k=1 βk x̂k

i ∈ conv (�m).
As shown below, we are able to get a solution from conv (�m) to one of its vertices
(�m).

Lemma 4.2 Suppose m ∈ {3, 4, . . . ,∞}, and x ∈ C
n with xi ∈ conv(�m) for all

1 ≤ i ≤ n.

(1) If H(x) is a complex homogeneous polynomial associated with square-free (mean-
ing that its entry is zero whenever two of its indices are identical) super-symmetric
tensor F ∈ C

nd
, then y, z ∈ �n

m can be found in polynomial-time, such that
ReH(y) ≤ ReH(x) ≤ ReH(z).

(2) If ReH(x) is convex, then z ∈ �n
m can be found in polynomial-time, such that

ReH(x) ≤ ReH(z).

Proof If H(x) is square-free, by fixing x2, x3, . . . , xn as constants and taking x1 as
the only decision variable, we may write

Re H(x) = Re h1(x2, x3, . . . , xn) + Re x1h2(x2, x3, . . . , xn) =: Re h(x1).

Since Re h(x1) is a linear function of x1, its optimal value over conv (�m) is attained
at one of its vertices. For instance, z1 ∈ �m can be found easily such that Re h(z1) ≥
Re h(x1). Now, repeat the same procedures for x2, x3, . . . , xn , and let them be replaced
by z2, z3, . . . , zn respectively. Then z ∈ �n

m satisfies Re H(z) ≥ Re H(x). Using the
same argument, we may find y ∈ �n

m , such that Re H(y) ≤ Re H(x). The case that
Re H(x) is convex can be proven similarly. ��

Now we are ready to prove the main results in this subsection.

Theorem 4.3 Suppose H(x) is square-free or ReH(x) is convex.

(1) If m | (d − 1), then (Hm) admits a polynomial-time randomized approximation

algorithm with approximation ratio τ(Hm) := τ d−2
m (2τm − 1) d!d−dn− d−2

2 .
(2) If m � 2d, then (Hm) admits a polynomial-time randomized approximation algo-

rithm with approximation ratio 1
2τ(Hm).
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Proof Relaxing (Hm) to (L Hm), we find a feasible solution (x̂1, x̂2, . . . , x̂d) of (L Hm)

in polynomial-time with approximation ratio τ d−2
m (2τm − 1) n− d−2

2 by Theorem 3.4.
Then by (5), we further find β ∈ �d

m , such that

Re
d∏

i=1

βi H

(
1

d

d∑

k=1

βk x̂k

)

≥ Re d!d−d L(x̂1, x̂2, . . . , x̂d)

≥ τ(Hm)v(L Hm) ≥ τ(Hm)v(Hm).

Let us denote x̂ := 1
d

∑d
k=1 βk x̂k . Clearly we have x̂i ∈ conv (�m) for i = 1, 2, . . . , n.

(1) If m | (d − 1), then d = 1 + mp for some p ∈ Z. As βi ∈ �m , we have

H

(

x̂
d∏

i=1

βi

)

=
(

d∏

i=1

βi

)d

H(x̂) =
d∏

i=1

βi
1+mp

H(x̂) =
d∏

i=1

βi H(x̂).

Since x̂ j
∏d

i=1 βi ∈ conv (�m) for j = 1, 2, . . . , n, noticing H(x) is square-free
or Re H(x) is convex, and applying Lemma 4.2, we are able to find y ∈ �n

m in
polynomial-time, such that

Re H(y) ≥ Re H

(

x̂
d∏

i=1

βi

)

= Re
d∏

i=1

βi H(x̂) ≥ τ(Hm)v(Hm).

(2) Let � = {
H(ω	

m x̂) | 	 = 0, 1, . . . , m − 1
}
. As H(ω	

m x̂) = ωd	
m H(x̂) for 	 =

0, 1, . . . , m − 1, the elements of � is evenly distributed on the unity circle with

radius |H(x̂)| in the complex plane. Since ωd	
m = ei 2d	π

m and m � 2d, it is easy to
verify that |�| ≥ 3. Let φ be the minimum angle between � and the real axis, or
equivalently |H(x̂)| cos φ = maxx∈� Re x . Clearly 0 ≤ φ ≤ π

3 by |�| ≥ 3. Let
H(ωt

m x̂) = arg maxx∈� Re x . As ωt
m x̂ j ∈ conv (�m) for j = 1, 2, . . . , n, again

by Lemma 4.2, we are able to find y ∈ �n
m in polynomial-time, such that

Re H(y) >= Re H(ωt
m x̂) = |H(x̂)| cos φ ≥ 1

2
|H(x̂)|

>= 1

2
Re

d∏

i=1

βi H(x̂) ≥ 1

2
τ(Hm)v(Hm).

��
Remark that condition (1) in Theorem 4.3 is a special case of (2); however in

that special case a better approximation ratio than (2) is obtained. When d ≥ 4
is even, almost all of the optimization models of homogeneous polynomials in the
real domain (e.g. [10,12,20,26]) only admit relative approximation ratios. Even for
quartic polynomial optimization over spherical constraints, there is no polynomial-
time approximation algorithm with a usual approximation ratio [21]. Interestingly,
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in the complex domain, as Theorem 4.3 suggests, absolute approximation ratios are
possible for some m when d is even.

When m | 2d, the approach in (2) of Theorem 4.3 may not work, since |�| ≤ 2.
The worst case performance of the approximate solution cannot be guaranteed any
more. However a relative approximation bound is possible for any m, as long as H(x)

is square-free.

