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Abstract In this paper, we consider approximation algorithms for optimizing a
generic multivariate polynomial function in discrete (typically binary) variables. Such
models have natural applications in graph theory, neural networks, error-correcting
codes, among many others. In particular, we focus on three types of optimization
models: (1) maximizing a homogeneous polynomial function in binary variables;
(2) maximizing a homogeneous polynomial function in binary variables, mixed with
variables under spherical constraints; (3) maximizing an inhomogeneous polynomial
function in binary variables. We propose polynomial-time randomized approximation
algorithms for such polynomial optimization models, and establish the approximation
ratios (or relative approximation ratios whenever appropriate) for the proposed algo-
rithms. Some examples of applications for these models and algorithms are discussed
as well.
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1 Introduction

This paper is concerned with optimizing a (high degree) multivariate polynomial
function in (mixed) binary variables. Our basic model is to maximize a d-th de-
gree polynomial function p(x) where x = (x1, x2, - - - ,x,)T is chosen such that x; €
{1, —1}fori =1,2,---,n. For ease of referencing, let us call this basic model to be
(P) : maxxeq1,—1)n p(x). This type of problem can be found in a great variety of ap-
plication domains. For example, the following hypergraph max-covering problem is
well studied in the literature, which is precisely (P). Given a hypergraph H = (V, E)
with V being the set of vertices and E the set of hyperedges (or subsets of V), and
each hyperedge e € E is associated with a real-valued weight w(e). The problem is
to find a subset S of the vertices set V, such that the total weight of the hyperedges
covered by S is maximized. Denoting x; € {0, 1} (i =1, 2, - - - , n) to indicate whether
or not vertex i is selected in S. The problem thus is maxye(o, 1} ZeeE w(e) ]_[iee X;.
By a simple variable transformation x; — (x; + 1)/2, the problem is transformed to
(P), and vice versa.

Note that (P) is a fundamental problem in integer programming. As such it has
received attention in the literature; see [17, 18]. It is also known as Fourier support
graph problem. Mathematically, a polynomial function p : {—1, 1} — R has Fourier
expansion p(x) = ng{l,z,.-.,n} P(S) [1;es xi, which is also called Fourier support
graph. Assume that p has only succinct (polynomially many) non-zero Fourier co-
efficient p(S). The question is: Can we compute the maximum value of p over the
discrete cube {1, —1}", or alternatively can we find a good approximate solution in
polynomial-time? The latter question actually motivates this paper. Indeed, (P) has
been investigated extensively in the quadratic case, due to its connections to various
graph partitioning problems, e.g., the maximum cut problem [16]. In general, (P) is
closely related to finding the maximum weighted independent set in a graph. In par-
ticular, let G = (V, E) be a graph with V the set of vertices V and E the set of edges,
and each vertex is assigned a positive weight. We call S to be an independent set of
vertices if and only if S € V and no two vertices in S share an edge. The problem is
to find an independent set of vertices such that the sum of its weights is maximum
over all possible independent sets.

In fact, any unconstrained binary polynomial maximization problem can be trans-
formed into the maximum weighted independent set problem, which is also com-
monly used technique in the literature for solving (P) (see e.g., [5, 30]). The trans-
formation uses the concept of a conflict graph of a 0—1 polynomial function. The idea
is illustrated in the following example. Let us consider

f(x)=—=2x1 = 2x3 + 5x1x3 — 4x1xpxz, (x1,x2,%3) € {0, 1)°.
Note that f(x) can be transformed to an equivalent polynomial so that all terms

(except the constant term) have positive coefficients. The new polynomial involves
both the variables and their complements, i.e., x; := 1 — x; for i = 1,2,3. In our

@ Springer



Approximation Algorithms for Discrete Polynomial Optimization 5

Fig. 1 Conflict graph

associated with 2%, ° e 129
—2x1 —2x9 + 5x1xp — 4x1X2X3 v
25 (@) s

example, such polynomial can be
f(x)=—442x1 4+ 2x2 + x1x2 + 4x1x2X3.

The conflict graph G (f) associated with a polynomial f(x) has vertices correspond-
ing to the terms of f(x), and each vertex is associated with a term in the polynomial
except for the constant term. Two vertices in G(f) are connected by an edge if and
only if one of the corresponding terms contains a variable and the other correspond-
ing term contains its complement variable. The weight of a vertex in G(f) is the
coefficient of the corresponding term in f. The conflict graph of f(x) is shown in
Fig. 1. Maximizing the weighted independent set of the conflict graph also solves the
binary polynomial optimization problem. Beyond its connection to the graph prob-
lems, (P) also has applications in neural networks [4, 8, 21], error-correcting codes
[8, 29], etc. For instance, recently Khot and Naor [24] show that it has applications
in the problem of refutation of random k-CNF formulas [12, 13].

One important subclass of polynomial function is homogeneous polynomials.
Likewise, the homogeneous quadratic case of (P) has been studied extensively; see
e.g. [2, 16, 27, 28]. Homogeneous cubic polynomial is also studies by Khot and
Naor [24]. Another interesting problem of this class is the co + 1-norm of a matrix
M = (a;j)n, xn, (seee.g., [2]),ie.,

T .
IM | cors1 = max x My:= E aijxiyj.
xe{l,=1)", ye{l,—-1}"2 . )
I<ig<ng, 1< j<n

It is quite natural to extend the problem of co + 1-norm to higher order tensors. In
particular, the || F'[lco1 of a d-th order tensor F = (a;,;,.i;) can be defined as

1.2 d

max E ailiz...idxilxiz . -xl-d.
xke(l,—1)k, k=1,2,---.d . . .
' RS 1 <y 1 K, 11 Sig

The other generalization of the matrix oo = 1-norm is to extend the entry a;; of
the matrix M to symmetric matrix A;;, i.e., the problem of

| lglax | lnz)"max< Z xiyinj>,
ell—1yeil ) I<i<n 1<j<m

where Amax(-) indicates the largest eigenvalue of a matrix. If the matrix A;; is not
restricted to be symmetric, we may instead maximize the largest singular value,

ie.,
Lo 1nzamax< Z x,-yinj).
rell,=1yell,—1) I<i<n 1<j<nm
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6 S. He et al.

These two problems are actually equivalent to

max F(x,y,z,z) and
xe{l,—1}"1,ye{l,-1}"2,|Iz2=1

max F(x,y, z,w)
xe{l,—1}"1,ye{l,-1}"2,|izl2=[lw|2=1

respectively, where F is a multilinear function induced by the tensor F, whose
(i, j, k, £)-th entry is (k, £)-th entry of the matrix A;;.

In fact, a very interesting and succinct matrix combinatorial problem is: Given
n matrices A; (i =1,2,---,n), find a binary combination of the matrices so as to
maximize the spectral norm of the combined matrix:

n
max o xiA; .
re(lo oy max(il: i l)
1=
This is indeed equivalent to

max F(x,y,2).
xe{l,—1}",[lylla=lzll2=1

All the problems studied in this paper are NP-hard in general, and our focus
will be polynomial-time approximation algorithms. In the case that the objective
polynomial is quadratic, a well known example is the semidefinite programming
relaxation and randomization approach for the max-cut problem due to Goemans
and Williamson [16], where essentially a 0.878-approximation ratio of the model
maXee(l,—1)” xTMx is shown with M being the Laplacian of a given graph. In the
case M is only known to be positive semidefinite, Nesterov [27] derived a 0.636-
approximation bound. Charikar and Wirth [9] considered a more general model; they
proposed an £2(; oén)-approximate algorithm for diagonal-free M. For the matrix
00 > 1-norm problem

max xT™™M y,
xe{l,—1)", ye{l,—1}"2
Alon and Naor [2] derived a 0.56-approximation bound. Remark that all these
approximation bounds remain hitherto the best available ones. When the de-
gree of the polynomial function is greater than 2, to the best of our knowl-
edge, the only known approximation result in the literature is due to Khot and
Naor [24], where they showed how to estimate the optimal value of the problem
maxye(l,—1) Zlgi,j,kgn a;jxi X jxg With (ajjk)nxnxn being square-free (a;jx =0
whenever two of the indices are equal). Specifically, they presented a polynomial-
time procedure to get an estimated value that is no less than Q(\/@) times the
optimal value. No solution, however, can be derived from the process. Moreover, the
process is highly complex and is mainly of theoretical interest.

