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INHOMOGENEOUS POLYNOMIAL OPTIMIZATION

OVER A CONVEX SET: AN APPROXIMATION APPROACH

SIMAI HE, ZHENING LI, AND SHUZHONG ZHANG

Abstract. In this paper, we consider computational methods for optimiz-
ing a multivariate inhomogeneous polynomial function over a general convex
set. The focus is on the design and analysis of polynomial-time approximation
algorithms. The methods are able to deal with optimization models with poly-
nomial objective functions in any fixed degrees. In particular, we first study
the problem of maximizing an inhomogeneous polynomial over the Euclidean
ball. A polynomial-time approximation algorithm is proposed for this problem
with an assured (relative) worst-case performance ratio, which is dependent

only on the dimensions of the model. The method and approximation ratio are
then generalized to optimize an inhomogeneous polynomial over the intersec-
tion of a finite number of co-centered ellipsoids. Furthermore, the constraint
set is extended to a general convex compact set. Specifically, we propose a
polynomial-time approximation algorithm with a (relative) worst-case perfor-
mance ratio for polynomial optimization over some convex compact sets, e.g.,
a polytope. Finally, numerical results are reported, revealing good practical
performance of the proposed algorithms for solving some randomly generated
instances.

1. Introduction

In this paper, we consider the general constrained polynomial optimization model

(G) max p(x)
s.t. x ∈ S,

where p(x) is a multivariate inhomogeneous polynomial function of x ∈ �n, and
S ⊆ �n is a given compact set, typically defined by some polynomial equalities
or inequalities. This general optimization problem is one of the fundamental mod-
els in the field of optimization. Such problems and formulations are encountered
frequently in the literature, with a wide spectrum of applications: quantum me-
chanics [6,9], biomedical engineering such as magnetic resonance imaging [3,7], sig-
nal processing [26, 39], numerical linear algebra [32, 38], tensor decomposition [18],
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investment science [2,27,36], among many others. For example, the least square for-
mulation to the sensor network localization problem proposed in Luo and Zhang [25]
takes the form of

min
∑

i,j∈S

(
‖xi − xj‖2

2 − dij
2
)2

+
∑

i∈S,j∈A

(
‖xi − aj‖2

2 − dij
2
)2

s.t. xi ∈ G, i ∈ S,

where A and S denote the set of anchor nodes and sensor nodes respectively, dij ’s
are (possibly noisy) distance measurements, aj ’s denote the known positions of an-
chor nodes, while xi’s represent the positions of sensor nodes in the compact region
G ⊆ �3 to be estimated. Another example is the portfolio management problem
involving more than the first two moments (e.g. the skewness and the kurtosis of
the investment returns). That problem has been receiving much attention in the
literature (cf., De Athayde and Flôre [2], Prakash et al. [36], Kleniati et al. [16]).
In particular, a very general model in [16] is

max α
n∑

i=1

μixi − β
n∑

i,j=1

σijxixj + γ
n∑

i,j,k=1

ςijkxixjxk − δ
n∑

i,j,k,�=1

κijk�xixjxkx�

s.t. eTx = 1, x ≥ 0, x ∈ �n,

where (μi), (σij), (ςijk), (κijk�) are the first four moments of the given n assets, and
e is the all-one vector. The nonnegative parameters α, β, γ, δ measure the investor’s
preference to the four moments, and they sum up to one, i.e., α+ β + γ + δ = 1.

The polynomial optimization problems are typically nonconvex, highly nonlin-
ear, and NP-hard in general. The search for general and efficient algorithms for
polynomial optimization has been a priority for many mathematical optimizers.
For example, generic solution methods based on nonlinear programming and global
optimization have been studied and tested; see e.g. Qi [37] and Qi et al. [40].
Tensor relaxation and local improvement methods have been discussed by Chen et
al. [5]. In recent years, an entirely different and systematic approach based on the
sum of squares (SOS) was proposed by Lasserre [19, 20] and Parrilo [34, 35]. The
SOS approach has a strong theoretical appeal, since it can in principle solve any
general polynomial optimization model to any precision, by resorting to (possibly
large) semidefinite programs (SDP). However, the SDP problems required to be
solved by the SOS approach grow exponentially, making the SOS approach only
viable for low dimensional problems. Henrion et al. [13] developed a specialized
tool known as GloptiPoly 3 for finding a global optimal solution for polynomial op-
timization based on the SOS approach. For an overview on the recent theoretical
developments, we refer to the excellent survey by Laurent [21].

On the other side, the intractability of general polynomial optimizations there-
fore motivates the search for suboptimal, or more formally, approximate solutions.
In the case that the objective polynomial is quadratic, a well-known example is
the SDP relaxation and randomization approach for the max-cut problem due to
Goemans and Williamson [8], where essentially a 0.878-approximation ratio of the
model maxx∈{1,−1}n xTFx is shown with F being the Laplacian of a given graph.
Note that the approach in [8] has been generalized subsequently by many authors,
including Nesterov [30], Ye [44, 45], Nemirovski et al. [29], Zhang [47], Alon and
Naor [1], Zhang and Huang [48], Luo et al. [24], and He et al. [12]. In particular,
when the matrix F is only known to be positive semidefinite, Nestrov [30] derived
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a 0.636-approximation bound for maxx∈{1,−1}n xTFx. Nemirovski et al. [29] pro-
posed an Ω (1/ logm)-approximation bound for maximizing a quadratic form over
the intersection of m co-centered ellipsoids. Their models are further studied and
generalized by Luo et al. [24] and He et al. [12].

Beyond quadratic objectives, the approximation methods for high degree poly-
nomial optimizations have attracted much attention recently. Luo and Zhang [25]
considered quartic optimization, and showed that optimizing a homogenous quartic
form over the intersection of some co-centered ellipsoids is essentially equivalent to
its (quadratic) SDP relaxation problem, which is itself also NP-hard. However,
this gives a handle on the design of approximation algorithms with provable worst-
case approximation ratios. Ling et al. [23] considered a special quartic optimization
model. Basically, the problem is to minimize a biquadratic function over two spher-
ical constraints. In [23], approximate solutions as well as exact solutions using the
SOS method are considered. The approximation bounds in [23] are indeed com-
parable to the bound in [25]. A breakthrough in approximation methods for any
degree polynomial objective was due to He et al. [10], where the authors proposed
tensor relaxation methods and derived polynomial-time approximation algorithms
for any fixed degree homogeneous polynomial with quadratic constraints, including
the spherical constraints and the intersection of a finite number of co-centered ellip-
soids, and the approximation ratios beats that in [25] and [23] specialized to degree
4. The result of [10] is then extended to homogeneous polynomial optimization over
discrete, typically binary variables, as well as binary variables mixed with spherical
constraints; see [11]. In the meantime, Zhang et al. [49] studied cubic form opti-
mization with spherical constraints, and proposed polynomial-time approximation
algorithms, and the ratio is comparable to that in [10], specialized to degree 3. Very
recently, So [41] improved the approximation ratios for any fixed degree spherical
constrained homogeneous polynomial optimization problems studied in [10].

All the above successful approximation methods only tackle optimization of ho-
mogeneous polynomials, while the study of approximation algorithms for inhomo-
geneous polynomial optimization is scarcely found in the literature, despite the
fact that inhomogeneous polynomial optimization is commonplace as we discussed
earlier. Nemirovski et al. [29] discussed inhomogeneous quadratic function max-
imization over homogeneous quadric constraints, and proposed polynomial-time
randomized approximation algorithms. However, their model and its analysis is
essentially homogeneous quadratic polynomial optimization. On the other front,
Nie [33] discussed approximation bounds on the gap between the optimal value of
a general polynomial optimization problem and that of Lasserre’s relaxation. How-
ever, no feasible solution can be generated for the original polynomial optimization
problem. In fact, the bounds in [33] are complementary to the approximation
bounds studied in this paper. Meanwhile, De Klerk and Laurent [14] obtained
some error bounds for SDP approaches to inhomogeneous polynomial minimiza-
tion on the hypercube. In this paper, we propose polynomial-time approximation
algorithms for optimizing an inhomogeneous polynomial over a general compact
set. In fact, extending the solution methods and the corresponding analysis from
homogeneous polynomial optimization to the general inhomogeneous polynomials
is not straightforward. Technically, a homogenous polynomial function allows one
to scale the overall function value along a given direction, which is an essential
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operation in proving the quality bound of the approximation algorithms. The cur-
rent paper breaks its path from the preceding practices, by directly dealing with
a homogenizing variable. Although homogenization is a natural way to deal with
inhomogeneous polynomials, it is quite a different matter when it comes to the
worst-case performance ratio analysis. In fact, the usual homogenization does not
lead to any assured performance ratio. Here we point out a specific route via ho-
mogenization and tensor relaxation to get around this difficulty, and we actually
provide a general scheme to approximately solve such problems.