Theorem 4.4 If H(x) is square-free, then (Hm) admits a polynomial-time randomized
approximation algorithm with relative approximation ratio 1

4τ(Hm).

Proof Relaxing (Hm) to (L Hm), we may find a feasible solution (x̂1, x̂2, . . . , x̂d) of

(L Hm) in polynomial-time with approximation ratio τ d−2
m (2τm − 1) n− d−2

2 by The-
orem 3.4, such that

d!d−dRe L(x̂1, x̂2, . . . , x̂d) ≥ d!d−dτ d−2
m (2τm − 1) n− d−2

2 v(L Hm)

= τ(Hm)v(L Hm) ≥ τ(Hm)v(Hm).

Let ξ1, ξ2, . . . , ξd be i.i.d. uniform distribution on �m , and we have 1
d

∑d
k=1 ξk x̂k

i ∈
conv (�m) for i = 1, 2, . . . , n. As H(x) is square-free, by Lemma 4.2, there exists
y ∈ �n

m , such that

Re H

(
1

d

d∑

k=1

ξk x̂k

)

≥ Re H(y) ≥ v(Hm). (6)

According to Lemma 4.1, it follows that

E

[

Re
d∏

i=1

ξi H

(
d∑

k=1

ξk x̂k

)]

=Re d!L(x̂1, x̂2, . . . , x̂d)

and

E

[

Re
d∏

i=1

ξi H

(
d∑

k=1

ξk x̂k

)]

= 0.

Combining the above two identities leads to

Re d!d−d L(x̂1, x̂2, . . . , x̂d)

= E

[

Re
d∏

i=1

ξi H

(
1

d

m∑

k=1

ξk x̂k

)]

+ E

[

Re
d∏

i=1

ξi H

(
1

d

m∑

k=1

ξk x̂k

)]

= E

[

Re

(
d∏

i=1

ξi +
d∏

i=1

ξi

)

H

(
1

d

d∑

k=1

ξk x̂k

)]
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= E

[(
d∏

i=1

ξi +
d∏

i=1

ξi

)

Re H

(
1

d

d∑

k=1

ξk x̂k

)]

= E

[(
d∏

i=1

ξi +
d∏

i=1

ξi

)(

Re H

(
1

d

d∑

k=1

ξk x̂k

)

− v(Hm)

)]

≤ E

[∣
∣∣∣∣

d∏

i=1

ξi +
d∏

i=1

ξi

∣
∣∣∣∣
·
∣
∣∣∣∣
Re H

(
1

d

d∑

k=1

ξk x̂k

)

− v(Hm)

∣
∣∣∣∣

]

≤ 2 E

[

Re H

(
1

d

d∑

k=1

ξk x̂k

)

− v(Hm)

]

,

where the fourth step is due to the fact that ξ1, ξ2, . . . , ξd are i.i.d. and E[ξi ] = 0 for
i = 1, 2, . . . , d, and the last step is due to (6). By randomizing, we are able to find
β ∈ �d

m , such that

Re H

(
1

d

d∑

k=1

βk x̂k

)

− v(Hm) ≥ 1

2
Re d!d−d L(x̂1, x̂2, . . . , x̂d) ≥ 1

2
τ(Hm)v(Hm).

Let us now separately discuss two cases. In the first case, if v(Hm) ≥
1
2

(
v(Hm) − v(Hm)

)
, then the above further leads to

Re H

(
1

d

d∑

k=1

βk x̂k

)

− v(Hm) ≥ 1

2
τ(Hm)v(Hm) ≥ 1

4
τ(Hm)

(
v(Hm) − v(Hm)

)
.

Otherwise, we have v(Hm) < 1
2

(
v(Hm) − v(Hm)

)
, which implies −v(Hm) >

1
2

(
v(Hm) − v(Hm)

)
, and this leads to

Re H(0)−v(Hm)=0−v(Hm)>
1

2

(
v(Hm) − v(Hm)

)≥ 1

4
τ(Hm)

(
v(Hm) − v(Hm)

)
.

Combing these two cases, we shall uniformly get x̂ = arg max
{

Re H
(

1
d

∑d
k=1 βk x̂k

)
, Re H(0)

}
satisfying Re H(x̂)−v(Hm)≥ 1

4τ(Hm)
(
v(Hm)−v(Hm)

)
.

Finally, by noticing x̂i ∈ conv (�m) for i = 1, 2, . . . , n and H(x) is square-free, and
applying Lemma 4.2, we are able to find z ∈ �n

m in polynomial-time, such that

Re H(z) − v(Hm) ≥ Re H(x̂) − v(Hm) ≥ 1

4
τ(Hm)

(
v(Hm) − v(Hm)

)
.

��
Before concluding this subsection, we remark that (Hm) can be equivalently trans-

ferred to polynomial optimization over discrete variables in the real case, which was
discussed in [12]. Essentially, by letting x = y + iz with y, z ∈ R

n , Re H(x) can
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be rewritten as a homogeneous polynomial of (y, z), where for each i = 1, 2, . . . , n,
(yi , zi ) = (

cos 2kπ
m , sin 2kπ

m

)
for some k ∈ Z. By applying the Lagrange polynomial

interpolation technique, the problem can then be transferred to an inhomogeneous
polynomial optimization with binary constraints, which will yield a worst case rel-
ative approximation ratio as well. However, comparing to the bounds obtained in
Theorem 4.4, the direct transformation to the real case is much worse and more costly
to implement.

4.2 Homogeneous polynomial with unity constraints

Let us now turn to the case m → ∞. In that case, (Hm) becomes

(H∞) max Re H(x)

s.t. x ∈ �n∞.