In this paper we consider the optimization models for a general polynomial func-
tion of any fixed degree d in (mixed) binary variables, and present polynomial-time
randomized approximation algorithms. The algorithms proposed are fairly simple to
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Approximation Algorithms for Discrete Polynomial Optimization 7

implement. This study is motivated by our previous investigations on polynomial op-
timization under quadratic constraints [19, 20], as well as recent developments on
homogeneous polynomial optimization under spherical constraints, e.g., So [31] and
Chen et al. [10]. However, the discrete models studied in this paper have novel fea-
tures, and the analysis is therefore entirely different from previous works. This paper
is organized as follows. First, we introduce the notations and models in Sect. 2. In
Sect. 3, we present the new approximation results, and also sketch the main ideas,
while leaving the technical details to the Appendix. In Sect. 4 we shall discuss a few
more specific problems where the models introduced can be directly applied.

2 Notations and Model Descriptions

In this paper we shall use the boldface letters to denote vectors, matrices, and tensors
in general (e.g., the decision variable x, the data matrix @, and the tensor form F),
while the usual lowercase letters are reserved for scalars (e.g., x; being the first com-
ponent of the vector x).

2.1 Objective Functions

The objective functions of the optimization models studied in this paper are all multi-
variate polynomial functions. The following multilinear tensor function plays a major
role in our discussion:
: 1.2 dy _ 12 d
Function T F(x , X5, X )— Z Qiyigemig Xy Xiy * " Xiys
1<iy<ng, 1< <y, -, 1<ig<ng

where x¥ e R fork=1,2,---,d; and the letter ‘T’ signifies the notion of tensor.
In the shorthand notation we shall denote F = (g;,;,....;) € R"*"2X"*7d to be a d-th
order tensor, and F to be its corresponding multilinear form. Closely related with the
tensor F is a general d-th degree homogeneous polynomial function f(x), where
x € R". We call the tensor F = (a;i,...i;) super-symmetric (see [25]) if a;,i,...;,; 1S
invariant under all permutations of {i1, iz, --,i4}. As any homogeneous quadratic
function uniquely determines a symmetric matrix, a given d-th degree homogeneous
polynomial function f (x) also uniquely determines a super-symmetric tensor. In par-
ticular, if we denote a d-th degree homogeneous polynomial function:

Function H f(x)= E QjjinigXiy Xiy =+ Xig
1< Sin < <Kig <

then its corresponding super-symmetric tensor form can be written as F =
(biyiy-iy) € Rnd, with bjiy..iy = Gijiyeiy /I, 12, -+ ,1g)|, where [[1(iy, 12,
-, ig)| is the number of distinctive permutations of the indices {i{, i2, - - - , ig}. This
super-symmetric tensor representation is indeed unique. Let F be its correspond-
ing multilinear function defined by the super-symmetric tensor F, then we have
f(x)=F(x,x,---,x). The letter ‘H’ here is used to emphasize that the polynomial
\—/—J

d
function in question is homogeneous.
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8 S. He et al.

We shall also consider in this paper the following:

Function M F(xl,xl,-n xlxZx? x xS Xt ,x*)

dy dy dy
= f(xl,x2,~-- ,x%),

where x¥ € R™ for k=1,2,---,s,d| +do + -+~ + dy = d, and d-th order ten-

dp dy dg . . . .
sor form F € R™1 *"2" X% the letter ‘M’ signifies the notion of mixed polyno-
mial forms. We may without loss of generality assume that F has partial symmet-

ric property, namely for any fixed (x2,x3, -+, x%), F(-,-, -+, -, x2, x2, -+ x|
—_—— ———
d dp
x*,x%, ..., x%) is a super-symmetric d;-th order tensor, and so on.
[ ——

ds
Beyond the homogeneous polynomial functions described above, a generic mul-

tivariate inhomogeneous polynomial function of degree d, p(x), can be explicitly
written as a summation of homogeneous polynomial functions in decreasing degrees,
namely

d d
Function P p(x) := ZFk(x,x, LX)+ fo= ka(x) + fo.
——
k=1 M k=1
where x € R, fy € R, and fi(x) = Fr(x,x,---,x) is a homogeneous polynomial
%‘,_J
k
function of degree k for k = 1,2, --- , d; the letter ‘P’ signifies the notion of polyno-

mial.

Throughout we shall adhere to the notation F' for a multilinear form defined
by a tensor form F, and f for a homogeneous polynomial function, and p for
an inhomogeneous polynomial function. Without loss of generality we assume that
ny <ny <--- < nyinthe tensor form F € R *MXXd andn; <np <---<ngin

the tensor form F € R”llll X”Izi2 X . We also assume at lease one component of the
tensor form, F in Functions T, H, M, and F; in Function P is nonzero to avoid triv-
iality. Finally, without loss of generality we assume the inhomogeneous polynomial
function p(x) has no constant term, i.e., fo =0 in Function P.

2.2 Decision Variables

This paper is focused on integer and mixed integer programming with polynomial
functions. In particular, two types of decision variables are considered in this paper:
discrete binary variables

xeB" :={zeR"|z*=1,i=1,2,--,n},
and continuous variables on the unit sphere:

yeS":={zeR" ||zl := (2> + 222+ +22) P =1).
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Approximation Algorithms for Discrete Polynomial Optimization 9

Note that in this paper we shall by default use the Euclidean norm for vectors,
matrices and tensors. The decision variables in our models range from the pure binary
vector x, to a mixed one including both x (¢ B"”) and y (¢ S™) .

2.3 Model Descriptions

In this paper we consider the following binary integer optimization models with ob-
jection functions as specified in Sect. 2.1:

(T) max F(x',x2,--- x9)
st. xkeB™, k=1,2,---,d;
(H) max f(x):F(xsxv"'ax)
[
d
st. xeB”;
(M) max f(xlx% - x)=F(xxl o xl 2t x? o X2
dy dy
xs’xs’...’xs)
[ ——~
dy
st. xkeB™, k=1,2,---,s;
d
(P) max p(x)ZZFk(x7X,"’ax)+f0
&—/——/
k=1 k
s.t. x eB"
and their mixed models:
(T)/ max F(xl’xz’_”7xd’yl’y2’,,.7yd/)
st. xKeB™, k=1,2,---.,d,
yeegmz’ £=1,2,---.,d";
(H)/ max f(x’y)zF(x’xv"'7x’y3y7"'7y)
d d
s.t.  xeB",
yes™;
(M)/ max f(xlsxzy"'7xs9y17y27"'ayl
:F(xl’xl’...7x1’...’x‘y’xs’...7xs’y1’y17...’y1’...’
di ds d|
yt’yt’...’yt)
\—f_—/
d
st. xFeB™, k=1,2,---,s,

yleS™, £=1,2,--- 1.
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10 S. He et al.

Letd; +dy+---+dy=dand d| +dj, + --- +d] = d’ in the above mentioned
models. The degrees of the polynomial functions in these models, d for the pure
binary models and d + d’ for the mixed models, are understood as fixed constants in
our subsequent discussions. As before, we also assume that the tensor forms of the
objective functions in (H)" and (M)’ to have partial symmetric property, m| < my <
o K<mg in (T, and m; <mp <---<my in (M)'.

2.4 Approximation Ratios

All the optimization problems mentioned in the previous subsection are in general
NP-hard when the degree of the objective polynomial function is larger than or equal
to 2. This is because each one includes computing the matrix co — l-norm as a
subclass, i.e.,

T
| @lloor>1 = max (xl) sz
st. xleBm,
xZeBm.

Thus, in this paper we shall focus on polynomial-time approximation algorithms with
provable worst-case performance ratios. For any maximization problem (P) defined
as maxycs f(x), we use vmax (P) to denote its optimal value, and vy (P) to denote
the optimal value of its minimization counterpart, i.e.,

Umax(P) :=max f(x) and vpin(P) :=min f(x).
xeS xeS§

Definition 2.1 We call the maximization model (P) to admit a polynomial-time ap-
proximation algorithm with approximation ratio T € (0, 1], if vmax(P) = 0 and a fea-
sible solution z € S can be found in polynomial-time such that f(z) > t vmax(P).

Definition 2.2 We call the maximization model (P) to admit a polynomial-time
approximation algorithm with relative approximation ratio t € (0, 1], if a feasi-
ble solution z € § can be found in polynomial-time such that f(z) — vnin(P) =
T (Umax (P) — Umin (P)).

Regarding to the relative approximation ratios (Definition 2.2), in some cases it
is convenient to use the equivalent form: vmax(P) — f(2) < (I — 7)(Vmax(P) —
Umin (P)).