The paper is organized as follows. First in Section 2, we introduce the notations
and the models. Then in Section 3, we analyze the model where the constraint set
is the Euclidean ball and propose polynomial-time approximation algorithms with
guaranteed performance ratios, which serves as a basis for the subsequent analysis.
In Section 4, the discussion is extended to cover the problem where the constraint
set is the intersection of a finite number of co-centered ellipsoids. In Section 5, the
approximation bounds will be derived even under some very general compact sets,
e.g., a polytope. It turns out that for such general problems, it is still possible
to derive relative approximation ratios, which is still dependent on the problem
dimensions only. Finally, we report our numerical experiment results in Section 6.

2. Notations, models, and the organization

To make a clear visual distinction, in this paper we use the boldface letters
to denote vectors, matrices, and tensors in general (e.g., the decision variable x,
the data matrix Q, and the tensor form F ), while the usual lowercase letters are
reserved for scalars (e.g. the homogenizing variable xh to be introduced later). The
Greek letters ξ, η and β are reserved to denote binary variables (e.g. ξ ∈ B

d :=
{1,−1}d). The letter τ , however, is reserved to indicate the approximation ratio,
which is a key ingredient throughout this paper.

Let us start by defining the following multilinear function

F (x1,x2, . . . ,xd) =
∑

1≤i1≤n1,1≤i2≤n2,...,1≤id≤nd

Fi1i2...idx
1
i1x

2
i2 . . . x

d
id
,

where xk ∈ �nk for k = 1, 2, . . . , d, and F = (Fi1i2...id) ∈ �n1×n2×···×nd is a d-th
order tensor with F being its associated multilinear function.

Closely related to the tensor F is a general d-th degree homogeneous polyno-
mial function f(x) of x ∈ �n. We call the tensor super-symmetric (see [17]) if
Fi1i2...id is invariant under all permutations of {i1, i2, . . . , id}. As any quadratic
function uniquely determines a symmetric matrix, a given homogeneous polyno-
mial function f(x) also uniquely determines a super-symmetric tensor. For a given
super-symmetric tensor form F , we denote by F the multilinear function induced
by it, and by f the homogeneous polynomial function, i.e., f(x) = F (x,x, . . . ,x︸ ︷︷ ︸

d

).

The Frobenius norm of the tensor form F is the usual Euclidean norm (or the
2-norm) defined as

‖F ‖ :=

√ ∑
1≤i1≤n1,1≤i2≤n2,...,1≤id≤nd

Fi1i2...id
2 .

In this paper we exclusively use only the 2-norm for the vectors, the matrices, and
the tensors.
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A generic d-th degree multivariate (inhomogeneous) polynomial function p(x),
can be explicitly written as a summation of homogenous polynomial functions in
decreasing degrees, namely

p(x) :=
d∑

i=1

fi(x) + f0 =
d∑

i=1

Fi(

i︷ ︸︸ ︷
x,x, . . . ,x) + f0,

where x ∈ �n, f0 ∈ � and fi(x) = Fi(

i︷ ︸︸ ︷
x,x, . . . ,x) is a homogenous polynomial

function of degree i for i = 1, 2, . . . , d.
One natural way to deal with inhomogeneous polynomial functions is through

homogenization; that is, we introduce a new variable, to be denoted by xh in this
paper, which is actually set to be 1, to yield a homogeneous form

(2.1) p(x) =
d∑

i=1

fi(x) + f0 =
d∑

i=1

fi(x)x
d−i
h + f0x

d
h = f(x̄),

where f(x̄) is an (n + 1)-dimensional homogeneous polynomial function of degree
d, with variable x̄ ∈ �n+1. Throughout this paper, the ‘bar’ notation, e.g., x̄, is
reserved for an (n + 1)-dimensional vector, with the underlying letter x referring
to the vector of its first n components, and the subscript ‘h’ (the subscript of xh)
referring to its last component. For instance, if x̄ = (x1, x2, . . . , xn, xn+1)

T ∈ �n+1,
then x = (x1, x2, . . . , xn)

T ∈ �n and xh = xn+1 ∈ �.
In this paper we study optimization of a generic inhomogeneous polynomial p(x),

under three types of constraint sets: (B) The Euclidean ball: {x ∈ �n | ‖x‖ ≤
1}; (Q) The intersection of co-centered ellipsoids: {x ∈ �n | xTQix ≤ 1, i =
1, 2, . . . ,m}; (G) A general compact set S ⊆ �n. These three models and results
are discussed in Sections 3, 4 and 5, respectively. Since all these models are NP-
hard in general, we shall propose polynomial-time approximation algorithms and
derive worst-case performance ratios.

Throughout this paper, for any maximization model (P ) defined as maxx∈S f(x),
we use vmax(P ) to denote its optimal value, and vmin(P ) to denote the optimal value
of its minimization counterpart, i.e., vmax(P ) := maxx∈S f(x) and vmin(P ) :=
minx∈S f(x).

Definition 2.1. A maximization model (P ) admits a polynomial-time approxima-
tion algorithm with approximation ratio τ ∈ (0, 1], if vmax(P ) ≥ 0 and a feasible
solution y ∈ S can be found in polynomial-time such that f(y) ≥ τ vmax(P ).

Definition 2.2. A maximization model (P ) admits a polynomial-time approxima-
tion algorithm with relative approximation ratio τ ∈(0, 1], if a feasible solution y∈S
can be found in polynomial-time such that f(y)−vmin(P ) ≥ τ (vmax(P )− vmin(P )).

Regarding the relative approximation ratio in Definition 2.2, in some cases it is
convenient to use the equivalent form: vmax(P )−f(y)≤(1−τ ) (vmax(P )− vmin(P )).
Since this paper is mostly concerned with the relative approximation ratios, we may,
without loss of generality, assume that the inhomogeneous polynomial function p(x)
has no constant term, i.e., f0 = 0 in (2.1). The degree of the objective polynomial
function p(x), d, is deemed a fixed parameter in our subsequent discussions.
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3. Polynomial optimization with the Euclidean ball constraint

Our first model under consideration is to maximize a generic multivariate poly-
nomial function subject to the Euclidean ball constraint, i.e.,

(B) max p(x)
s.t. ‖x‖ ≤ 1, x ∈ �n.

Since we assume p(x) to have no constant term, the optimal value of this problem
is obviously nonnegative, i.e., vmax(B) ≥ 0.

The complexity to solve Problem (B) can be summarized by the following propo-
sition.

Proposition 3.1. If d ≤ 2, then Problem (B) can be solved in polynomial-time;
if d ≥ 3, then Problem (B) is NP-hard; if d ≥ 4, then there is no polynomial-time
approximation algorithm with a positive approximation ratio unless P = NP .

Proof. For d ≤ 2, Problem (B) is a standard trust region subproblem. As such it
is well known to be solvable in polynomial-time (cf. [42, 43, 46] and the references
therein). For d = 3, in a special case when p(x) is a homogeneous polynomial
function, it is easy to see that Problem (B) is equivalent to max‖x‖=1 p(x), which
is shown to be NP-hard by Nesterov [31].

Consider now d ≥ 4. As a subclass of Problem (B), we may let p(x) be a
fourth order homogeneous polynomial function, i.e., p(x) = F (x,x,x,x), where
F is a super-symmetric fourth order tensor. We call F (x,x,x,x) to be positive
semidefinite if F (x,x,x,x) ≥ 0 for all x ∈ �n. It is well known that checking the
positive semidefiniteness of F (x,x,x,x) is co-NP-complete (cf. [25]). If we are able
to find a polynomial-time approximation algorithm to get a positive approximation
ratio τ for −F (x,x,x,x), then this algorithm can be used to check the positive
semidefiniteness of tensor F . To see why, suppose this algorithm returns a feasible
solution y with −F (y,y,y,y) > 0, then F (x,x,x,x) is not positive semidefinite.
Otherwise the algorithm must return a feasible solution y with 0 ≥ −F (y,y,y,y) ≥
τ vmax(B), which implies vmax(B) = 0; hence, F (x,x,x,x) is positive semidefinite
in this case. Therefore, such algorithms cannot exist unless P = NP . �

We remark that, even when d = 3, there is no polynomial-time approximation
algorithm with a positive approximation ratio unless P = NP (see Proposition
5.2.1 in Ph.D. thesis of Li [22]). This strengthens the result in Proposition 3.1.
These facts rule out any polynomial-time approximation algorithms with a positive
approximation ratio for Problem (B). However, a positive relative approximation
ratio is still possible, which is the main target of this section. Below we shall first
present a polynomial-time algorithm for approximately solving Problem (B), which
admits a (relative) worst-case performance ratio. In fact, we shall present a general
scheme aimed at solving the inhomogeneous polynomial optimization Problem (B).
This scheme breaks down to the following four major steps:

Step 1: Introduce a proper (equivalent) model with a homogenous objective.
Step 2: Solve a tensor relaxation model with the objective being a multilinear

function.
Step 3: Adjust to get a solution based on the solution of the relaxed model.
Step 4: Assemble a solution for the original inhomogeneous model.
Some of these steps can be designed separately. The algorithm below can be

considered as one realization of the general scheme for solving Problem (B), with
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each step being carried out by a specific procedure. We shall first present the
specialized algorithm, and then in the remainder of the section, we shall elaborate
on these four general steps, and prove that in combination they lead to a polynomial-
time approximation algorithm with a quality-assured solution.