It is not hard to verify (see the proof of Theorem 4.5) that (H∞) is actually equivalent
to

max |H(x)|
s.t. x ∈ �n∞.

For the case d = 2, the above problem was studied by Toker and Ozbay [28], and
was termed complex programming. Unlike the case of the m-th roots of unity, where
certain conditions on m and d are required to secure approximation ratios, model
(H∞) actually always admits a polynomial-time approximation ratio for any fixed d.

Theorem 4.5 If H(x) is square-free or ReH(x) is convex, then (H∞) admits
a polynomial-time randomized approximation algorithm with approximation ratio

τ(H∞) := 0.7118(π
4 )d−2d!d−dn− d−2

2 .

Proof Relaxing (H∞) to (L H∞), we may find a feasible solution (x̂1, x̂2, . . . , x̂d) of

(L H∞) in polynomial-time with approximation ratio 0.7118
(

π
4

)d−2
n− d−2

2 by Theo-
rem 3.6, i.e.,

Re L(x̂1, x̂2, . . . , x̂d) ≥ 0.7118
(π

4

)d−2
n− d−2

2 v(L H∞).

Then by Lemma 4.1, we further find β ∈ �d∞ by randomization, such that

Re
d∏

i=1

βi H

(
1

d

d∑

k=1

βk x̂k

)

≥ Re d−dd!L(x̂1, x̂2, . . . , x̂d)

≥ τ(H∞)v(L H∞) ≥ τ(H∞)v(H∞).

Let φ = arg H
(

1
d

∑d
k=1 βk x̂k

)
, and we get

H

(
e−iφ/d

d

d∑

k=1

βk x̂k

)

= e−iφ H

(
1

d

d∑

k=1

βk x̂k

)
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=
∣∣∣∣
∣
H

(
1

d

d∑

k=1

βk x̂k

)∣∣∣∣
∣

≥ Re
d∏

i=1

βi H

(
1

d

d∑

k=1

βk x̂k

)

.

Finally, by noticing that each component of e−iφ/d

d

∑d
k=1 βk x̂k is in conv (�∞), and

applying Lemma 4.2, we are able to find y ∈ �n∞ in polynomial-time, such that

Re H(y)≥Re H

(
e−iφ/d

d

d∑

k=1

βk x̂k

)

≥Re
d∏

i=1

βi H

(
1

d

d∑

k=1

βk x̂k

)

≥τ(H∞)v(H∞).

��

4.3 Homogeneous polynomial with spherical constraint

Our last model in this section is spherical constrained homogeneous polynomial opti-
mization in the complex domain

(HS) max Re H(x)

s.t. x ∈ Sn .

The model is equivalent to maxx∈Sn |H(x)|, which is also equivalent to computing the
largest eigenvalue of a super-symmetric complex tensor F ∈ C

nd
.

The real counterpart of (HS) is studied in the literature; see [10,20,26]. The problem
is related to computing the largest Z-eigenvalue of a super-symmetric tensor, or equiv-
alently, finding the best rank-one approximation of a super-symmetric tensor [6,30].
Again, in principle, the complex case can be transformed to the real case by letting
x = y + iz with y, z ∈ R

n , which however increases the number of the variables
as well as the dimension of the data tensor F . As a result, this will cause a deterio-
ration in the approximation quality. Moreover, in the real case, (HS) only admits a
relative approximation ratio when d is even. Interestingly, for any fixed d, an absolute
approximation ratio is possible for the complex case.

Theorem 4.6 (HS) admits admits a deterministic polynomial-time approximation

algorithm with approximation ratio τ(HS) := d!d−dn− d−2
2 .

Proof Like in the proof of Theorem 4.5, by relaxing (HS) to (L HS), we first find a

feasible solution (x̂1, x̂2, . . . , x̂d) of (L HS) with approximation ratio n− d−2
2 (Theorem

3.7). Then by Lemma 4.1, we further find β ∈ �d∞, such that

Re
d∏

i=1

βi H

(
1

d

d∑

k=1

βk x̂k

)

≥ Re d−dd!L(x̂1, x̂2, . . . , x̂d)

≥ τ(HS)v(L HS) ≥ τ(HS)v(HS).
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Let x̂ = 1
d

∑d
k=1 βk x̂k and φ = arg H(x̂). By triangle inequality we have ‖x̂‖ ≤

1
d

∑d
k=1 ‖βk x̂k‖ = 1. Finally, e−iφ/d x̂/‖x̂‖ is a feasible solution of (HS), satisfying

H

(
e−iφ/d x̂

‖x̂‖
)

= e−iφ‖x̂‖−d H(x̂) = ‖x̂‖−d |H(x̂)| ≥ |H(x̂)|

≥ Re
d∏

i=1

βi H(x̂) ≥ τ(HS)v(HS).

��

We remark that the above result does not require H(x) to be square-free or Re H(x)

to be convex, which is a condition for Theorems 4.3 and 4.5.

5 Conjugate form optimization

Our last set of optimization models involve the so-called symmetric conjugate forms:

(Cm) max C(x, x)

s.t. x ∈ �n
m;

(C∞) max C(x, x)

s.t. x ∈ �n∞;
(CS) max C(x, x)

s.t. x ∈ Sn .