3 Bounds on the Approximation Ratios

In this section we shall present our main results, viz. the approximation ratios for
the discrete polynomial optimization models considered in this paper. In order not
to distract reading the main results, the proofs will be postponed and placed in the
Appendix. To simplify, we use the notion £2(f(n)) to signify that there are positive
universal constants « and ng such that $2(f(n)) > «f (n) for all n > ng. Throughout
our discussion, we shall fix the degree of the objective polynomial function (denoted
by d or d + d’ in the paper) to be a constant.
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Approximation Algorithms for Discrete Polynomial Optimization 11

3.1 Homogeneous Polynomials in Binary Variables

Theorem 3.1 (T'): max, g F(x',x2, .- x%) admits a polynomial-time approx-

imation algorithm with approximation ratio T, where
1 1
7= (mng - ong-2) "2 2/ In( 4+ v2) = 2((mina -+ ng-2)72).

We remark that when d = 2, (T) is to compute ||F|co1. The current best

polynomial-time approximation ratio for that problem is M ~ 0.56 due to
Alon and Naor [2]. Huang and Zhang [22] considered similar problems for the com-
plex variables and derived constant approximation ratios.

When d = 3, (T) is a slight generalization of the model considered by Khot and
Naor [24], where F was assumed to be super-symmetric (implying ny = ny = n3) and
square-free (i.e., a; jx = 0 whenever two of the three indices are equal). In our case, we
discard the assumptions on the symmetry and the square-free property altogether. The

Inn
ni

polynomial-time procedure is provided to find a corresponding approximate solution.

Our approximation algorithm works for general degree d based on recursion, and
is fairly simple. We may take any approximation algorithm for the d = 2 case, say
the algorithm by Alon and Naor [2], as a basis. When d = 3, noticing that any n; x
ny x n3 third order tensor can be written as an (n17,) X n3 matrix by combining its
first and second modes, (T) can be relaxed to

approximation bound of the optimal value given in [24] is £2( ); however, no

3\ . 3
max F(X,x ).= Z Cl,‘ijijxk
1<i<ny, 1S j<n2, 1<k<ng
st. XeB"m2, x3eBm.

This problem is the exact form of (7)) when d = 2, which can be solved approx-
imately with approximation ratio M Denote its approximate solution to be
(X,%%). The next key step is to recover &', %% from X. For this purpose, we in-
troduce the following decomposition routine, which plays a fundamental role in our
algorithms.

If we let M = F(-, -, #°) and apply DR 3.1, then we can prove the output (&', %)
satisfies

a1 22 o3\1 _ e\ Tage2 2 %
E[F(x,x,x)]—E[(x)Mx]}n\/n_lMoX
2 41n(1 +/2)

F(i’,.f?B) > Vmax (1),

=7T4/l’l1 7'[24/111

which yields an approximation ratio for d = 3. By a recursive procedure, the approx-
imation algorithm is readily extended to solve (7') with any fixed degree d.

Theorem 3.2 If F(x,x, -, x) is square-free and d is odd, then (H): maxycp» f(x)
——

d
admits a polynomial-time approximation algorithm with approximation ratio Ty,

@ Springer



12 S. He et al.

DR 3.1 (Decomposition Routine)

e Input: matrices M € R"1 "2 and X € B2,
e Construct

- In1><n1 X/«/”ll
X=| .1 AT A

X /1 X X/m
e Randomly generate

(i) ~ N (0 1ny, X)

and compute
2= sign (&), 2= sign (n);

repeat if necessary, until (fcl)TMfc2 > ﬂjn_1M oX.

e Output: binary vectors (fc1 , 322).

where

= dld~n T /1) (1 + VD) = 2(n” ).

Theorem 3.3 If F(x,x, .- ,x) is square-free and d is even, then (H): maXycp» f(x)
—_——
d

admits a polynomial-time approximation algorithm with relative approximation ra-
tio ty.

The key linkage from multilinear tensor function F(x!, x2,---, x9) to the homo-
geneous polynomial function f(x) is the following lemma. Essentially it makes the
tensor relaxation method applicable for (H).

Lemma 3.4 (He, Li, and Zhang [19]) Suppose x',x2,--- x? € R", and &, &,
.-+, &g are i.i.d. random variables, each taking values 1 and —1 with equal prob-
ability. For any super-symmetric d-th order tensor form F and function f(x) =
F(x,x,---,x), it holds that

d d
E|:Héif<25kxk>i| —d!F(x', %%, x9).
k=1

i=1

Remark that the approximation ratios for (H) hold under the square-free condi-
tion. This is because in this case the decision variables are actually in the multilinear
form. Hence, one can replace any point in the box ([—1, 1]*) by one of its vertices
({—1, 1}") without decreasing its objective function value, due to the linearity. Be-
sides, in the case when d is odd, one may first relax (H) to maxye[—1,1y» f(x), and
then directly apply the approximation result for homogeneous polynomial maximiza-
tion over intersection of n co-centered ellipsoids (see [19]). Under the square-free
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Approximation Algorithms for Discrete Polynomial Optimization 13

condition, this procedure is able to generate a feasible solution for (H) with ap-
proximation ratio .Q(n_# log_(d_l) n), which is worse than ty in Theorem 3.2.
Therefore, we may treat Theorem 3.2 an improvement of the approximation ratio.
We move on to consider the mixed form of discrete polynomial optimization
model (M). It is a generalization of (7T') and (H), making the model applicable to

a wider range of practical problems.

Theorem 3.5 If Fxlxl, oo xlx? 22 x? x5, x5, x%) s square-
dy dy dy

free in each xk k=1,2,---,5), and one of dy (k =1,2,---,5) is odd, then

(M): max .k cpm fx',x2, ... x%) admits a polynomial-time approximation algo-

rithm with approximation ratio Ty, where

_ 1
() (1 + V2 [Ty dildi % (1D na® - -y g2 b-1-1)"2

T

dy=1,
™ = _ ) 1
(%)d "In(1+V2) [Ty dildi % (ny9ma® - -ng_y Btngd=2)~3
dg 2 2.
Theorem 3.6 If F(xl,xl,-n abxt ot x xS X, ,x%) is square-
dy dy dy
free in each xk k=1,2,---,5), and all dy (k =1,2,---,5) are even, then

(M): max .k cpmu fx', x2, ... x%) admits a polynomial-time approximation algo-

rithm with relative approximation ratio ty;.

The main idea in the proof is tensor relaxation (to relax its objective function
f(x!, x2, ... x%) to a multilinear tensor function), which leads to (7). After solving
(T) approximately by Theorem 3.1, we are able to adjust the solutions one by one,
using Lemma 3.4.

3.2 Homogeneous Polynomials in Mixed Variables

Proposition 3.7 When d = d' =1, (T)": max,icgn yicgm F(x', y!) admits a
polynomial-time approximation algorithm with approximation ratio /2/7.

Proposition 3.7 serves as the basis for (T')’ of general d and d’. In this particular
case, (T)' can be equivalently transformed into max,cpn x* @x with @ > 0. The
later problem admits a polynomial-time approximation algorithm (SDP relaxation
and randomization) with approximation ratio 2/ by Nesterov [27].

Recursion is again the tool to handle the high degree case. For the recursion on d,
with discrete variables x*, DR 3.1 is applied in each recursive step. For the recur-
sion on d’, with continuous variables y¥, two decomposition routines in He, Li,
and Zhang [19] are readily available, namely the eigenvalue decomposition approach
(DR 2 of [19]) and the randomized decomposition approach (DR 1 of [19]), either
one of them serves the purpose here.
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14 S. He et al.

Theorem 3.8 (T): maxkcpm ytcgm F(xl,x2, - x4yt y2 oo y?) admits a

polynomial-time approximation algorithm with approximation ratio ty, where

2d-1
17 = (2/71) T (nna---ng_imimy---mg_y)

Nl—

_1
= Q((niny---ng_1mmy---mg_;)"2).

From Theorem 3.8, by applying Lemma 3.4 as a linkage, together with the square-
free property, we are led to the following two theorems regarding (H)'.

Theorem 3.9 If F(x,x,---,x,y,y,-++,y) is square-free in x, and either d or d’

d d
is odd, then (H)": maXycpn yesm f(x,y) admits a polynomial-time approximation
algorithm with approximation ratio ty,, where

oy = dld = Q) T T T = (T T,

Theorem 3.10 If F(x,x,---,x,y,y,---,Y) is square-free in x, and both d and d’

d d
are even, then (H)': maxyepr, yesm f(x, y) admits a polynomial-time approximation
algorithm with relative approximation ratio ty, .