Algorithm 3.2.
Input: an n-dimensional d-th degree polynomial function p(x) with p(0) = 0.

(1) Rewrite p(x) = F (x̄, x̄, . . . , x̄︸ ︷︷ ︸
d

) when xh = 1 as in (3.2), where F is an

(n+ 1)-dimensional d-th order super-symmetric tensor.
(2) Approximately solve the problem

max F (x̄1, x̄2, . . . , x̄d)
s.t. ‖x̄k‖ = 1, k = 1, 2, . . . , d

using Algorithm 1 of [10], and get a feasible solution (ȳ1, ȳ2, . . . , ȳd).

(3) Compute (z̄1, z̄2, . . . , z̄d) = argmax
{
F
((

β1y
1/d
1

)
,
(
β2y

2/d
1

)
, . . . ,

(
βdy

d/d
1

))
,

β ∈ B
d
}
.

(4) Compute z = argmax
{
p(0); p

(
z(β)
zh(β)

)
,β ∈ B

d and β1 =
∏d

k=2 βk = 1
}
,

where

z̄(β) = β1(d+ 1)z̄1 +
d∑

k=2

βkz̄
k.

Output: a feasible solution z.

Recall that in Section 2, for any given vector ā ∈ �n+1, we denote a ∈ �n to be its
first n components, and ah ∈ � to be its last component. In Step 2 of Algorithm 3.2,
an algorithm in [10] is called to approximately solve spherically constrained mul-
tilinear function optimization, which is actually a deterministic polynomial-time
algorithm. In our analysis, the degree of p(x) is deemed a fixed parameter, and
thus Algorithm 3.2 runs in polynomial-time, and is deterministic too. A straight-
forward computation shows that the time complexity of Algorithm 3.2 is O

(
nd
)
,

which is the same order in evaluating the function p(x). Our main result in this
section is the following:

Theorem 3.3. Problem (B) admits a polynomial-time approximation algorithm
(Algorithm 3.2) with relative approximation ratio τB, i.e., a feasible solution z can
be found in polynomial-time, such that

p(z)− vmin(B) ≥ τB (vmax(B)− vmin(B)) ,

where τB := 2−
5d
2 (d+ 1)!d−2d(n+ 1)−

d−2
2 = Ω

(
n− d−2

2

)
.

Although homogenization is a natural way to deal with inhomogeneous polyno-
mial functions, the worst-case performance ratio does not follow straightforwardly.
What is lacking is that an inhomogeneous polynomial function does not allow one
to scale the overall function value along a given direction, which is, however, an
essential operation to prove the quality bound of the approximation algorithms
(cf. [10, 12, 24, 25, 29]). Below we shall study in detail how a particular implemen-
tation of these four steps of the scheme (which becomes Algorithm 3.2) leads to
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the promised worst-case relative performance ratio. As we shall see later, our solu-
tion scheme can be applied to solve a very general polynomial optimization model
(Section 5).

3.1. Homogenization. The method of homogenization depends on the form of
the polynomial p(x). If p(x) is given as a summation of homogeneous polynomial
functions of different degrees, i.e., fi(x) (1 ≤ i ≤ d) is a homogeneous polynomial
function of degree i, then we may first write

(3.1) fi(x) = Fi(x,x, . . . ,x︸ ︷︷ ︸
i

)

with F i being an i-th order super-symmetric tensor. Then by introducing a ho-
mogenizing variable xh, which is always equal to 1, we may rewrite p(x) as

p(x) =

d∑
i=1

Fi(x,x, . . . ,x︸ ︷︷ ︸
i

)xd−i
h = F

((
x

xh

)
,

(
x

xh

)
, . . . ,

(
x

xh

)
︸ ︷︷ ︸

d

)
(3.2)

= F (x̄, x̄, . . . , x̄︸ ︷︷ ︸
d

) = f(x̄),

where F is an (n + 1)-dimensional d-th order super-symmetric tensor, whose last
component is 0 (since p(x) has no constant term).

If the polynomial p(x) is given in terms of summation of monomials, we should
first group them according to their degrees, and then rewrite the summation of
monomials in each group as homogeneous polynomial function. After that, we then
proceed according to (3.1) and (3.2) to obtain the tensor form F , as required.

Finally in this step, we may equivalently reformulate Problem (B) as

(B̄) max f(x̄)

s.t. x̄ =

(
x

xh

)
,

‖x‖ ≤ 1, x ∈ �n,
xh = 1.

Obviously, we have vmax(B) = vmax(B̄) and vmin(B) = vmin(B̄).

3.2. Tensor relaxation. Tensor relaxation (multilinear relaxation) refers to the
approach that one relaxes the homogeneous polynomial function to the (separate)
multilinear tensor form. This relaxation proves to be effective (see e.g. [10,15]). Now
we relax Problem (B̄) to an inhomogeneous multilinear tensor form optimization
problem as:

(TB) max F (x̄1, x̄2, . . . , x̄d)

s.t. x̄k =

(
xk

xk
h

)
, k = 1, 2, . . . , d,

‖xk‖ ≤ 1, xk ∈ �n, k = 1, 2, . . . , d,
xk
h = 1, k = 1, 2, . . . , d.

Obviously, we have vmax(TB) ≥ vmax(B̄) = vmax(B). Before proceeding, let us first
settle the computational complexity issue for solving Problem (TB).

Proposition 3.4. Problem (TB) is NP-hard whenever d ≥ 3.
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Proof. Notice that the problem

max F (x,y, z)
s.t. ‖x‖ = ‖y‖ = ‖z‖ = 1,

x,y, z ∈ �n

is proven to be NP-hard by He et al. [10] and Zhang et al. [49]. When d = 3 and a
special case where F = (Fi,j,k) has the form Fn+1,j,k = Fi,n+1,k = Fi,j,n+1 = 0 for
all 1 ≤ i, j, k ≤ n + 1, Problem (TB) is equivalent to the above model, and thus is
NP-hard. �

Problem (TB) is still difficult to solve, and moreover it remains inhomogeneous,
since xk

h is required to be 1. To our best knowledge, no polynomial-time approxi-
mation algorithm is available in the literature to solve this problem. Furthermore,
we shall relax the constraint xk

h = 1, and introduce the following parameterized
and homogenized problem:

(TB(t)) max F (x̄1, x̄2, . . . , x̄d)
s.t. ‖x̄k‖ ≤ t, x̄k ∈ �n+1, k = 1, 2, . . . , d.

Obviously, Problem (TB) can be relaxed to Problem (TB(
√
2)), since if x̄ is fea-

sible for Problem (TB) then ‖x̄‖2 = ‖x‖2 + x2
h ≤ 1 + 1 = 2. Consequently,

vmax(TB(
√
2)) ≥ vmax(TB).

Both the objective and the constraints are now homogeneous, and it is easy to
see for all t > 0, Problem (TB(t)) is equivalent to each other by a simple scaling
method. Moreover, Problem (TB(1)) is equivalent to

max F (x̄1, x̄2, . . . , x̄d)
s.t. ‖x̄k‖ = 1, x̄k ∈ �n+1, k = 1, 2, . . . , d,

which was studied in [10,41], with available approximation algorithms to cope with.
Here we quote one corresponding result as follows:

Theorem 3.5 (He, Li, and Zhang [10]). Suppose F is a d-th order multilinear
form. The problem

max F (x1,x2, . . . ,xd)
s.t. ‖xk‖ = 1, xk ∈ �nk , k = 1, 2, . . . , d

admits a polynomial-time approximation algorithm with approximation ratio
1√

n1n2...nd−2
.

The intrinsic algorithm of Theorem 3.5 is described in Algorithm 1 of [10]. By
applying this result, Problem (TB(1)) admits a polynomial-time approximation al-

gorithm with approximation ratio (n + 1)−
d−2
2 . Therefore, for all t > 0, Problem

(TB(t)) also admits a polynomial-time approximation algorithm with approxima-

tion ratio (n+1)−
d−2
2 , and vmax(TB(t)) = td vmax(TB(1)). After this relaxation step

(Step 2 in Algorithm 3.2), we are able to find a feasible solution (ȳ1, ȳ2, . . . , ȳd) of
Problem (TB(1)) in polynomial-time, such that

F (ȳ1, ȳ2, . . . , ȳd) ≥ (n+ 1)−
d−2
2 vmax(TB(1))

= 2−
d
2 (n+ 1)−

d−2
2 vmax(TB(

√
2))

≥ 2−
d
2 (n+ 1)−

d−2
2 vmax(TB).(3.3)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

724 SIMAI HE, ZHENING LI, AND SHUZHONG ZHANG

Theorem 3.5 (or specifically Algorithm 1 of [10]) is the engine enabling Step 2 of
our scheme. Problem (TB(1)) itself is an independent and very interesting topic; for
details, one is referred to [10,41]. In fact, any polynomial-time approximation algo-
rithm of Problem (TB(1)) can be used as an engine to yield a realization (algorithm)
of our scheme. As will become evident later, any improvement of the approximation
ratio of Problem (TB(1)) leads to the improvement of relative approximation ratio
in Theorem 3.3. For example, recently So [41] improved the approximation bound

of Problem (TB(1)) to Ω

((
logn
n

)− d−2
2

)
, albeit the algorithm is mainly of a theo-

retical interest. Consequently, the relative approximation ratio under our scheme

is improved to Ω

((
logn
n

)− d−2
2

)
too. Of course, one may apply any other favorite

algorithm to solve the relaxation Problem (TB(1)). For instance, the alternating
least square method (see [18]) and maximum block improvement method (see [5])
can be other alternatives for Step 2.