Recall that the symmetric conjugate form C(x, x) = L(x, . . . , x︸ ︷︷ ︸
d

, x, . . . , x︸ ︷︷ ︸
d

) is associ-

ated with a conjugate partial-symmetric tensor F ∈ C
n2d

(cf. Sect. 2 for details).
These models are known to have wide applications as well. For instance, (Cm)

and (C∞) with degree 4 are used in the design of radar waveforms [4] sharing an
ambiguity function. (C∞) includes (H∞) as its special case, since (H∞) is equivalent
to maxx∈�n∞ |H(x)|, where |H(x)|2 is a special class for C(x, x). Therefore, complex
programming ((H∞) with d = 2) studied by Toker and Ozbay [28] also belongs to
(C∞). Similarly, (CS) also includes (HS) as its special case.

Let us now focus on approximation algorithms. Observe that for any conjugate
partial-symmetric tensor F with its associated symmetric conjugate form C(x, x):

C(x, x) = Re L(x1, . . . , xd , xd+1, . . . , x2d)

when x1 = · · · = xd = x and xd+1 = · · · = x2d = x . Therefore, (Cm), (C∞) and
(CS) can be relaxed to the following multilinear optimization models:
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(LCm) max Re L(x1, . . . , xd , xd+1, . . . , x2d)

s.t. xk ∈ �n
m, k = 1, 2, . . . , 2d;

(LC∞) max Re L(x1, . . . , xd , xd+1, . . . , x2d)

s.t. xk ∈ �n∞, k = 1, 2, . . . , 2d;
(LCS) max Re L(x1, . . . , xd , xd+1, . . . , x2d)

s.t. xk ∈ Sn, k = 1, 2, . . . , 2d.

By the approximation results established in Sect. 3, we are able to find good approx-
imate solutions for these multilinear form optimization models. In order to generate
good approximate solutions for the original conjugate form optimizations, we need
the following new linkage between the symmetric conjugate form and the multilinear
form.

Lemma 5.1 Let m ∈ {3, 4, . . . ,∞}. Suppose x1, x2, . . . , x2d ∈ C
n, and F ∈ C

n2d

is a conjugate partial-symmetric tensor with its associated multilinear form L and
symmetric conjugate form C. If ξ1, ξ2, . . . , ξ2d are i.i.d. uniform distribution on �m,
then

E

[(
d∏

i=1

ξi

)(
2d∏

i=d+1

ξi

)

C

(
d∑

k=1

ξk xk +
2d∑

k=d+1

ξk xk,

d∑

k=1

ξk xk +
2d∑

k=d+1

ξk xk

)]

= (d!)2L(x1, x2, . . . , x2d).

The proof of Lemma 5.1 can be found in the Appendix. By randomization we find
β ∈ �2d

m in polynomial-time, such that

Re

(
d∏

i=1

βi

)(
2d∏

i=d+1

βi

)

C
(
xβ, xβ

) ≥ (d!)2(2d)−2dRe L(x1, x2, . . . , x2d), (7)

where

xβ := 1

2d

d∑

k=1

βk xk + 1

2d

2d∑

k=d+1

βk xk . (8)

5.1 Conjugate form in the m-th roots of unity

For (Cm), by relaxing to (LCm) and generating its approximate solution (x1, x2, . . . ,

x2d) from Theorem 3.4, we know xk ∈ �n
m for k = 1, 2, . . . , 2d. Observe that each

component of xβ defined by (8) is a convex combination of the elements in �m , and is
thus in conv (�m). Though xβ may not be feasible to (Cm), a vertex solution (in �m)
can be found under certain conditions.

Lemma 5.2 Let m ∈ {3, 4, . . . ,∞}. Suppose x ∈ C
n with xi ∈ conv(�m) for all

1 ≤ i ≤ n.
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(1) If C(x, x) is a square-free symmetric conjugate form, then y, z ∈ �n
m can be found

in polynomial-time, such that C(y, y) ≤ C(x, x) ≤ C(z, z).
(2) If C(x, x) is convex, then z ∈ �n

m can be found in polynomial-time, such that
C(x, x) ≤ C(z, z).

The proof is similar to that of Lemma 4.2, and is thus omitted. Basically, the algo-
rithm optimizes one variable xi over �m while fixing other n−1 variables, alternatively
for i = 1, 2, . . . , n. The condition of square-free or convexity guarantees that each
step of optimization can be done in polynomial-time. With all these preparations in
place, we are ready to present the first approximation result for symmetric conjugate
form optimization.

Theorem 5.3 If C(x, x) is convex, then (Cm) admits a polynomial-time random-
ized approximation algorithm with approximation ratio τ(Cm) := τ 2d−2

m (2τm −
1)(d!)2(2d)−2dn−(d−1).

Proof By relaxing (Cm) to (LCm) and getting its approximate solution (x1, x2, . . . ,

x2d), we have

Re L(x1, x2, . . . , x2d) ≥ τ 2d−2
m (2τm − 1)n−(d−1)v(LCm)

≥ τ 2d−2
m (2τm − 1)n−(d−1)v(Cm). (9)

Applying Lemma 5.1, we further get xβ defined by (8), satisfying (7), i.e.,

Re

(
d∏

i=1

βi

)(
2d∏

i=d+1

βi

)

C
(
xβ, xβ

) ≥ (d!)2(2d)−2dRe L(x1, x2, . . . , x2d)

≥ τ(Cm)v(Cm).

Next it is easy to verify that any convex symmetric conjugate form is always nonneg-
ative (see [4] for the proof in the quartic case), i.e., C(x, x) ≥ 0 for all x ∈ C

n . This
further leads to

C
(
xβ, xβ

) ≥ Re

(
d∏

i=1

βi

)(
2d∏

i=d+1

βi

)

C
(
xβ, xβ

) ≥ τ(Cm)v(Cm).