By relaxing (M)’ to the multilinear tensor function optimization (7')" and solving
it approximately using Theorem 3.8, we may further adjust its solution one by one
using Lemma 3.4, leading to the following general result.

Theorem 3.11 [f

1 .1 1 S .8 s 1 1 1 t ot t
F(x ’x’...7x’...’x 7x7.'.7x7y ’y’...,y’...’y’y’...’y)

dy dy a'i d,/
is square-free in each xk k=1,2,---,5), and one of dp (k=1,2,---,5) or
one of dy (£ =1,2,---,1) is odd, then (M) MaX gk gk ytesme Ffoel,x2,.. x5,
y', ¥2, .-, y") admits a polynomial-time approximation algorithm with approxima-

tion ratio T,,, where

2d-1 P

2\ 2 o

thy = (;) [ e T i~
k=1 =1

dl . .ns_ldb'*lns

09—

’ / / —
.(nl dfilmld] ...mt_ldt—lmtdtil)

! 7 / _l
= ‘Q((nldl "'ns—ld‘rfll’lsds_lmldl "'mt—ld’*lmtd’_l) 2)'
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Theorem 3.12 If

F(xl’xl’...7x1’...’x“"xs’...7xs’y1’y17...7y1’...’yt’yl’...’yt)

d ds d df

is square-free in each xk k=1,2,---,5), and all d, (k =1,2,---,s) and
all dj (€ =1,2,---,1) are even, then (M) maXykepn yecgme f(x!, X2, x5,
yl, y2, -+, ¥") admits a polynomial-time approximation algorithm with relative ap-

. . . /
proximation ratio Ty

3.3 Inhomogeneous Polynomials in Binary Variables

Extending the approximation algorithms and the corresponding analysis for homo-
geneous polynomial optimization to the general inhomogeneous polynomials is not
straightforward. Technically it is also a way to get around the square-free property,
which is a requirement for all the homogeneous polynomials mentioned in the previ-
ous subsections. The analysis here, like the analysis in our previous paper [20], is to
directly deal with homogenization.

It is quite natural to introduce a new variable, say x;,, which is actually set to be 1,
to yield a homogeneous form for Function P:

d
d—k d
px) =Y Filx,x, -, 0)x) " + fox
k=1 M

X X X _ _ _ -
ZF(( )’( )’...7( )):F(x,x’...’x):f(x),
Xh Xh Xh —_—

d

d

where f(x) is an (n 4 1)-dimensional homogeneous polynomial function of degree d,
with variable ¥, i.e., F € RO+HD? and ¥ e R Optimization of this homogeneous
form can be done due to our previous results, but in general we do not have any
control on the solution of xj, which has to be 1 as required by the feasibility. The
following lemma ensures that construction of a feasible solution is possible.

k
Lemma 3.13 (He, Li, and Zhang [20]) Suppose &* = (%) € R"! with |x}| < 1
fork=1,2,---,d.Let ni, n, -, ng be independent random variables, each taking
values 1 and —1 with E[ni] = xl}; fork=1,2,---.d,and let £&1,&,--- ,&; be i.id.
random variables, each taking values 1 and —1 with equal probability (thus the mean

is 0). If the last component of the tensor F is 0, then we have

e[ TTnr((%) (%) (%)) oo
L)) ()]

and
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16 S. He et al.

Our last result is the following theorem.

Theorem 3.14 (P) admits a polynomial-time approximation algorithm with relative
approximation ratio tTp, where

d—2

p: In(1 + v2) d+D)dXn+1)" T =2n 7).

T 21+ e)nd!

We remark that (P) is indeed a very general discrete optimization model. For ex-
ample, it can be used to model the following general polynomial optimization prob-
lem in discrete values:

(D) max p(x)

s.t. x,-e{aﬁ,a’z,-u,a;ni}, i=1,2,---,n.

To see this, we observe that by adopting the Lagrange interpolation technique and
letting

Xi:Zaj 1_[ u.,‘—]ic’ i=12,--,n,

i=ak<m ki 1T

the original decision variables can be equivalently transformed into

wi=j = xi=dj, i=12-,n j=12,-,m,
where u; € {1,2,---,m;}, which can be further represented by [log, m;] indepen-
dent binary variables. Combining these two steps of substitution, (D) is then re-
formulated as (P), with the degree of its objective polynomial function no larger

than max;g;<,{d(m; — 1)}, and the dimension of its decision variables being
> i1 ogym;]. o )
In many real world applications, the data {a},a}, - -- ,ajnl_} i=1,2,---,n)in

(D) are arithmetic sequences. Then it is much easier to transform (D) to (P), without

going through the Lagrange interpolation. It keeps the same degree of the objective

polynomial function, and the dimension of its decision variables is Y _:_, [log, m;].
The proofs of all the theorems presented in this section are delegated to Appendix.

4 Examples of Application

As we discussed in Sect. 1, the models studied in this paper have versatile applica-
tions. Given the generic nature of the discrete polynomial optimization models (viz.
(T), (H), (M), (P), (T), (H) and (M)"), this point is perhaps self-evident. How-
ever, we believe it is helpful to present a few examples at this point with more details,
to illustrate the potential modeling opportunities with the new optimization models.
We present four problems in this section and show that they are readily formulated
by the discrete polynomial optimization models in this paper.
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4.1 The Tensor Cut-Norm Problem

The concept of cut-norm is initially defined on a real matrix A = (a;;) € R"'*"2, de-
noted by ||A|lc, the maximum over all I C {1,2,--- ,n1}and J C {1,2,---,ns}, of
the quantity | ), 1,jes 4ijl. This concept plays a major role in the design of efficient
approximation algorithms for dense graph and matrix problems (see e.g., [3, 14]).
Alon and Naor [2] proposed a randomized polynomial-time approximation algorithm
that approximates the cut-norm with a factor at least 0.56, which is currently the best
available approximation ratio. Since a matrix is a second order tensor, it is natural
to extend the cut-norm to general higher order tensors, e.g., a recent paper by Kan-
nan [23]. Specifically, given a d-th order tensor F = (a; i,...;;) € R"*"2X>71 jts
cut-norm is defined by

§ : Aiyiy--ig |-

irely, k=1,2,---,d

IFllc:= max
I S{1,2,- ,ng}, k=1,2,--- .d

In fact, the cut-norm || F||¢ is closely related to || F |01, Which is exactly in
the form of (7). By Theorem 3.1, there is a polynomial-time approximation algo-

1
rithm which computes || F| o1 With a factor at least £2((n1ny---n4y—2)" 2). The
following result, asserts that the cut-norm of a general d-th order tensor can also be

approximated by a factor of 2((nyny--- nd,z)—%),

Proposition 4.1 For any d-th order tensor F € R" > || F|c < | Flloo>1 <
2/ Flic.

Proof Let F = (ajiy.iy) € RMm2x=>md  Recall that [Fllogs1 =

MaXyk Bk, k=12, .d F(x', x%,---,x%). Given any x* € B for k = 1,2,--- .,d,
it follows that
1.2 dy _ 12 d
F(x X5, X )_ Z AiyiyigXiy Xiy = Xj,

I<ig<ng, k=1,2,+.d

_ E § R ) d
- all’2"'ldxi1xi2 o .‘xid

BEB! ixejxk=pr 1< j<nic) k=12, .d

= Z( 1_[ Bk Z ailiz--.id)

BeB? NISkSdipe(jll=pr 1 <j<me) k=12, .d

< Z ‘ Z Ajyiy-ig

BEB! ixe{jlxk=pr, 1< j<ni) k=12, .d

< ) IFlc=2Fllc.
BeBd

which implies || Flloos1 < 24 Flc.
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18 S. He et al.