3.3. Adjustment of the homogenizing component. The approximate solution
(ȳ1, ȳ2, . . . , ȳd) of Problem (TB(1)) satisfies ‖ȳk‖ ≤ 1 for all 1 ≤ k ≤ d, which
implies ‖yk‖ ≤ 1, but in general we do not have any control on the size of ykh, and
thus (ȳ1, ȳ2, . . . , ȳd) may not be a feasible solution for Problem (TB). The following
lemma plays the role of a bridge in our analysis, to ensure that the construction of
a feasible solution to the inhomogeneous Problem (TB) is possible.

Lemma 3.6. Suppose x̄k ∈ �n+1 with |xk
h| ≤ 1 for all 1 ≤ k ≤ d. Let η1, η2, . . . , ηd

be independent random variables, each takes values 1 and −1 with E[ηk] = xk
h for

k = 1, 2, . . . , d, and let ξ1, ξ2, . . . , ξd be the i.i.d. random variables, taking values 1
and −1 with equal probability (thus the mean is 0). If the last component of the
tensor F is 0, then we have

(3.4) E

[
d∏

k=1

ηkF

((
η1x

1

1

)
,

(
η2x

2

1

)
, . . . ,

(
ηdx

d

1

))]
= F (x̄1, x̄2, . . . , x̄d)

and

(3.5) E

[
F

((
ξ1x

1

1

)
,

(
ξ2x

2

1

)
, . . . ,

(
ξdx

d

1

))]
= 0.

Proof. The claimed equations readily result from the following observations:

E

[
d∏

k=1

ηkF

((
η1x

1

1

)
,

(
η2x

2

1

)
, . . . ,

(
ηdx

d

1

))]

= E

[
F

((
η1

2x1

η1

)
,

(
η2

2x2

η2

)
, . . . ,

(
ηd

2xd

ηd

))]
(multilinearity of F )

= F

(
E

[(
x1

η1

)]
,E

[(
x2

η2

)]
, . . . ,E

[(
xd

ηd

)])
(independence of ηk’s)

= F (x̄1, x̄2, . . . , x̄d)
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and

E

[
F

((
ξ1x

1

1

)
,

(
ξ2x

2

1

)
, . . . ,

(
ξdx

d

1

))]

= F

(
E

[(
ξ1x

1

1

)]
,E

[(
ξ2x

2

1

)]
, . . . ,E

[(
ξdx

d

1

)])
(independence of ξk’s)

= F

((
0

1

)
,

(
0

1

)
, . . . ,

(
0

1

))
(zero-mean of ξk’s)

= 0,

where the last equality is due to the fact that the last component of F is 0. �

Lemma 3.6 suggests that one may enumerate the 2d possible combinations of(
ξ1y

1

1

)
,
(
ξ2y

2

1

)
, . . . ,

(
ξdy

d

1

)
and pick the one with the largest value of function F (or via

a simple randomization procedure), to generate a feasible solution for the inhomo-
geneous multilinear tensor form optimization Problem (TB) from a feasible solution
of the homogeneous multilinear tensor form optimization Problem (TB(1)), with a
controlled quality deterioration. It plays a key role in proving the approximation
ratio for Problem (TB), which is a by-product in this section.

Theorem 3.7. Problem (TB) admits a polynomial-time approximation algorithm

with approximation ratio τ1 := 2−
3d
2 (n+ 1)−

d−2
2 .

Proof. Let (ȳ1, ȳ2, . . . , ȳd) be the feasible solution found in Step 2 of Algorithm 3.2
satisfying (3.3), and let η = (η1, η2, . . . , ηd)

T with all ηk’s being independent and
taking values 1 and −1 such that E[ηk] = ykh. By applying Lemma 3.6, (3.4)
explicitly implies

F (ȳ1, ȳ2, . . . , ȳd)

=
∑

β∈Bd,
∏d

k=1 βk=1

Prob {η=β}F
((

β1y
1

1

)
,

(
β2y

2

1

)
, . . . ,

(
βdy

d

1

))

−
∑

β∈Bd,
∏d

k=1 βk=−1

Prob {η=β}F
((

β1y
1

1

)
,

(
β2y

2

1

)
, . . . ,

(
βdy

d

1

))
,

and (3.5) explicitly implies∑
β∈Bd

F

((
β1y

1

1

)
,

(
β2y

2

1

)
, . . . ,

(
βdy

d

1

))
= 0.

For any constant c, combing the above two equalities we have

F (ȳ1, ȳ2, . . . , ȳd)

(3.6)

=
∑

β∈Bd,
∏d

k=1 βk=1

(c+ Prob {η=β})F
((

β1y
1

1

)
,

(
β2y

2

1

)
, . . . ,

(
βdy

d

1

))

+
∑

β∈Bd,
∏d

k=1 βk=−1

(c− Prob {η=β})F
((

β1y
1

1

)
,

(
β2y

2

1

)
, . . . ,

(
βdy

d

1

))
.
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If we let

c = max
β∈Bd,

∏d
k=1 βk=−1

Prob {η=β},

then the coefficients of each term in (3.6) will be nonnegative. Therefore we shall

be able to find β̃ ∈ B
d (by enumerating the 2d possible combinations if necessary,

or by randomization), such that

(3.7) F

((
β̃1y

1

1

)
,

(
β̃2y

2

1

)
, . . . ,

(
β̃dy

d

1

))
≥ τ0F (ȳ1, ȳ2, . . . , ȳd),

where

τ0 :=

⎛
⎝ ∑

β∈Bd,
∏d

k=1 βk=1

(c+Prob {η=β})+
∑

β∈Bd,
∏d

k=1 βk=−1

(c−Prob {η=β})

⎞
⎠−1

≥

⎛
⎝2d−1c+

∑
β∈Bd,

∏d
k=1 βk=1

Prob {η=β}+ (2d−1 − 1)c

⎞
⎠−1

≥
(
2d−1 + 1 + 2d−1 − 1

)−1
= 2−d.

Let us denote z̄k :=
(
β̃ky

k

1

)
for k = 1, 2, . . . , d. As ‖zk‖ = ‖β̃ky

k‖ ≤ 1, we know

that (z̄1, z̄2, . . . , z̄k) is a feasible solution for Problem (TB), and

F (z̄1, z̄2, . . . , z̄d) ≥ τ0F (ȳ1, ȳ2, . . . , ȳd)

≥ 2−d2−
d
2 (n+ 1)−

d−2
2 vmax(TB)

= 2−
3d
2 (n+ 1)−

d−2
2 vmax(TB). �

One may notice that our proposed algorithm for solving Problem (TB) is similar
to Steps 2 and 3 of Algorithm 3.2, with only minor modification at Step 3, namely

we choose a solution in the set argmax
{
F
((

β1y
1

1

)
,
(
β2y

2

1

)
, . . . ,

(
βdy

d

1

))
,β ∈ B

d
}
,

instead of choosing one in argmax
{
F
((

β1y
1/d
1

)
,
(
β2y

2/d
1

)
, . . . ,

(
βdy

d/d
1

))
,β ∈ B

d
}
.

The reason to divide d at Step 3 in Algorithm 3.2 (to solve Problem (B)) will become
clear later. Finally, we remark again that it is unnecessary to enumerate all possible
2d combinations in this step, as (3.6) suggests that a simple randomization process
will serve the same purpose, especially when d is large. In the latter case, we will
end up with a polynomial-time randomized approximation algorithm; otherwise, the
computational complexity of the procedure is deterministic and is polynomial-time
(for fixed d).

3.4. Returning a solution to the inhomogeneous model. Finally, we are led
to the last step of the scheme. Step 4 of Algorithm 3.2 suggests a polarization

formula z̄(β) = β1(d + 1)z̄1 +
∑d

k=2 βkz̄
k with β ∈ B

d and β1 =
∏d

k=2 βk = 1.