Finally, as each component of xβ belongs to conv (�m), applying Lemma 5.2, we find
z ∈ �n

m with C(z, z) ≥ C
(
xβ, xβ

) ≥ τ(Cm)v(Cm). ��
As seen from the proof in Theorem 5.3, the nonnegativity of convex symmetric

conjugate form plays an essential role in preserving approximation guarantee. For the
general case, this approximation is not possible, since a symmetric conjugate form may
be negative definite. However under the square-free condition, relative approximation
is doable.

Theorem 5.4 If C(x, x) is square-free, then (Cm) admits a polynomial-time random-
ized approximation algorithm with relative approximation ratio 1

2τ(Cm).
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Proof The main structure of the proof is similar to that of Theorem 4.4, based
on two complementary cases: v(Cm) ≥ 1

2

(
v(Cm) − v(Cm)

)
and −v(Cm) >

1
2

(
v(Cm) − v(Cm)

)
. For the latter case, it is obvious that

C(0, 0) − v(Cm) = 0 − v(Cm) ≥ 1

2

(
v(Cm) − v(Cm)

)

≥ 1

2
τ(Cm)

(
v(Cm) − v(Cm)

)
. (10)

For the former case, we relax (Cm) to (LCm) and get its approximate solution
(x1, x2, . . . , x2d). By (9) it follow that

(d!)2(2d)−2dRe L(x1, x2, . . . , x2d) ≥ (d!)2(2d)−2dτ 2d−2
m (2τm − 1)n−(d−1)v(Cm)

≥ 1

2
τ(Cm)

(
v(Cm) − v(Cm)

)
. (11)

Assume ξ ∈ �2d
m , whose components are i.i.d. uniform distribution on �m . As each

component of xξ defined by (8) belongs to conv (�m), by Lemma 5.2, there exists
y ∈ �n

m such that

C(xξ , xξ ) ≥ C(y, y) ≥ v(Cm). (12)

Applying Lemma 5.1, (11) further leads to

1

2
τ(Cm)

(
v(Cm) − v(Cm)

) ≤ (d!)2(2d)−2d Re L(x1, x2, . . . , x2d)

= E

[

Re

(
d∏

i=1

ξi

)(
2d∏

i=d+1

ξi

)

C(xξ , xξ )

]

= E

[

Re

(
d∏

i=1

ξi

)(
2d∏

i=d+1

ξi

)
(
C(xξ , xξ ) − v(Cm)

)
]

≤ E

[∣
∣∣∣∣

(
d∏

i=1

ξi

)(
2d∏

i=d+1

ξi

)∣
∣∣∣∣
· ∣∣C(xξ , xξ ) − v(Cm)

∣∣
]

= E
[
C(xξ , xξ ) − v(Cm)

]
,

where the third step is due to E
[(∏d

i=1 ξi

)(∏2d
i=d+1 ξi

)]
= 0, and the last step is due

to (12). Therefore by randomization, we are able to find β ∈ �2d
m , such that

C(xβ, xβ) − v(Cm) ≥ E
[
C(xξ , xξ ) − v(Cm)

] ≥ 1

2
τ(Cm)

(
v(Cm) − v(Cm)

)
.

Combining (10), if we let x ′ = arg max
{
C(0, 0), C(xβ, xβ)

}
, then we shall uni-

formly have C(x ′, x ′) − v(Cm) ≥ 1
2τ(Cm)

(
v(Cm) − v(Cm)

)
. Finally, as each com-
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ponent of x ′ belongs to conv (�m) and C(x, x) is square-free, by Lemma 5.2, we are
able to find z ∈ �n

m in polynomial-time, such that

C(z, z) − v(Cm) ≥ C(x ′, x ′) − v(Cm) ≥ 1

2
τ(Cm)

(
v(Cm) − v(Cm)

)
.

��

5.2 Conjugate form with unity constraints or spherical constraint

The discussion in Sect. 5.1 can be extended to symmetric conjugate form optimization
over unity constraints, and the complex spherical constraint: (C∞) and (CS). Due to its
similar nature, here we shall skip the details and only provide the main approximation
results; the details can be easily supplemented by the interested reader. Essentially,
the main steps are: (1) relax to multilinear form optimization models and find their
approximate solutions as discussed in Sect. 3; (2) conduct randomization based on the
link provided in Lemma 5.1; (3) search for the best vertex solution. For the complex
unity constrained (C∞), a vertex solution is guaranteed by Lemma 5.2, and for the
spherically constrained (CS), a vertex solution is obtained by scaling to Sn : xβ/‖xβ‖.

Theorem 5.5 (1) If C(x, x) is convex, then (C∞) admits a polynomial-time random-
ized approximation algorithm with approximation ratio τ(C∞) :=0.7118

(
π
4

)2d−2

(d!)2(2d)−2dn−(d−1).
(2) If C(x, x) is square-free, then (C∞) admits a polynomial-time randomized approx-

imation algorithm with relative approximation ratio 1
2τ(C∞).

Theorem 5.6 (1) If C(x, x) is nonnegative (including convex as its special case),
then (CS) admits a deterministic polynomial-time approximation algorithm with
approximation ratio τ(CS) := (d!)2(2d)−2dn−(d−1).

(2) For general C(x, x), (CS) admits a deterministic polynomial-time approximation
algorithm with relative approximation ratio 1

2τ(CS).

6 Numerical results

In the final section we are going to test the performance of the approximation algo-
rithms proposed. In order to demonstrate the advantage of the tailor-made algorithms
for complex polynomial optimization models, we compare our methods with the algo-
rithms for the real case converted equivalently from the original complex model. All
the numerical computations are conducted using an Intel Core i5-2520M 2.5GHz
computer with 4GB of RAM. The supporting software is MATLAB R2012b.