Observe that || F||c = max (g 1y 4=1.2... . |F (@' 2%, -+, 2%)|. Given any z* €
{0, 1}* fork=1,2,---,d,let * = (e+xk)/2, where e is the all one vector. Clearly
xkeB™ fork=1,2,---,d, and thus

<e+x1 e+ x2 e+xd>

12... d: e
F(z', 2%, ,z)F2,2,,2

_ F(e1e9“'7e)+F(x]se»"'7e)+"'+F(xlsx21“'9xd)

1
<57 IFlloors1-27 = [ Flloons1,
which implies || F ¢ < [|Flloo1- O
4.2 The Vector-Valued Maximum Cut Problem

Consider an undirected graph G = (V, E) where V = {v, va, --- , v, } is the set of
the vertices, and E C V x V is the set of the edges. On each edge e € E there is an
associated weight, which is a nonnegative vector in this case, w, € R. The problem
now is to find a cut in such a way that the total sum of the weights, which is a vector
in this case, has a maximum norm. More formally, this problem can be formulated as

Ewe.

ecC

max
Cisacutof G

Note that the usual max-cut problem is a special case of the above model where each
weight w, > 0 is a scalar. Similar to the scalar case (see [16]), we may reformulate
the above problem in binary variables as

max Z x,-xngj
1<i, j<n
st.  xeB",
where
;Wi i J,
w;; = L (D
Zlgkgn,k;ei Wig 1=].

Observing the Cauchy-Schwartz inequality, we further formulate the above problem

as
T
max ( Z xixjw§j> y=F(x,x,y)

1<i, j<n
st. xeB" yeS".
This is the exact form of (H)" with d =2 and d’ = 1. Although the square-free
property in terms of x does not hold in this model (which is a condition of The-

orem 3.9), one can still replace any point in the box ([—1, 1]") by one of its ver-
tices ({—1, 1}") without decreasing its objective function value, since the matrix
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F(, -, er) = ((wl/.j)k)nx,, is diagonal dominant for k =1, 2, - - - , m. Thus, the vector-

valued max-cut problem admits an approximation ratio of %(%)3/ 2n~1/2 by Theo-
rem 3.9.

If the weights on edges are positive semidefinite matrices (i.e., W;; € R™*",
W;; = 0), then the matrix-valued max-cut problem can also be formulated as

max kmax( Z xiij;j>

1<i,j<n

st.  xeB",

where W' ] is defined similarly to (1); or equivalently,

max yT< Z x,'xngj)y

I<ijsn

st. xeB" yeS™.

Similar to the vector-valued case, by the diagonal dominant property and Theo-
rem 3.10, the above problem admits an approximation ratio of %(%)3/ 2(mn)~ V2,
Notice that Theorem 3.10 only asserts a relative approximation ratio; however for
this problem the optimal value of its minimization counterpart is obviously nonnega-
tive, and thus a relative approximation ratio implies a usual approximation ratio.

4.3 The Maximum Complete Satisfiability Problem

The usual maximum satisfiability problem (see e.g., [15]) is to find the boolean values
of the literals, so as to maximize the total weighted sum of the satisfied clauses. The
key point of the problem is that each clause is in the disjunctive form, namely if one of
the literals is assigned the frue value, then the clause is called satisfied. If the literals
are also conjunctive, then this form of satisfiability problem is easy to solve. However,
if not all the clauses can be satisfied, and we alternatively look for an assignment
that maximizes the weighted sum of the satisfied clauses, then the problem is quite
different. To make a distinction from the usual Max-SAT problem, let us call the
new problem to be maximum complete satisfiability problem, to be abbreviated as
Max-C-SAT. It is immediately clear that Max-C-SAT is NP-hard, since we can easily
reduce the max-cut problem to it. The reduction can be done as follows. For each
edge (v;, vj) we consider two clauses {x;, x;} and {X;, x;}, both having weight w;;.
Then a Max-C-SAT solution leads to a solution to the max-cut problem.

Now consider an instance of the Max-C-SAT problem with m clauses, each clause
containing no more than d literals. Suppose that clause k (k =1,2,---,m) has the
following form

{'xk19-xk27 e axkskvi];la-i'];29 e 7)2]2%}’
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20 S. He et al.

where s; + f; < d, associated with a weight wy > 0 for k = 1,2, --- ,m. Then, the
Max-C-SAT problem can be formulated in the form of (P) as

m K 1 —
max Z wy l_k[ ! —|—2in . l_k[ ;kf
k=1 j=1

i=1
st.  xeB".

According to Theorem 3.14 and the nonnegativity of the objective function, the above
problem admits a polynomial-time approximation algorithm with approximation ratio

2 (n_%), which is independent of the number of clauses m.
4.4 The Box Constrained Diophantine Equation

Solving a system of linear equations where the variables are integers and constrained
to a box is an important problem in discrete optimization and linear algebra. Ex-
amples of application include the classical Frobenius problem (see e.g., [6]), and a
“market split problem” [11], other from engineering applications in integrated cir-
cuits design and video signal processing. For more details, one is referred to Aardal
et al. [1]. Essentially, the problem is to find an integer-valued x € Z" and 0 < x < u,
such that Ax = b. The problem can be formulated by the least square method as

(L) max —(Ax —b)T(Ax —b)
st. xeZ', 0<x<u.

According to the discussion at the end of Sect. 3.3, the above problem can be reformu-
lated as a form of (P), whose objective function is quadratic polynomial and number
of decision variables is ) _:_, [log, (u; + 1)]. By applying Theorem 3.14, (L) admits
a polynomial-time approximation algorithm with a constant relative approximation
ratio.

In general, the Diophantine equations are polynomial equations. The box con-
strained polynomial equations can also be formulated by the least square method as
of (L). Suppose the highest degree of the polynomial equations is d. Then, this least
square problem can be reformulated as a form of (P), with the degree of the objective
polynomial being 2d and number of decision variables being >/, [log, (u; + 1)].
By applying Theorem 3.14, this problem admits a polynomial-time approximation
algorithm with a relative approximation ratio 2((3_;_, logu )

We have tested extensively the numerical performance of the algorithms proposed
in this paper, based on simulated data. In general the results show that the algorithms
are not only efficient in the theoretical sense as we prove in this paper, but also ef-
fective in practice. The numerical results and the discussion of these results under
various circumstances, however, are too lengthy to be included in the current paper.
Instead, we refer the interested readers to the recent Ph.D. thesis of one of the authors,
Li [26].
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Appendix: Proofs of the Theorems
A.1 Proof of Theorem 3.1

Proof The proof is based on mathematical induction on the degree d. For the case
of d =2, it is exactly the algorithm by Alon and Naor [2]. For general d > 3, let

X = xl(,\cd)T and (7) is then relaxed to

(YA“) max F(X,x2,x3~~- ,xd_l)
s.t. X e B""d
xkeB™, k=2,3,---,d—1,

where we treat X as an njng-dimensional vector, and F € R™17d*2X"Xd—1 gg g
(d — 1)-th order tensor. Observe that (f") is the exact form of (T') in degree d — 1,
and so by induction we can find X e B and £ € B (k=2,3,---,d—1) in
polynomial-time, such that

F(X.2248, 277N 2 /M) 2 In(1 +V2) (1213 -+ ng—2) "2 v (T)
1
> 2/m)* 2 In(1 +v2) (n2n3 - ng—2)" 2 vmax (7).
Rewrite X as an n1 X ng matrix, and construct

5( In|><n] X/\/_
X ym X X/m

as in DR 3.1, and then randomly generate

(@)

(i) NN(OI’Z]-H’!dv X)

Let#!:= sign () and 2= sign (). Noticing that the diagonal components of X are
all ones, it follows from Bertsimas and Ye [7] thatforall 1 <i <njand 1 < j <ng,

A

E[)? Ad] E ,arcsin Xij _ E)A(~arcsin !
L g V23 T " N1 ’
where the last equality is due to |)A(,-j| = 1. Denote matrix Q = F(-,£2,£3, e,

fcd_l, -), then

[r(e i) =e T 0]

1<i<n 1< <ng

= Z Qu [1d]

1<i<n1 1< <ng
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1<i<n1 1<) <ng =

2 1 A A
= — arcsin —— i Xii

S P

1<i<ny, 1< j<ng

2 1 A nd—
:—arcs1n—F(X,x2,x3,~-,xd 1)

b/ N2

2 d—2 \/— _1

> 2/m) 7 In(1 + V2) (nonz - -ng—2)" 2 vmax(T)

T /N

@/ (1 +V2) (inz - na—2) "2 vmax (1), (3)

Therefore £ and ¢ can be found by randomization, which concludes the induction
step. g

Lemma A.1 If a polynomial function p(x) is square-free and z € [—1,1]",
then x’ € B" and x" € B" can be found in polynomial-time, such that p(x") <
p(@) < p(x").

Proof Since p(x) is square-free, by fixing x3, x3, - - - , X, as constants and taking x
as the variable, we may rewrite

p(x) =gi1(x2,x3, -+, Xy) + X182(x2, X3, - -+ , Xp).
Let
o= =1 g(z2,23,++,z0) 20,

! 1 g(z2,23,++,20) <O.