In fact, searching over all β ∈ B
d will possibly improve the solution, although

the worst-case performance ratio will remain the same. Moreover, one may choose
z̄1 or any other z̄k to play the same role here; alternatively, one may enumerate
β�(d + 1)z̄� +

∑
1≤k≤d, k �=� βkz̄

k over all β ∈ B
d and 1 ≤ � ≤ d and take the best

possible solution; again, this will not change the theoretical performance ratio.
The polarization formula at Step 4 of Algorithm 3.2 works for all d, and we shall
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complete the final stage of the proof of Theorem 3.3. That is, we shall prove

that by letting z = argmax
{
p(0); p

(
z(β)
zh(β)

)
,β ∈ B

d and β1 =
∏n

k=2 βk = 1
}
with

z̄(β) := β1(d+ 1)z̄1 +
∑d

k=2 βkz̄
k, we have

(3.8) p(z)− vmin(B) ≥ τB (vmax(B)− vmin(B)) .

First, the solution (z̄1, z̄2, . . . , z̄d) as established at Step 3 satisfies ‖zk‖ ≤ 1/d
(recall that we divided d in each term at Step 3), and zkh = 1 for all 1 ≤ k ≤ d, and

F (z̄1, z̄2, . . . , z̄d) ≥ d−d2−
3d
2 (n+ 1)−

d−2
2 vmax(TB)(3.9)

≥ 2−
3d
2 d−d(n+ 1)−

d−2
2 vmax(B).

It is easy to see that

(3.10) 2 ≤ |zh(β)| ≤ 2d and ‖z(β)‖ ≤ (d+ 1)/d+ (d− 1)/d = 2.

Thus z̄(β)/zh(β) is a feasible solution of Problem (B̄), and so f(z̄(β)/zh(β)) ≥
vmin(B̄) = vmin(B). Moreover, we shall argue below that

(3.11) β1 = 1 =⇒ f(z̄(β)) ≥ (2d)d vmin(B).

If this were not the case, then f (z̄(β)/(2d)) < vmin(B) ≤ 0. Notice that β1 = 1
implies zh(β) > 0, and so we would have

f

(
z̄(β)

zh(β)

)
=

(
2d

zh(β)

)d

f

(
z̄(β)

2d

)
≤ f

(
z̄(β)

2d

)
< vmin(B),

which contradicts the feasibility of z̄(β)/zh(β).
Suppose ξ1, ξ2, . . . , ξd are i.i.d. random variables, each taking values 1 and −1

with equal probability. By Lemma 1 of [10], noticing f (z̄(−ξ)) = f (−z̄(ξ)) =
(−1)df (z̄(ξ)), we have

d!F
(
(d+ 1)z̄1, z̄2, . . . , z̄d

)
= E

[
d∏

i=1

ξif (z̄(ξ))

]

=
1

4
E

[
f (z̄(ξ))

∣∣∣∣∣ ξ1 = 1,
d∏

i=2

ξi = 1

]
− 1

4
E

[
f (z̄(ξ))

∣∣∣∣∣ ξ1 = 1,
d∏

i=2

ξi = −1

]

− 1

4
E

[
f (z̄(ξ))

∣∣∣∣∣ ξ1 = −1,
d∏

i=2

ξi = 1

]
+

1

4
E

[
f (z̄(ξ))

∣∣∣∣∣ ξ1 = −1,
d∏

i=2

ξi = −1

]

=
1

4
E

[
f (z̄(ξ))

∣∣∣∣∣ ξ1 = 1,

d∏
i=2

ξi = 1

]
− 1

4
E

[
f (z̄(ξ))

∣∣∣∣∣ ξ1 = 1,

d∏
i=2

ξi = −1

]

− 1

4
E

[
f (z̄(−ξ))

∣∣∣∣∣ ξ1 = 1,

d∏
i=2

ξi = (−1)d−1

]

+
1

4
E

[
f (z̄(−ξ))

∣∣∣∣∣ ξ1 = 1,

d∏
i=2

ξi = (−1)d

]
.
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By inserting and canceling a constant term, the above expression further leads to

d!F
(
(d+ 1)z̄1, z̄2, . . . , z̄d

)
= E

[
d∏

i=1

ξif (z̄(ξ))

]

=
1

4
E

[(
f (z̄(ξ))− (2d)d vmin(B)

) ∣∣∣∣∣ ξ1 = 1,

d∏
i=2

ξi = 1

]

− 1

4
E

[(
f (z̄(ξ))− (2d)d vmin(B)

) ∣∣∣∣∣ ξ1 = 1,

d∏
i=2

ξi = −1

]

+
(−1)d−1

4
E

[(
f (z̄(ξ))− (2d)d vmin(B)

) ∣∣∣∣∣ ξ1 = 1,

d∏
i=2

ξi = (−1)d−1

]

+
(−1)d

4
E

[(
f (z̄(ξ))− (2d)d vmin(B)

) ∣∣∣∣∣ ξ1 = 1,
d∏

i=2

ξi = (−1)d

]

≤ 1

2
E

[(
f (z̄(ξ))− (2d)d vmin(B)

) ∣∣∣∣∣ ξ1 = 1,
d∏

i=2

ξi = 1

]
,

where the last inequality is due to (3.11). Therefore, there is a binary vector β̃ ∈ B
d

with β̃1 =
∏d

i=2 β̃i = 1, such that

f(z̄(β̃))− (2d)d vmin(B) ≥ 2d!F ((d+ 1)z̄1, z̄2, . . . , z̄d)

≥ 2−
3d
2 +1(d+ 1)!d−d(n+ 1)−

d−2
2 vmax(B),

where the last step is due to (3.9).
Below we shall argue

z = argmax

{
p(0); p

(
z(β)

zh(β)

)
,β ∈ B

d and β1 =
n∏

k=2

βk = 1

}

satisfies (3.8). Indeed, if −vmin(B)≥τB (vmax(B)− vmin(B)), then 0 trivially satis-
fies (3.8), and so does z in this case. Otherwise, if−vmin(B)<τB (vmax(B)−vmin(B)),
then we have

vmax(B) > (1− τB) (vmax(B)− vmin(B)) ≥ vmax(B)− vmin(B)

2
,

which implies

f

(
z̄(β̃)

2d

)
− vmin(B) ≥ (2d)−d2−

3d
2 +1(d+ 1)!d−d(n+ 1)−

d−2
2 vmax(B)

≥ τB (vmax(B)− vmin(B)) .

The above inequality also implies that f
(
z̄(β̃)/(2d)

)
> 0. Recall that β̃1 = 1

implies zh(β̃) > 0, and thus 2d/zh(β̃) ≥ 1 by (3.10). Therefore, we have

p(z) ≥ p

(
z(β̃)

zh(β̃)

)
= f

(
z̄(β̃)

zh(β̃)

)
=

(
2d

zh(β̃)

)d

f

(
z̄(β̃)

2d

)
≥ f

(
z̄(β̃)

2d

)
.

This shows that the solution z satisfies (3.8) in both cases. Putting all the pieces
together, Theorem 3.3 is proven by construction.
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4. Polynomial optimization with convex quadratic constraints

In this section, we consider an extension of Problem (B), namely

(Q) max p(x)
s.t. xTQix ≤ 1, i = 1, 2, . . . ,m,

x ∈ �n,

where Qi 
 0 for all 1 ≤ i ≤ m, and
∑m

i=1 Qi � 0. By assuming that there
is no constant term in the polynomial function p(x), we know that vmin(Q) ≤
0 ≤ vmax(Q). Like in the previous section, we shall provide a polynomial-time
randomized algorithm for approximately solving Problem (Q), with a worst-case
relative performance ratio.

Algorithm 4.1.
Input: an n-dimensional d-th degree polynomial function p(x) with p(0) = 0,

matrices Qi 
 0 for i = 1, 2, . . . ,m with
∑m

i=1 Qi � 0.

(1) Rewrite p(x) = F (x̄, x̄, . . . , x̄︸ ︷︷ ︸
d

) when xh = 1 as in (3.2), where F is an

(n+ 1)-dimensional d-th order super-symmetric tensor.
(2) Approximately solve the problem

max F (x̄1, x̄2, . . . , x̄d)

s.t. (x̄k)T
[

Qi 0
0T 1

]
x̄k ≤ 1, k = 1, 2, . . . , d, i = 1, 2, . . . ,m

using Algorithm 3 of [10], and get a feasible solution (ȳ1, ȳ2, . . . , ȳd).

(3) Compute (z̄1, z̄2, . . . , z̄d) = argmax
{
F
((

β1y
1/d
1

)
,
(
β2y

2/d
1

)
, . . . ,

(
βdy

d/d
1

))
,

β ∈ B
d
}
.

(4) Compute z = argmax
{
p(0); p

(
z(β)
zh(β)

)
,β ∈ B

d and β1 =
∏d

k=2 βk = 1
}
,

where

z̄(β) = β1(d+ 1)z̄1 +

d∑
k=2

βkz̄
k.

Output: a feasible solution z.