For the m-th roots of unity constrained problem or unity constrained problem, no
practical approximation algorithm is available for the equivalently converted model in
the real domain. Therefore we focus on the following complex spherical constrained
optimization problem:

(TS) max
∑R1

r=1(z
H Ar z)(zH AT

r z) − ∑R1+R2
r=R1+1(z

H Ar z)(zH AT
r z)

s.t. z ∈ Sn,
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where Ar ∈ R
n×n is a real symmetric matrix for r = 1, 2, . . . , R1 + R2. Obviously,

the objective function of (TS) is a symmetric conjugate form, which can be solved by
the algorithm in Theorem 5.6..

To convert (TS) into an optimization model in the real domain, we denote x = Re z,
y = Im z and u = (x

y

) ∈ R
2n . Consequently we have ‖u‖2 = ∥

∥(x
y

)∥∥2 = ‖x‖2+‖y‖2 =
‖z‖2 = 1. Moreover for any r it is easy to verify that

(zH Ar z)(zH AT
r z) = (x − i y)T Ar (x + i y)(x − i y)T AT

r (x + i y)

= (xT Ar x + yT Ar y)2 + (yT Ar x − xT Ar y)2

:= fr (u),

where fr (u) is a homogeneous quartic polynomial of u. Thus (TS) is equivalent to the
following quartic model in the real domain:

(RS) max
∑R1

r=1 fr (u) − ∑R1+R2
r=R1+1 fr (u)

s.t. ‖u‖ = 1, u ∈ R
2n .

The real approximation algorithm proposed in [10] is applied to solve (RS). In order
to get an accurate estimation on the approximation performance ratio numerically, an
approach in computing the true optimal value of (RS) is required here. For this purpose,
we adopt the recently proposed solution method by Jiang et al. [18] for solving tensor
PCA problems. For this particular model (RS), the algorithm in [18] is very likely to
return a global optimum, or else it provides a close upper bound. The other common
approach in the literature to solve (RS) is the SOS method proposed by Lasserre [19]
and Parrilo [24]. However for this model, the problem dimensions that can be solved
by the SOS method are quite limited.

In our first set of tests, we randomly generate 20 instances of (TS), and compute
their corresponding 20 instances of (RS). For the parameters R1 = 3 and R2 = 6,
and n is chosen from 4 to 9. The complex and the real approximation algorithms are
used to solve (TS) and (RS) respectively, and their performance ratios are reported
in Table 2, where “average ratio” and “worst ratio” denote the average of the relative
approximation ratios and the worst relative approximation ratio over all 20 instances,
respectively. For each instance, the relative approximation ratio is computed as follows.
Denote v to be the the objective value returned by an approximation algorithm, either
the real one in [10] for (RS) or the complex one in this paper for (TS). We then apply
the algorithm in [18] to solve (RS) and its minimization counterpart, and output v

and v, which are taken as the optimal values. The relative ratio of this instance is then
computed by v−v

v−v
.

Numerical results in Table 2 suggest that our method enjoys both better average
ratio and better worst ratio, demonstrating the advantage of the complex approxima-
tion algorithm in terms of the solution quality. However from Table 2, we cannot
conclude whether the tailor-made complex approximation algorithm is faster than the
real approximation algorithm. Remark that when computing the average running time,
we exclude the time spent on reformulating the complex model (TS) to the real one
(RS) for a real approximation algorithm.
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Table 2 Comparison of the approximation ratios

n Complex approximation algorithm Real approximation algorithm

Average ratio Worst ratio Average time Average ratio Worst ratio Average time

4 0.8340 0.6428 0.0143 0.7228 0.5002 0.0039

5 0.7852 0.5605 0.0139 0.7691 0.4855 0.0055

6 0.7682 0.5776 0.0138 0.7350 0.4978 0.0080

7 0.7834 0.5524 0.0155 0.7737 0.5061 0.0117

8 0.7158 0.5549 0.0150 0.6930 0.5056 0.0168

9 0.6955 0.5516 0.0185 0.6794 0.5033 0.0222

Table 3 Comparison of the
running time

n Average time

Complex
approximation
algorithm

Real approxima-
tion algorithm

Tensor PCA
method

5 0.0138 0.0068 2.6470

10 0.0152 0.0362 122.03

15 0.0239 0.1137 3044.9

20 0.0342 0.2504 ∞
25 0.0596 0.5902 ∞
30 0.1096 1.2987 ∞
35 0.2227 2.5872 ∞
40 0.2733 4.1698 ∞

To get an affirmative answer in terms of average CPU time, in this set of tests, we run
the algorithms for larger dimensions where n is upto 40. Again for each n, 20 random
instances are generated and the average running time is presented in Table 3. It clearly
shows that the complex approximation algorithm is faster than the real approximation
algorithm for medium to large scale problems. In particular when n = 40, our approach
is about 15 times faster than the algorithm applied to the reformulated real counterpart.

In our final set of tests, we combine our approach with some local search methods to
further improve the solution quality, i.e., using the solution returned by our approach
as the starting point of a local search method. The local search method used here
is the so-called maximum block improvement (MBI) approach proposed in [6]. We
considered problems with dimension ranging from 4 to 9, and for each dimension
5 random instances are tested with their detail results shown in Table 4. The term
“total time” stands for the total running time for our approach and the MBI method.
According to Table 4, our complex approximation algorithm with the MBI method
generates solution whose objective value is very close to the optimal value for most
instances.