Then
T

p((xia 22,23, ", Zn) ) < P(Z)
Repeat the same procedures for z2, 23, -, 25, and let them be replaced by xé, xé,
-+, x, respectively. Then x" = (x{,x}, - - - ,x,’l)T € B" satisfies p(x’) < p(z). Using
a similar argument, we may find x” € B" with p(x”) > p(z). O

A.2 Proof of Theorem 3.2

Proof Let f(x) = F(x,x,---,x) with F being super-symmetric. (H) can be re-
&‘/——/
d
laxed to
(T) max F(x!,x%, - x9)

st. xFeB", k=1,2,---.d.
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By Theorem 3.1 we are able to find a set of binary vectors (fcl,fcz, ,fcd) in
polynomial-time, such that
F(1.%% . 2%) > @/m In( + v2) 1™ T vgax (T)
> 2/m) (1 +v2) ™ T v (H).
When d is odd, let &1, &, - - - , & be i.i.d. random variables, each taking values 1 and

—1 with equal probability. Then by Lemma 3.4 it follows that

ot () ()

Thus we may find a binary vector 8 = (81, B2, -+, ﬂd)T € B9, such that

d
f(Z(]—[ ﬂi>fc"> > diF (' 22 &)

k=1 Nik
> 412/ n(1 4+ V2) n~ T vman ().

Now we notice that % Zle (]—L-# ,Bi)ﬁk €[—1, 17", because for all 1 < j < n,

(52 (m)e) |- 51(1m ) <)) -

i#k i#k
Since f(x) is square-free, by Lemma A.1 we are able to find ¥ € B" in polynomial-
time, such that

< Z

“

d
- 1 _
f@) = f(— Z(Hﬂ) ) > d4d12/m) " In(1 4 V2) 1™ T vmax (H).
d . 0
k=1 Nik

Lemma A.2 Suppose in (P): maxXyepr p(x), the objective polynomial function p(x)
is square-free and has no constant term. Then vmin(P) < 0 < vmax(P), and a binary
vector x' € B" can be found in polynomial-time with p(x') > 0.

Proof Let & = (£1,&,---,&,)T, whose components are i.i.d. random variables and
take values 1 and —1 with equal probability. Then for any term a;,;,...i, Xi; Xi, - - - Xi,
with degree k (1 < k < d) of p(x), by the square-free property, it follows

E[ailizmikgilgiz tee Eik] = ailizmikE[gil ]E[%—lz] tee E[Slk] =0.
This implies E[p(§)] = 0, and consequently vpijn(P) < 0 < vpax(P). By a ran-

domization process, a binary vector x’ € B" can be found in polynomial-time with
px’)>0. O
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We remark that the second part of Lemma A.2 can also be proven by conducting
the procedure in Lemma A.1 with the input vector 0 € [—1, 1]", since p(0) = 0.
Therefore, finding a binary vector x” € B" with p(x’) > 0 can be done by either a
randomized process (Lemma A.2) or a deterministic process (Lemma A.1).

A.3 Proof of Theorem 3.3

Proof Like in the proof of Theorem 3.2, by relaxing (H) to (f), we are able to find
a set of binary vectors (12] , fcz, e ,J?d) with

F(#',2% 29 > /M In( + VD~ T v (D).

Besides, we observe that vyax (H) < vmax(f‘) and vnin(H) > vmin(f‘) = —vmax(f).
Therefore

2Umax(’f) 2 Umax (H) — Umin (H).

Let &1, &, - -+, &4 be i.i.d. random variables, each taking values 1 and —1 with equal
probability. Use a similar argument of (4), we have % ZZ: 1 Ekfk € [—1, 1]". Then
by Lemma A.1, there exists X € B" such that

( Zék )/ f(X) = vmin(H).

Applying Lemma 3.4 and we have
| 1 & y d
§E|:f<g]§§kx)—vmin(1‘1) i]}s,:l}
1 1 & B d
>5E[f<;ll§skx>—vmin<H) i]]s,:l}
d d
‘EE[ ( Z )—vmmw) E&:_l}

d d
= E[]‘[si (f(é Zm") - vmm(mﬂ
i=1 k=1

d d d
=d_dE|:l—[Eif (Zskfk):| — Umin(H) E|:l_[§l:|
i=1 k=1

i=1

=d- dd'F( a1 A2 ---’_i‘d)
ZTH Umax(f) > (TH/Z)(Umax(H) - Umin(H))v
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where the last inequality is due to 2vmax(f") 2 Umax(H) — vmin(H). Thus we may
find a binary vector 8 = (81, B2, -+ , Ba) T € B¢ with ]_[?=1 Bi = 1, such that

d
1 ~k
f(g ;ﬂk-x > — Umm(H) (vmax(H) — vmm(H))

Noticing dl Zle Bx&* € [—1, 11" and applying Lemma A.1, by the square-free prop-
erty of f(x), we are able to find ¥ € B" with

1 d
f(®) = vmin(H) > f(g Zﬁkfc") — Vmin(H) > 1 (Vmax (H) = vmin(H)).
k=1

A.4 Proof of Theorem 3.5

Proof Like in the proof of Theorem 3.2, by relaxing model (M) to (T'), we are able

to find a set of binary vectors (ifl, 322, s fcd) with
s dy
ol o2 od di
F(x,x,~-,x)>rM<l_[ )Umax(M)
di!
k=1
Let &£ =(&,&, - ,.§d)T, whose components are i.i.d. random variables taking val-

ues 1 and —1 with equal probability. Denote

di di+dy d
~k ~2 . ~k ~S . ok
= E §kx”,  Xp = E EkX™, e, Xpi= E &x". (5)
k=1 k=d;+1 k=d+dy+-+ds_1+1

Without loss of generality, we assume d; to be odd. By applying Lemma 3.4 d times,
it is easy to verify that

Thus we are able to find 8 = (81, B2, -+ , Ba)T € B?, such that

~al a2 K
X X X
(Hﬂ, bt ﬂ)>1‘[dk!dk—dkF(£l,£2,--~,:ed)>ermax<M>.

- ds k=1

It is easy to verify that [\, fikp/di € [—1,1]", and &5/dy € [~1,1]" for k =
2,3, ---s. By the square-free property of the function f and applying Lemma A.1,
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we are able to find a set of binary vectors (ic1 , iz, .

that

-, ¥%) in polynomial-time, such

a8

N
Xz X X
f(il’.iZ’ <| |,Bl B ﬁ ’d_ﬂ) >‘L'Ml)max(M)- D
S
A.5 Proof of Theorem 3.6

Proof The proof is analogous to the proof of Theorem 3.3. The main differences are:
(i) we use

d
dildy)---dy\F (%', & -~-,£d):E[l_[§,~f(£§,£§,~-,fcg):|
i=1

instead of invoking Lemma 3.4 directly, where J?’g (k=1,2,---,s) is defined by
(5); and (ii) we use f(d xs dlzifg, e ifcé) instead of f(é Zzzl ékfck) during the

randomization process. g
A.6 Proof of Proposition 3.7

Proof Whend =d’ =1, (T) can be written as

max xTQy
st.  xeB", yeS",

For any fixed x, the corresponding optimal y must be QTx/||QTx| due to the
Cauchy-Schwartz inequality, and accordingly,

T
xTQyszQ|| gT;C” = || QTx|| =/xTQ00"x.

Thus the problem is equivalent to max,cgn xT Q @ x. Noticing that Q QT is pos-
itive semidefinite, by the result of Nesterov [27], it admits an approximation ratio
2/m. Thus the original problem admits a polynomial-time approximation algorithm
with approximation ratio ,/2/7. O

Proposition A.3 (He, Li, and Zhang [19]) (S): Maxyicgmi y2egm YHT Qy? can be
solved in polynomial-time, with vmax (S) > || Q| //m1.

A.7 Proof of Theorem 3.8

Proof The proof is based on mathematical induction on the degree d + d’. Proposi-
tion 3.7 can be used as the base for the induction process when d +d’ = 2.
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For general d +d' >3, if d’ > 2, let ¥ = y'(y?)T. Noticing that |Y|? =
|yt ||2||yd |> =1, (T)' can be relaxed to a case with degree d +d’ — 1, i.e.,
max F(xl,xz, . ,xd, Y,yz,y3, . 7yd’71)
st. xkeB™, k=1,2,---.d,
YeSmma, yteSm, =273 ....d —1.