Theorem 4.2. Problem (Q) admits a polynomial-time randomized approximation
algorithm (Algorithm 4.1) with relative approximation ratio τQ, i.e., a feasible so-
lution z can be found in polynomial-time with high probability, such that

p(z)− vmin(Q) ≥ τQ (vmax(Q)− vmin(Q)) ,

where τQ := Ω
(
n− d−2

2 (logm)−(d−1)
)
.

Our scheme for solving general Problem (Q) is similar to that for Problem (B) in
the previous section. The main difference lies in Step 2, where a different relaxation
model requires a different solution method to cope with. The method in question
is Algorithm 3 of [10], a polynomial-time randomized algorithm. Therefore, Al-
gorithm 4.1 is also a randomized algorithm, different to the deterministic one for
Algorithm 3.2.
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Theorem 4.3 (He, Li, and Zhang [10]). Suppose F is a d-th order multilinear

form, matrices Qk
ik


 0 and
∑mk

ik=1 Q
k
ik

� 0 for all 1 ≤ k ≤ d, 1 ≤ ik ≤ mk. The
problem

max F (x1,x2, . . . ,xd)

s.t. (xk)TQk
ik
xk ≤ 1, k = 1, 2, . . . , d, ik = 1, 2, . . . ,mk,

xk ∈ �nk , k = 1, 2, . . . , d

admits a polynomial-time randomized approximation algorithm with approximation

ratio Ω

((√
n1n2 . . . nd−2 (logm)−(d−1)

)−1
)
, where m = max1≤k≤d{mk}.

The proof of Theorem 4.2 is similar to that of Theorem 3.3. Here we shall
only illustrate the main ideas and skip the details. By homogenizing p(x), we may
rewrite Problem (Q) as

(Q̄) max f(x̄)

s.t. x̄ =

(
x

xh

)
,

xTQix ≤ 1, x ∈ �n, i = 1, 2, . . . ,m,
xh = 1,

which can be relaxed to the inhomogeneous multilinear tensor form problem

(TQ) max F (x̄1, x̄2, . . . , x̄d)

s.t. x̄k =

(
xk

xk
h

)
, k = 1, 2, . . . , d,

(xk)TQix
k ≤ 1, xk ∈ �n, k = 1, 2, . . . , d, i = 1, 2, . . . ,m,

xk
h = 1, k = 1, 2, . . . , d,

where F (x̄, x̄, . . . , x̄︸ ︷︷ ︸
d

) = f(x̄) with F being super-symmetric. We then further relax

Problem (TQ) to the homogeneous multilinear tensor form Problem (TQ(
√
2)), with

(TQ(t)) max F (x̄1, x̄2, . . . , x̄d)

(x̄k)TQ̂ix̄
k ≤ t2, k = 1, 2, . . . , d, i = 1, 2, . . . ,m,

x̄k ∈ �n+1, k = 1, 2, . . . , d,

where Q̂i =

[
Qi 0
0T 1

]
for i = 1, 2, . . . ,m.

By Theorem 4.3, for any t > 0, Problem (TQ(t)) admits a polynomial-time ap-
proximation randomized algorithm with approximation ratio τQ, and vmax(TQ(t)) =
td vmax(TQ(1)). Thus the approximate solution (ȳ1, ȳ2, . . . , ȳd) found by Step 2 of
Algorithm 4.1 satisfies

F (ȳ1, ȳ2, . . . , ȳd) ≥ τQ vmax(TQ(1)) = (
√
2)−dτQ vmax(TQ(

√
2)) ≥ τQ vmax(TQ).

By noticing that (ykh)
2 ≤ (ȳk)TQ̂1ȳ

k ≤ 1, we may again apply Lemma 3.6 to
(ȳ1, ȳ2, . . . , ȳd), and use the same argument as in the proof of Theorem 3.7.

Let c = maxβ∈Bd,
∏d

k=1 βk=−1 Prob {η = β}, where η = (η1, η2, . . . , ηd)
T and its

components are independent random variables, each takes values 1 and −1 with
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E[ηk] = ykh for k = 1, 2, . . . , d. Then we are able to find β̃ ∈ B
d, such that

F

((
β̃1y

1

1

)
,

(
β̃2y

2

1

)
, . . . ,

(
β̃dy

d

1

))
≥ τ0F (ȳ1, ȳ2, . . . , ȳd)

≥ 2−dF (ȳ1, ȳ2, . . . , ȳd)

≥ τQ vmax(TQ).

This proves the following theorem as a byproduct.

Theorem 4.4. Problem (TQ) admits a polynomial-time randomized approximation
algorithm with approximation ratio τQ.

To prove the main theorem in this section (Theorem 4.2), we only need to check
the feasibility of z generated by Algorithm 4.1, while the worst-case performance
ratio can be proven by a similar argument in Section 3.4. Indeed, (z̄1, z̄2, . . . , z̄d)
at Step 3 of Algorithm 4.1 satisfies

(zk)TQiz
k ≤ 1/d2 ∀ 1 ≤ i ≤ m, 1 ≤ k ≤ d.

For any binary vector β ∈ B
d, as z̄(β) = β1(d + 1)z̄1 +

∑d
k=2 βkz̄

k, we have
2 ≤ |zh(β)| ≤ 2d. Noticing by the Cauchy-Schwarz inequality,

|(zj)TQiz
k| ≤ ‖Q1/2

i zj‖ · ‖Q1/2
i zk‖ ≤ 1/d2 ∀ 1 ≤ i ≤ m, 1 ≤ j, k ≤ d,

it follows that

(z(β))TQiz(β) ≤ 2d · 2d · 1/d2 = 4 ∀ 1 ≤ i ≤ m.

Thus z(β)/zh(β) is a feasible solution to Problem (Q), which implies z is also
feasible.

We remark here that Problem (Q) includes as a special case the optimization of
a general polynomial function over a central-symmetric polytope:

max p(x)
s.t. −1 ≤ (ai)Tx ≤ 1, i = 1, 2, . . . ,m,

x ∈ �n,

with rank (a1,a2, . . . ,am) = n.
Before concluding this section, let us embark on a treatment for a special low

degree case of Problem (Q), where an absolute approximation ratio is possible
(assuming the objective polynomial has no constant term) instead of a mere relative
one as stipulated in Theorem 4.2. In fact, for Problem (Q), when d = 2, an
Ω (1/ logm)-approximation ratio was easily derived from the homogenous relaxation
problem by Nemirovski et al. [29]. The following result presents a very useful case
when d = 3. However, for d ≥ 4, Proposition 3.1 has ruled out such approximation
ratios, even for the case m = 1.

Theorem 4.5. If d = 3 and the quadratic form in p(x) is positive semidefinite,
then Problem (Q) admits a polynomial-time randomized approximation algorithm

with approximation ratio Ω
(

1√
n log2 m

)
.
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Proof. Denote the cubic, quadratic and linear forms in p(x) to be f3(x), f2(x) and
f1(x), respectively, with f2(x) being positive semidefinite. By homogenization as
(3.2), we have

p(x) = f3(x) + f2(x) + f1(x) = F

((
x

1

)
,

(
x

1

)
,

(
x

1

))
= f

(
x

1

)
,

where tensor F ∈ R
(n+1)3 is super-symmetric and its last component is 0. As before,

Problem (Q) can be relaxed to the multilinear form optimization Problem (TQ(
√
2))

when d = 3. By Theorem 4.3, we may find a feasible solution
((y1

y1
h

)
,
(y2

y2
h

)
,
(y3

y3
h

))
of

Problem (TQ(1/3)) in polynomial-time, satisfying (yk)TQiy
k ≤ 1

9 and |ykh| ≤ 1
3 for

k = 1, 2, 3 and i = 1, 2, . . . ,m, such that

F

((
y1

y1h

)
,

(
y2

y2h

)
,

(
y3

y3h

))
≥ Ω

(
1

√
n log2 m

)
v(TQ(1/3))

= Ω

(
1

√
n log2 m

)
v(TQ(

√
2))

54
√
2

≥ Ω

(
1

√
n log2 m

)
v(Q).

Then by Lemma 3.6 and (3.7), we may adjust
((y1

y1
h

)
,
(y2

y2
h

)
,
(y3

y3
h

))
to
((

z1

1

)
,
(
z2

1

)
,
(
z3

1

))
,

satisfying (zk)TQiz
k ≤ 1

9 for k = 1, 2, 3 and i = 1, 2, . . . ,m, such that

F

((
z1

1

)
,

(
z2

1

)
,

(
z3

1

))
≥ 2−3F

((
y1

y1h

)
,

(
y2

y2h

)
,

(
y3

y3h

))
≥ Ω

(
1

√
n log2 m

)
v(Q).

It is easy to verify the following link identity (see also Lemma 1 of [10])

f

(
z1 + z2 + z3

3

)
+ f

(
z1 − z2 − z3

−1

)
+ f

(
z2 − z3 − z1

−1

)
+ f

(
z3 − z1 − z2

−1

)(4.1)

= 24F

((
z1

1

)(
z2

1

)(
z3

1

))
≥ Ω

(
1

√
n log2 m

)
v(Q).