Acknowledgments This research was partially supported by National Science Foundation of USA [Grant
CMMI-1161242], Natural Science Foundation of China [Grant 11371242], Natural Science Foundation of
Shanghai [Grant 12ZR1410100], and Ph.D. Programs Foundation of Chinese Ministry of Education [Grant
20123108120002].
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Table 4 Combining the complex approximation algorithm with the MBI method

Inst. Complex approximation algorithm (CAA) + MBI method Tensor PCA method

CAA value CAA time MBI value MBI time Total time PCA value PCA time

Dimension n = 4

1 15.04 0.0128 15.16 0.0207 0.03 15.16 0.6789

2 −2.22 0.0134 2.76 0.0784 0.09 4.30 0.5079

3 7.63 0.0113 7.91 0.0358 0.05 9.02 1.1915

4 9.04 0.0110 9.39 0.0233 0.03 9.39 0.6405

5 −1.54 0.0117 5.01 0.0587 0.07 6.74 0.5370

Dimension n = 5

1 12.92 0.0549 13.15 0.5304 0.59 13.15 1.7920

2 3.23 0.0116 14.98 0.0906 0.10 14.98 1.7736

3 18.16 0.0114 18.79 0.0734 0.08 18.79 1.9854

4 −0.71 0.0110 5.74 0.0825 0.09 6.21 2.2382

5 10.62 0.0126 11.81 0.0378 0.05 11.81 1.8650

Dimension n = 6

1 −0.52 0.0128 4.84 0.1116 0.12 18.01 5.2123

2 7.23 0.0112 8.38 0.0518 0.06 8.38 5.0184

3 1.51 0.0128 11.10 0.1489 0.16 11.10 76.918

4 −1.82 0.0170 7.81 0.6414 0.66 7.81 6.3776

5 4.91 0.0241 9.50 0.0675 0.09 10.97 10.913

Dimension n = 7

1 −4.09 0.0226 12.16 0.4387 0.46 12.17 113.44

2 9.84 0.0114 15.47 0.1217 0.13 15.47 13.483

3 0.50 0.0121 12.15 0.1179 0.13 12.15 13.077

4 19.91 0.0133 20.42 0.0597 0.07 20.42 12.603

5 −2.15 0.0115 9.84 0.2795 0.29 11.45 11.942

Dimension n = 8

1 1.55 0.0133 14.01 0.1349 0.15 16.40 22.152

2 29.53 0.0115 29.71 0.0393 0.05 29.71 26.362

3 −0.44 0.0123 14.94 0.1700 0.18 17.67 32.473

4 2.60 0.0119 20.73 0.0623 0.07 20.73 31.969

5 19.18 0.0152 21.16 0.0600 0.08 21.16 30.554

Dimension n = 9

1 −0.57 0.0266 21.70 0.3001 0.33 21.70 143.65

2 0.82 0.0128 14.85 0.1727 0.19 14.85 50.436

3 9.34 0.0135 19.40 0.2099 0.22 19.40 65.186

4 21.95 0.0120 25.94 0.1032 0.12 25.94 55.706

5 −2.38 0.0121 22.92 0.4821 0.49 22.92 65.539
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Appendix: Proofs of the lemmas

Lemma 3.2 Define Fm : C 
→ C with Fm(x) := m(2−ωm−ω−1
m )

8π2

∑m−1
	=0 ω	

m(
arccos

(−Re ω−	
m x

))2
.

(1) If a ∈ C and b ∈ �m , then Fm(ab) = bFm(a).
(2) If a ∈ R, then Fm(a) ∈ R.

Proof (1) If b ∈ �m , let b = ωk
m for some k ∈ Z. It holds that

Fm(ab) = Fm(ωk
ma) = m(2 − ωm − ω−1

m )

8π2

m−1∑

	=0

ω	
m

(
arccos

(
−Re ω−	

m ωk
ma

))2

= ωk
m

m(2−ωm −ω−1
m )

8π2

m−1∑

	=0

ω	−k
m

(
arccos

(
−Re ω−(	−k)

m a
))2

= b
m(2 − ωm − ω−1

m )

8π2

m−1−k∑

j=−k

ω
j
m

(
arccos

(
−Re ω

− j
m a

))2

= bFm(a).

(2) If a ∈ R, then Re ω−k
m a = aRe ω−k

m = aRe ωk
m = Re ωk

ma for any k ∈ Z.
Therefore,

Fm(a) = m(2 − ω−1
m − ωm)

8π2

m−1∑

	=0

ω−	
m

(
arccos

(
−Re ω−	

m a
))2

= m(2 − ωm − ω−1
m )

8π2

m−1∑

	=0

ω−	
m

(
arccos

(
−Re ω	

ma
))2

= m(2 − ωm − ω−1
m )

8π2

0∑

j=1−m

ω
j
m

(
arccos

(
−Re ω

− j
m a

))2

= Fm(a),

implying that Fm(a) ∈ R. ��
Lemma 4.1 Let m ∈ {3, 4, . . . ,∞}. Suppose x1, x2, . . . , xd ∈ C

n , and F ∈ C
nd

is a
super-symmetric complex tensor with its associated multilinear form L and homoge-
neous polynomial H . If ξ1, ξ2, . . . , ξd are i.i.d. uniform distribution on �m , then

E

[
d∏

i=1

ξi H

(
d∑

k=1

ξk xk

)]

= d!L(x1, x2 . . . , xd) and E

[
d∏

i=1

ξi H

(
d∑

k=1

ξk xk

)]

= 0.
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Proof First we observe that

E

[
d∏

i=1

ξi H

(
d∑

k=1

ξk xk

)]

= E

⎡

⎣
d∏

i=1

ξi

∑

1≤k1,k2,...,kd ≤d

L
(
ξk1 xk1 , ξk2 xk2 , . . . , ξkd xkd

)
⎤

⎦

=
∑

1≤k1,k2,...,kd ≤d

E

⎡

⎣

(
d∏

i=1

ξi

)⎛

⎝
d∏

j=1

ξk j

⎞

⎠ L
(

xk1 , xk2 , . . . , xkd
)
⎤

⎦ .