By induction, a feasible solution (', #2, .-+, £¢, ¥, 3%, 3, .-, % 1) can be found

in polynomial-time, such that
A r_
F(xlsxzs"'9xd1Y7y25y3s"'syd 1)
2d-1 _1 ,
> (2/m) T (ning---ng_imam3---mg 1) " 2 vmax (T”).

Let us denote Q = F(A1 Az .- ,fcd, 3723)3 75}01’—1’ -) € R™>™d' Then by
Proposition A.3 (used in DR 2 of [19]), the problem max ylesm, yd' esmar oHToyd

can be solved in polynomial-time, with its optimal solution (jf1 , jrd/) satisfying
21 22 ad o1 a2 ad’ “NT yad
F(®L,2% 205,57 .3)=(") 03 =110ll/v/m1.

By the Cauchy-Schwartz inequality, it follows that

IQl= max QeY>QeV=F(" %% .- 27,55, 57").
Yes™i"a’

Thus we concludes that

F( 2%, 2055737
> 101/ v/mt

>F( 1 A2,~~,.)Acd,f',jl2,jf3,~',j’d/71)/\/n71
= T/T vmax(T/)-

Ford+d >3andd =1,let X = x!(x9)T. (T)' can be relaxed to the other case
with degree d — 1 +d’, i.e.,

max F(X,x2,x3,-~-,xdfl,yl,yzw"»yd/)
st. XeBmmd, xkeBw, k=23 --.,d—1,
ygeS"”, (=1,2,---,d.

By induction, the problem admits a polynomial-time approximation algorithm with
approximation ratio (2/71)% (npnz -+ -ng_ymymy -+ -myr_| )’%. In order to decom-
pose X into x! and x¢, we shall first conduct the randomization procedure as (2)
(DR 3.1) in the proof of Theorem 3.1, which will further deteriorate by an additional
factor of njﬂ as shown in (3). Combining these two factors, we are led to the ra-

: /
tio 77. O
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A.8 Proof of Theorem 3.9

Proof Like in the proof of Theorem 3.2, by relaxing model (H) to (T)’, we are able
tofind &1, %2, -, 24,31, 5%, -, 5%) with ¥ € B" forall 1 <k < d and 3 € S™
forall 1 < ¢ < d’, such that

'—1

Al A ad Al & ~d' 2d—-1 _d-1 _d-1
F(xlaxza'.'9xd’ylay25'.'9yd)>(2/n) 2 n 2 m 2 Umax(H/).

Leté&1,8,---,&4,m1,12, -, ng beii.d. random variables, each taking values 1 and
—1 with equal probability. By applying Lemma 3.4 twice, we have

d

E|:l_[§il_[77j. (Zékx Zwy )} dd'\F(& &2, 205 5 ).
i=1 j=1 k=1

Thus we are able to find 8 € B¢ and ,B/e]B%d/,such that

d d
n.&nﬁ}f(xﬂkx Zﬂ/ ”)>d'd'F( A SRR S ST L )

i=1 j=1 k=1

If d is odd, let x = ]_[;izl Bi ]_[?/:1 ,8;. ZZ lﬁkﬁk and y = Zf/ By 3% otherwise

let X = ZZ:] Bix* and § = ]_[f=1 Bi ]—[J lﬁ Zz 1By #°. Noticing ||§]| < d’ and
combining the previous two inequalities, it follows that

f(JE ||A||) dd/dnﬁlnf’f<zf’kx Zﬁ/> Th vmax (H').

i=1 j=1

Denote y = y/||¥|l € S™. Since x/d € [—1, 1]" and f(x, y) is square-free in x, by
applying Lemma A.1, X € B" can be found in polynomial-time, with

fE3) > f@&/d,§) > Ty vmax(H'). 0
A.9 Proof of Theorem 3.10

Proof Following the same argument as in the proof of Theorem 3.9, we shall get (6),
which implies

d d & )
E[]_[&- [1n f(Zékﬁk, > ne&eﬂ > d1d\Q/m) T T v ().
k=1 =1

i=1 j=1

Denote ¥z := 3 Ly g#F and § V= 5 Ze L ne3". Clearly we have

|:l_[";:z Hﬂj f(xé yn :| T]-] Umax(H/)
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Pick any fixed y’ € S" and consider the following problem

(H) max f(x,y/)
st. xeB".

Since f(x, y’) is square-free in x and has no constant term, by Lemma A.2, a binary
vector x’ € B" can be found in polynomial-time with f(x’,y) >0 > Vmin () >
vmin(H/)-

Next we shall argue f(X¢,y,) > vmin(H'). If this were not the case, then
f&e, y,) < vmin(H”) < 0. By noticing 13,1l < 1, this leads to

1= fEe. 5,) < f@Ee. §,) < vmin(H).

Also noticing X¢ € [—1, 1]", by applying Lemma A.1, a binary vector X € B" can be
found with

fEe. 3,/15,1) =153,

Umin(H/) g f(i"v j’n/”j]n”) g f('%f’ 3’7]/”3’7]”) < Umin(H/),

resulting in a contradiction.
By that f(fcg,j)n — Umin(H) > 0, it follows

(et

| =

E|:f(-£'$7yn Umm

d

d
H&‘ H nj= 1]
=1 =1

~ E|:f('£.&'1 .91]) - Umin(H

1 SN
- EE[f(xév yr,) - Umin(H

d d
[1& 11 =—1]
i=1 j=1

—E ]_[5,]_[771 fGe. §y) — vmin (H ))}

Li=1 j=1

=E Hle_[n; f G, ynj| 7h Vmax(H').

Li=1 j=1

Thus we are able to find B € BY and B’ € BY with ]_[;1: 1 Bi ]_[’j.: " ,3} =1, such that
f(“eﬂa S’ﬁ’) - vmin(H/) P 2"-';1 vmax(H/)-

Denote y” = y4/I|yp |l € S™. Since ¥4 € [-1, 1]", by Lemma A.1, a binary vector

x” € B" can be found in polynomial-time with f(x”, y"”) > f(xg, y”). Below we
shall prove either (x’, y") or (x”, y”) will satisfy

flx,y)— Umm( ) = T}/L] (Umax(H/) - Umin(H/))~ @)

@ Springer



30 S. He et al.

Indeed, if —vmin(H') > 7 (Vmax (H') — vmin(H")), then (x’, y’) satisfies (7) in this
case since f(x’, y") > 0. Otherwise, if —vmin(H') < 7 (Vmax(H') — vmin(H')), then

Umax(H/) > (1 - T;-])(Umax(H/) - Umin(H/)) > (Umax(H/) - Umin(H/))/zv
which implies
f(i'ﬂv j’ﬁ/) - Umin(H/) = 27;-1 vmax(H/) = T}] (Umax(H/) - vmin(H/))~
The above inequality also implies that f(¥g, y/) > 0. Therefore, we have
FE YY) = FEpY) = 15177 F &, Vo) = f(Rp, Yp),

implying (x”, y”) satisfies (7). Finally, argmax{f(x’, '), f(x”, y")} satisfies (7) in
both cases. O

A.10 Proof of Theorem 3.11

Proof The proof is analogous to the proof of Theorem 3.9. We first relax (M)’ to
(T) and get an approximate solution (21, ,\?2, e ,fcd, j’l, &2, e ,j:d ) using Theo-
rem 3.8. By applying Lemma 3.4 s 4 ¢ times, we have

d d’
E[l—[éil—[njf(févfg"" PR ,&i,)}

i=1 j=1

s t
/ o1 22 ad A1 22 ~d'
=[Ta[Jdetr@E #2250 5% - 39),
k=1 =1

where
1 dy+dy d
a1 sk a2 ~k s ~k
X :=Z«Ekx . Xp= Z X", oo, Xpi= Z &,
k=1 k=d;+1 k=d\+dy+--~4ds_1+1
and
d| di+d; d’
N Al A2 ~l N N
yn’=2n(y’ yr)'_ Z 7)6.)’7 Tt yn'_ Z Wy
=1 l=d|+1 l=d+d)++d]_ | +1

In the above identity, as one of dy (k =1,2,---,5s) or one of dé €=1,2,---,1)

. d J
is odd, we are able to move [[;_; & []_
ing vector (fclg or jff; whenever appropriate) in the function f. Other derivations are

essentially the same as the proof of Theorem 3.9. O

| n;j into the coefficient of the correspond-
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A.11 Proof of Theorem 3.12

Proof The proof is analogous to that of Theorem 3.10. The main differences are:
(i) we use

d d
E[l_[fil_[njf(févf?“'1’22795’929"' %)}

i=1  j=

_Hdk Hde!p 122 w50 5% 5
k=1 t=1

2

instead of (6); and (ii) we use f( d—i cee

f(xéayn' O

A.12 Proof of Theorem 3.14

ot

,-~~,2,) instead of

>

s
&

’

LR
RS
Rl

Proof We may without loss of generality assume p(x) is square-free since we have
(x,-)2 =1fori=1,2,---,n, which allows us to reduce the power of x; to 0 or 1. We
may further assume p(x) to have no constant term. Thus by homogenization

X X X
o-$ranwior(() () ()

d

=Fx,x,---,x)=f(x), (3)
—— ——

where f(x) = p(x) if x, =1, and f(x) is an (n + 1)-dimensional homogeneous
polynomial function of degree d. During this proof, the ‘bar’ notation, e.g., X, is
reserved for an (n 4 1)-dimensional vector, with the underlying letter x referring
to the vector of its first n components, and the subscript ‘4’ (the subscript of xj,)
referring to its last component.