Therefore, the largest term of f(·) in (4.1) is at least in order of Ω
(

1√
n log2 m

)
v(Q).

If f
(
z1+z2+z3

3

)
is this largest term, then y := z1+z2+z3

3 satisfies the constraint of
Problem (Q), and

p (y) = f

(
y

1

)
=

f
(
3y
3

)
27

≥ Ω

(
1

√
n log2 m

)
v(Q).

Otherwise by symmetricity we may, without loss of generality, assume f
(
z1−z2−z3

−1

)
is this largest term, then z1 − z2 − z3 satisfies the constraint of Problem (Q), and

p(z1 − z2 − z3) = f3(z
1 − z2 − z3) + f2(z

1 − z2 − z3) + f1(z
1 − z2 − z3)

≥ f3(z
1 − z2 − z3)− f2(z

1 − z2 − z3) + f1(z
1 − z2 − z3)

= f

(
z1 − z2 − z3

−1

)
≥ Ω

(
1

√
n log2 m

)
v(Q),
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where the first inequality is due to the fact that f2(x) is positive semidefinite.
Finally,

argmax
{
p(y), p(z1 − z2 − z3), p(z2 − z3 − z1), p(z3 − z1 − z2)

}
is the approximate solution with approximation ratio Ω

(
1√

n log2 m

)
. �

In fact, the condition of Theorem 4.5 that the quadratic form is positive semidef-
inite can be made weaker: the quadratic form is not negative semidefinite, and the
absolute value of its smallest eigenvalue is bounded by some constant multiplying
its largest eigenvalue. Its proof can be similarly derived as of Theorem 4.5, and is
omitted here.

5. Polynomial optimization over a general compact set

In this section we consider polynomial optimization model in a generic constraint
format:

(G) max p(x)
s.t. x ∈ S,

where S ⊆ �n is a general convex compact set. We are concerned with polynomial-
time approximation algorithms for solving Problem (G). Our approach makes use
of the famous Löwner-John ellipsoids (see e.g. [4, 28]):

Theorem 5.1 (Löwner-John). Let S ⊆ �n be a bounded convex set with nonempty
interior. Then:

(1) there exists a unique largest volume ellipsoid Ein = {Ax + a | ‖x‖ ≤
1,x ∈ �n} ⊂ G, whose n times linear-size larger ellipsoid {nAx + a |
‖x‖ ≤ 1,x ∈ �n} ⊃ G, and if in addition G is central-symmetric, then
{
√
nAx+ a | ‖x‖ ≤ 1,x ∈ �n} ⊃ G;

(2) there exists a unique smallest volume ellipsoid Eout = {Bx + b | ‖x‖ ≤
1,x ∈ �n} ⊃ G, whose n times linear-size smaller ellipsoid {Bx/n + b |
‖x‖ ≤ 1,x ∈ �n} ⊂ G, and if in addition G is central-symmetric, then
{Bx/

√
n+ b | ‖x‖ ≤ 1,x ∈ �n} ⊂ G.

Armed with the above theorem, if we are able to find the Löwner-John ellipsoid
(either Ein or Eout) of the feasible region S in polynomial-time, then the following
algorithm approximately solves Problem (G) with a worst-case performance ratio.

Algorithm 5.2.
Input: an n-dimensional d-th degree polynomial function p(x) and a set S ⊆ �n.

(1) Find a scalar t ∈ �, a vector b ∈ �n, and a matrix A ∈ �n×m with
rank (A) = m ≤ n, such that two co-centered ellipsoids E1 = {Au + b |
‖u‖ ≤ 1,u ∈ �m} and E2 = {Au + b | ‖u‖ ≤ t,u ∈ �m} satisfy
E1 ⊆ S ⊆ E2.

(2) Compute polynomial function p0(u) = p(Au+ b), where u ∈ �m.
(3) Apply Algorithm 3.2 with input p0(x)− p0(0) and output z ∈ �m.

Output: a feasible solution Az + b.

The key result in this section is the following theorem.
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Theorem 5.3. Suppose that {x ∈ �n | ‖x‖ ≤ 1} ⊆ S ⊆ {x ∈ �n | ‖x‖ ≤ t} for
some t ≥ 1. Then, Problem (G) admits a polynomial-time approximation algorithm
with relative approximation ratio τG(t), i.e., a feasible solution z ∈ S can be found
in polynomial-time, satisfying

(5.1) p(z)− vmin(G) ≥ τG(t) (vmax(G)− vmin(G)) ,

where τG(t) := (d+ 1)!(2d)−2d(n+ 1)−
d−2
2 (t2 + 1)−

d
2 .

Proof. By homogenizing the object function of Problem (G), we get the equivalent
problem

(Ḡ) max f(x̄)

s.t. x̄ =

(
x

xh

)
,

x ∈ S, xh = 1,

where f(x̄) = p(x) if xh = 1, and f(x̄) is an (n + 1)-dimensional homogeneous
polynomial function of degree d.

If we write f(x̄) = F (

d︷ ︸︸ ︷
x̄, x̄, . . . , x̄) with F being super-symmetric, Problem (Ḡ)

can be relaxed to the inhomogeneous multilinear tensor form problem

max F (x̄1, x̄2, . . . , x̄d)

s.t. x̄k =

(
xk

xk
h

)
, k = 1, 2, . . . , d,

xk ∈ S, xk
h = 1, k = 1, 2, . . . , d.

Recall that we have previously defined

(TB(t)) max F (x̄1, x̄2, . . . , x̄d)
s.t. ‖x̄k‖ ≤ t, x̄k ∈ �n+1, k = 1, 2, . . . , d.

As xk ∈ S ⊆ {x ∈ �n | ‖x‖ ≤ t}, it follows that ‖x̄k‖ ≤
√
t2 + 1. Thus Problem

(TB(
√
t2 + 1)) is a relaxation of Problem (Ḡ) and vmax(TB(

√
t2 + 1)) ≥ vmax(Ḡ) =

vmax(G). The rest of the proof follows similarly as that in Section 3.4. �

Observe that any ellipsoid can be linearly transformed into the Euclidean ball, by
a variable transformation if necessary, we are led to the main result in this section.

Corollary 5.4. Let S ⊆ �n be a given compact set. Suppose two co-centered
ellipsoids E1 = {Au+ b | ‖u‖ ≤ 1,u ∈ �n} and E2 = {Au+ b | ‖u‖ ≤ t,u ∈ �n}
can be found in polynomial-time, satisfying E1 ⊆ S ⊆ E2. Then Problem (G)
admits a polynomial-time approximation algorithm (Algorithm 5.2) with relative
approximation ratio τG(t).

We would like to remark that the set S in Theorem 5.3 and Corollary 5.4 does not
need to be convex, as long as the two required ellipsoids are in place. Therefore,
Problem (G) generally includes cases of nonconvex set S. However, the famous
Löwner-John theorem guarantees the existence of such inner and outer ellipsoids
required in Corollary 5.4 for any bounded convex set, with t = n for S being
noncentral-symmetric, and t =

√
n for S being central-symmetric. Thus, if we are

able to find a pair of ellipsoids (E1, E2) in polynomial-time for S, then Problem
(G) can be solved by a polynomial-time approximation algorithm with relative
approximation ratio τG(t). Indeed, it is possible to compute in polynomial-time
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the Löwner-John ellipsoids in several interesting cases. Below is a list of such cases
(assuming S is bounded); for details one is referred to [4, 28]:

• S = {x ∈ �n | (ai)Tx ≤ bi, i = 1, 2, . . . ,m};
• S = conv {x1,x2, . . . ,xm}, where xi ∈ �n, i = 1, 2, . . . ,m;
• S =

⋂m
i=1 Ei, where Ei is an ellipsoid in �n, i = 1, 2, . . . ,m;

• S = conv {
⋃m

i=1 Ei}, where Ei is an ellipsoid in �n, i = 1, 2, . . . ,m;
• S =

∑m
i=1 Ei := {

∑m
i=1 x

i | xi ∈ Ei, i = 1, 2, . . . ,m}, where Ei is an
ellipsoid in �n, i = 1, 2, . . . ,m.

By Corollary 5.4, and the computability of the Löwner-John ellipsoids ([4, 28])
as we discussed above, we conclude that for Problem (G) with the constraint set S
belonging to any of the above cases, then there is a polynomial-time approximation
algorithm with a relative approximation quality assurance. In particular, the ratio

is τG(
√
m) = Ω

(
n− d−2

2 m− d
2

)
for the last case, and τG(n) = Ω

(
n− 3d−2

2

)
for the

other cases.
We shall also remark that Problem (Q) : maxxTQix≤1, i=1,2,...,m p(x), discussed

in Section 4, may in principle be solved by directly applying Corollary 5.4 as well.
If we adopt that approach (Algorithm 5.2), then the relative approximation ratio

will be τG(
√
n) = Ω

(
n− 2d−2

2

)
, which will prevail if m is exceedingly large. By

taking the best of the two, the quality ratio in Theorem 4.2 can be improved to

Ω
(
max

{
n− d−2

2 (logm)−(d−1) , n− 2d−2
2

})
.