If (k1, k2, . . . , kd) ∈ �(1, 2, . . . , d), i.e., a permutation of {1, 2, . . . , d}, then

E

⎡

⎣
(

d∏

i=1

ξi

)⎛

⎝
d∏

j=1

ξk j

⎞

⎠

⎤

⎦ = E

[
d∏

i=1

ξiξi

]

= 1;

otherwise, there is k0(1 ≤ k0 ≤ d) such that and k0 	= k j for all j = 1, 2, . . . , d. In
the latter case,

E

⎡

⎣
(

d∏

i=1

ξi

)⎛

⎝
d∏

j=1

ξk j

⎞

⎠

⎤

⎦ = E
[
ξk0

]
E

⎡

⎣

⎛

⎝
∏

1≤i≤d,i 	=k0

ξi

⎞

⎠

⎛

⎝
d∏

j=1

ξk j

⎞

⎠

⎤

⎦ = 0.

Since the number of different permutations of {1, 2, . . . , d} is d!, by taking into account
the super-symmetric property of L , the first identity follows.

For the second identity, similarly we have

E

[
d∏

i=1

ξi H

(
d∑

k=1

ξk xk

)]

=
∑

1≤k1,k2,...,kd ≤d

E

⎡

⎣

(
d∏

i=1

ξi

)⎛

⎝
d∏

j=1

ξk j

⎞

⎠ L
(

xk1 , xk2 , . . . , xkd
)
⎤

⎦ .

There exists k0(1≤k0 ≤d) such that ξk0 appears once or twice in
( ∏d

i=1 ξi
)( ∏d

j=1 ξk j

)
.

For m ∈ {3, 4, . . . ,∞}, we notice that E[ξi ] = 0 and E[ξ2
i ] = 0 for i = 1, 2, . . . , d.

By independence of ξi ’s, E
[( ∏d

i=1 ξi
)( ∏d

j=1 ξk j

)]
is always zero, leading to the

second identity. ��

Lemma 5.1 Let m ∈ {3, 4, . . . ,∞}. Suppose x1, x2, . . . , x2d ∈ C
n , and F ∈ C

n2d

is a conjugate partial-symmetric tensor with its associated multilinear form L and
symmetric conjugate form C . If ξ1, ξ2, . . . , ξ2d are i.i.d. uniform distribution on �m ,
then

E

[(
d∏

i=1

ξi

)(
2d∏

i=d+1

ξi

)

C

(
d∑

k=1

ξk xk +
2d∑

k=d+1

ξk xk,

d∑

k=1

ξk xk +
2d∑

k=d+1

ξk xk

)]

= (d!)2L(x1, x2, . . . , x2d).
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Proof We first consider the following

E

[(
d∏

i=1

ξi

)(
2d∏

i=d+1

ξi

)

C

(
2d∑

k=1

ξk xk ,

2d∑

k=1

ξk xk

)]

= E

⎡

⎣

(
d∏

i=1

ξi

)(
2d∏

i=d+1

ξi

)
∑

1≤k1,...,k2d ≤2d

L
(
ξk1 xk1 , . . . , ξkd xkd , ξkd+1 xkd+1 , . . . , ξk2d xk2d

)
⎤

⎦

=
∑

1≤k1,...,k2d ≤2d

E

⎡

⎣

(
d∏

i=1

ξi

)(
2d∏

i=d+1

ξi

)⎛

⎝
d∏

j=1

ξk j

⎞

⎠

⎛

⎝
2d∏

j=d+1

ξk j

⎞

⎠

⎤

⎦

·L
(

xk1 , . . . , xkd , xkd+1 , . . . , xk2d
)

.

For m ∈ {3, 4, . . . ,∞}, we observe that E[ξi ] = 0 and E[ξ2
i ] = 0 for i = 1, 2, . . . , 2d.

Using a similar argument in the proof of Lemma 4.1, we have

E

⎡

⎣

(
d∏

i=1

ξi

)(
2d∏

i=d+1

ξi

)⎛

⎝
d∏

j=1

ξk j

⎞

⎠

⎛

⎝
2d∏

j=d+1

ξk j

⎞

⎠

⎤

⎦

=
{

1 (k1, . . . , kd) ∈ �(1, . . . , d) and (kd+1, . . . , k2d) ∈ �(d + 1, . . . , 2d);
0 otherwise.

By noticing that F is conjugate partial-symmetric (see Definition 2.2), and considering
numbers of permutations, it follows that

E

⎡

⎣

⎛

⎝
d∏

i=1

ξi

⎞

⎠

⎛

⎝
2d∏

i=d+1

ξi

⎞

⎠ C

⎛

⎝
2d∑

k=1

ξk xk ,

2d∑

k=1

ξk xk

⎞

⎠

⎤

⎦=(d!)2L
(

x1, . . . , xd , xd+1, . . . , x2d
)

.

Finally, replacing xk by xk for k = 1, 2, . . . , d in the above identity leads to the desired
result. ��
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