Two immediate observations are in order here. First, f(x) is square-free with re-
spect to all the variables x1, x2, -+ -, X, but is not square-free with respect to xj.
Second, the last component of the tensor form F is 0, since there is no constant term
in the polynomial p(x).

(P) is then equivalent to

max f(x)

_ x
s.t. x:( > xeB", x,=1,
Xh

which can be relaxed to an instance of (T') as follows
(T) max F(x' %% ... %9

st.  xkeB"t!, k=1,2,---.,d.
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Let (u', 42, --- , %) be the feasible solution of (7') found by Theorem 3.1 with

F@'a, . a%) >+ 1)~ @/m) " In(l + v2) vman ()
> (n+ 177 /1) I+ V2) vmax (P).
Denote o* ;= af /d for all 1 <k < d, and consequently
F(' 9%, - o)) =d™F(a',u?, - )
>d= /) In(1 +V2) 1+ 1) T vmax(P).

Notice that for all 1 <k <d, |v’,§| = |u’,‘l/d| = 1/d < 1 and the last component of
tensor F is 0. By applying Lemma 3.13, it follows that

[ ITnr () (2) - ()] = rnn o0

and
el 7 gl (&2 gqv? _0
L) L) ) | )
where (1,12, ,nq) = nT are independent random variables, taking values 1 and
—1 with E[n] = vfl for all 1 <k <d, and (&1,&,---,&) = ET are i.i.d. random

variables, taking values 1 and —1 with equal probability. By combining these two
identities, we have, for any constant c, the following identity

F(', 9% -, 99

T ﬁ})F((ﬂ11v1>’ (ﬂzlvz)’ o <ﬂdlvd>>

BB TTi_, pr=—1
1 2 d
+ Z (c—i—Prob{n:,B})F((’Bllv )’<,321v >,.“’</3le ))
ﬂEBd’HZ=1ﬁk=1

If we let ¢ = max BeB [TE_, pr=—1 Prob {5y = B}, then in the above identity, the co-

efficient of each term F(-) is nonnegative. Therefore we are able to find B’ =
By, B, -+, BT € B? such that

7.1 /2 704
F((ﬂllv ) (ﬁzl" ) , <’3d1” )) >0 F(', %5,
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with

-1

10 := Z (c+Prob{n=ﬂ})~|— Z (c—Prob{n:ﬂ}))

BB [Ti_; B=1 BB [T{_; fr=—1

_ 1 1\ -1
> (2c+ 1) e (24 —) +1) > ,
(2fe+1) ( 272a) I +e
where ¢ < (% + %)d is applied because E[n;] = vﬁ ==l1/dforall 1 <k <d.

1k
Let us denote z¥ = (iﬁ) = (ﬁklv ) forall 1 <k <d, and we have
h

F(z'2% 2 > F(' 0% )
In(1 ++/2) /2\%! _
>M(—) A+ 1) T v (P). (9)
14+e T

For any B = (1, B2, -+, Ba)T € B9, denote

d
ZB) =P+ Dz +) gt

k=2

By noticing zk = 1 and |z¥| = |v¥| = |u¥|/d = 1/d forall 1 <k <dand 1 <i <n,
it follows that

2<|zm(B)|<2d and |z(B)| <@+ 1)/d+(d-1)/d=2, VI<i<n.

Thus z(8)/zr(B) € [—1, 1]". By Lemma A.1, a binary vector x’ € B" can be found,
such that

vmin(P) < p(x) < p(2(B)/z0(B)) = £ (2(B) /21 (B)).
Moreover, we shall argue below that
pi=1 = f(z(B)= Q) vmin (P). (10)

If this were not the case, then f(z(8)/(2d)) < vmin(P) < 0 (by Lemma A.2). Notice
that 81 = 1 implies z;(B8) > 0, and thus we have

2B\ (24 \, (2B 28 |
f(mm) - (mm) f( 2d ) S f( >d ) < vmin (P),

which is a contradiction.
Suppose (£1,&2, -+ ,&7) = ’g‘T are i.i.d. random variables, taking values 1 and —1
with equal probability. By Lemma 3.4 it follows that

dIF((d+Dz', 2%, -, 79)

= E|:li[é§kf(2(§)):|

k=1
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1 d
=1 [ z®) & =1, Hsk—l}——E[f(Z@)) slzl,]"[sk=—1}
k=2
1 B d
- 2E| fz®) sl=—1,1"[sk=1}
L k=2
1 B d
+E f(z®) 51=—1,1j[sk=—1}
1 d
ZE[f z®) a1 =1, ka_1:|——E|:f(Z($)) sl=1,]"[sk=—1}
k=2

r d
— ~E| f(2(-9)) sl=1,1"[sk=(—1>d—1}
L k=2

1 d
+E F(zZ(=8)|& = 1,]j[sk=(—1>d}

By inserting and canceling a constant term, noticing f(z(—£§)) = f(—z(&)) =
(=1¢ f(z(&)), the above expression further leads to

dIF(d+Dz' 7% -, 79)

= E|:li[§kf(5($)):|

k=1

1 . d
=ZE|:(f(Z($)) (2d)* Umm(P) U = :|
1 d
-7 E[(f(i(é)) — Qd) vin(P)) |81 =1, [ [ & = —1}
k=2
(—¢-! a
+— E|:(f(2($))—(2d)dvmin(1’)) slzl,]"[skz(—nd—l}
k=2
(-1¢ d
+— E[(f(i(é))—(Zd)d Umin(P)) sl=1,]"[sk=<—1>d}
k=2

d
sl=1,1"[sk:1},

k=2

<3 E[(f(i(é)) — 2d)! vmin(P))
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where the last inequality is due to (10). Therefore, we are able to find B’ =
B, By, BNT e BY with B =[1¢{_, B! = 1, such that

F(Z(8") — Q) vmin(P) = 2d'F((d + DZ', 22, -+, 24
(z(8")) (

_ 2nd +2) (24!
- 1+e T

d—=2

-(d+ 1)!d_d(l’l + 177 vmax(P),

where the last step is due to (9).

By Lemma A.2, a binary vector x’ € B" can be found in polynomial-time with
p(x") > 0. Since z(B")/zn(B") € [—1,1]", by Lemma A.1, a binary vector x” € B"
can be found in polynomial-time with p(x”) > p(z(8”)/z1(B")). Below we shall
prove at least one of x” and x” satisfies

p(X) — Umin(P) = fP(Umax(P) - vmin(P))- (11)

Indeed, if —vmin(P) = TP (Vmax (P) — vmin(P)), then x’ satisfies (11) in this case.
Otherwise we shall have —vpin(P) < Tp (Vmax (P) — Umin(P)), then

Vmax (P) > (1 — TP)(”max(P) - Umin(P)) > (Umax(P) - vmin(P))/z,

which implies

HCD) , 21 +2) (2
f( 2d >_Umm(P)>(2d) 714—6 <7T>

d-=2

@4+ 0+ DT vpax(P)
ZTp (Umax(P) - Umin(P))~

The above inequality also implies that f(z(8"”)/(2d)) > 0. Recall that 8] = 1 implies
zn(B”) > 0. Therefore,

, 2B\ (NN [ 2d ) Cw%> wa)
p“)>p(aww>_f<uww>_<aww>f” 2 )7\ )

which implies x” satisfies (11). Finally, arg max{p(x’), p(x”)} satisfies (11) in both
cases. Il
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