Our investigation quite naturally leads to a question which is of a general geo-
metric interest itself. Consider the intersection of m co-centered ellipsoids in �n

as a geometric structure to be considered. Let Em,n be the collection of all such
ellipsoids, or more specifically,

Em,n :=

{
m⋂
i=1

Ei

∣∣∣∣∣ Ei = {x ∈ �n |xTQix ≤ 1} with Qi 
 0

for i = 1, 2, . . . ,m, and

m∑
i=1

Qi � 0

}
.

For any central-symmetric, convex and compact set S centered at b, there exist
Em,n ∈ Em,n and t ≥ 1, such that b + Em,n ⊆ S ⊆ b + tEm,n. Obviously, one can
naturally define

t(S;m,n) := inf {t | Em,n ∈ Em,n such that b+ Em,n ⊆ S ⊆ b+ tEm,n}
θ(m,n) := sup {t(S;m,n) | S is a central-symmetric convex compact set in �n}.

The famous Löwner-John theorem states that θ(1, n) =
√
n. Naturally, θ(∞, n) =

1, because any central-symmetric convex set can be expressed by the intersec-
tion of an infinite number of co-centered ellipsoids. It is interesting to compute
θ(m,n) for general m and n. It is of course trivial to observe that θ(m,n) is
monotonically decreasing in m for any fixed n. Anyway, if we were able to com-
pute θ(m,n), then Theorem 4.2 suggests a polynomial-time randomized approxima-
tion algorithm of Problem (G) with relative approximation ratio (θ(m,n))−dτQ =

Ω
(
(θ(m,n))−dn− d−2

2 (logm)
−(d−1)

)
.
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6. Numerical results

In this section we shall test the performance of the approximation algorithms
proposed in this paper, to give the readers an impression about how our algorithms
work in practice. We shall focus on Problem (B) with d = 4, i.e., maximizing
an inhomogeneous quartic polynomial function over the Euclidean ball. All the
numerical computations are performed on an Intel(R) Core(TM) i7-2620M CPU
2.70GHz+2.70GHz computer with 4GB of RAM. The supporting software is MAT-
LAB 7.12.0.635 (R2011a).

Specifically, the model being tested is

(E) max p(x) = F4(x,x,x,x) + F3(x,x,x) + F2(x,x) + F1(x)
s.t. ‖x‖ ≤ 1,x ∈ �n,

where F 4 ∈ �n4

, F 3 ∈ �n3

, F 2 ∈ �n2

, and F 1 ∈ �n, are super-symmetric tensors
of order 4, 3, 2 and 1, respectively. The fourth order tensor F 4 is generated ran-
domly, with its n4 entries taken from i.i.d. standard normal distributions, followed
by averaging the corresponding entries to make it being super-symmetric; the other
lower order tensors F 3, F 2 and F 1 are generated in the same manner. We then
apply Algorithm 3.2 to get a feasible solution which has a guaranteed worst-case
performance ratio.

For the purpose of making a comparison, we also compute an upper bound of
the optimal value of Problem (E). As in (3.2), we let F (x̄, x̄, x̄, x̄) = f(x̄) = p(x)

when xh = 1, and F ∈ �(n+1)4 is super-symmetric. Problem (E) can be relaxed to

max F (x̄, x̄, x̄, x̄)

s.t. ‖x̄‖ ≤
√
2, x̄ ∈ �n+1.

Let y = vec(x̄x̄T) ∈ �(n+1)2 , and rewrite F as an (n + 1)2 × (n + 1)2 matrix F ′;
Problem (E) is further relaxed to

max F ′(y,y) = yTF ′y

s.t. ‖y‖ ≤ 2, y ∈ �(n+1)2 .

The optimal value of the above problem is 4λmax(F
′), which we use as an upper

bound.
By Theorem 3.3, Algorithm 3.2 possesses a theoretic worst-case relative perfor-

mance ratio of 2−10 · 5! · 4−8(n+1)−1 = Ω(1/n). The numerical results of Problem
(E) are listed in Table 1, in which the objective value of the feasible solution
and upper bound are from the average of 10 random generated instances. Based
on the observation of the simulation results, by comparing with the upper bound
4λmax(F

′) (which might be very loose), the absolute performance ratio is about
Ω(1/

√
n), rather than a theoretical relative ratio Ω(1/n).

With regard to the computational efforts, we report that Algorithm 3.2 ran fairly
fast. For instance, for n = 70 we were able to get a feasible solution within seconds,
while computing the upper bound of the optimal value (4λmax(F

′)) cost much more
computational time. For n ≥ 80, however, our computer reported to run out of
memory in the experiments: a problem purely due to the sheer size of the input
data.
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Table 1. Numerical results of Problem (E)

n 3 5 10 20 30 40 50 60 70
Obj. val. of feas. sol. v 0.342 0.434 0.409 0.915 0.671 0.499 0.529 0.663 0.734
Upper bound v̄ 10.5 16.1 26.7 51.7 74.4 97.8 121.1 143.6 167.1
(Absolute) ratio v/v̄ (%) 3.26 2.70 1.53 1.77 0.90 0.51 0.44 0.46 0.44
n · ratio 0.098 0.135 0.153 0.354 0.271 0.204 0.218 0.277 0.307√
n · ratio 0.056 0.060 0.048 0.079 0.049 0.032 0.031 0.036 0.037

6.1. Local improvements and the SOS method. The theoretical worst-case
performance ratios that we have developed so far are certainly very conservative,
as observed in the previous testings. It will be desirable to design a more realistic
test procedure to know how good the solutions actually are. In fact, we observe
that the Euclidean norm of the solution obtained by Algorithm 3.2 is usually far
from one. Therefore, it is straightforward to do one more step of line search along
the direction of the solution obtained. It is simply a univariate quartic polynomial
optimization over an interval, albeit the theoretical performance ratio cannot be
improved. Another point to note is that we can always improve the quality of
the solution by applying a local improvement subroutine on our heuristic solution.
Here in this subsection, we are going to apply recently developed local improvement
procedure maximum block improvement (MBI) by Chen et al. [5], starting from the
approximate solution generated by Algorithm 3.2.

In order to evaluate the true quality of our approximate solution it is desirable
to probe the optimal value, instead of using the loose upper bound. For this pur-
pose we call the SOS approach for general polynomial optimization problems. As
mentioned earlier, the SOS method works quite well for low dimension problems.
It either outputs the optimal value, or an upper bound of the optimal value for a
maximization problem, each of which can be a benchmark to test the performance
of our algorithm for solving Problem (E).

In this set of experiments we restrict ourselves to the low dimensional cases, say
n ≤ 15. We take the feasible approximate solution as a starting point to be followed
by the local improvement subroutine MBI in [5] to obtain a local optimal solution.
For comparison, we apply GloptiPoly 3 of Henrion et al. [13] (the SOS method) to
get the optimal value or its upper bound for the same test instance.

For the case n = 15, we generate 15 random instances of Problem (E). The
objective value of the feasible solution obtained by Algorithm 3.2, that of the fea-
sible solution followed by the MBI method, and the optimal value or upper bound
generated by GloptiPoly 3, as described above, are shown in Figure 1. In fact,
the optimal value lies between the objective value by Algorithm 3.2 with the MBI
method (the red square dot) and the upper bound by GloptiPoly 3 (the green tri-
angle dot) for each instance in Figure 1. In most cases, GloptiPoly 3 is able to
provide optimality certificate. The results are quite telling: Algorithm 3.2 followed
by the local improvement procedure yields near optimal solutions in many cases,
at least for low dimension problems.

In another setting, for each n = 5, 10, 15, we generate 100 random instances of
Problem (E), and count the number of instances that the objective value of the
feasible solution followed by the MBI method equals (within tolerance 10−6) that
obtained by GloptiPoly 3 (either the optimal value or its upper bound). Note that
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when the two values are equal, the optimality guarantees since they are lower and
upper bounds of the optimal value. The outputs of the testings is 37 for n = 5, 28
for n = 10, and 30 for n = 15. In this sense, our heuristic algorithm (with local
improvement) and the SOS method are indeed complementary to each other.

Regarding the computational complexity, as mentioned in Section 3, for Algo-
rithm 3.2 it is O

(
n4
)
for Problem (E). However, for the SOS method, the first

relaxation requires solving an SDP problem of dimension O
(
n4
)
, which is much

more demanding than what Algorithm 3.2 is supposed to do. Though Algorithm 3.2
only attempts to find an approximate solution, it can handle much larger problems
than an exact algorithm does. In some cases, the approximate solutions meet the
bounds provided by GloptiPloy 3, thus the optimality of the solutions are certified.
The approximation algorithms as proposed in this paper can therefore be viewed
as complementary to the exact solution methods.

Figure 1. Numerical results of Problem (E) when n = 15
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