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Random sampling is a simple but powerful method in statistics and in the design of randomized algorithms. In a typical
application, random sampling can be applied to estimate an extreme value, say maximum, of a function f over a set S ⊆�n.
To do so, one may select a simpler (even finite) subset S0 ⊆ S, randomly take some samples over S0 for a number of times, and
pick the best sample. The hope is to find a good approximate solution with reasonable chance. This paper sets out to present
a number of scenarios for f , S and S0 where certain probability bounds can be established, leading to a quality assurance
of the procedure. In our setting, f is a multivariate polynomial function. We prove that if f is a d-th order homogeneous
polynomial in n variables and F is its corresponding super-symmetric tensor, and �i (i = 1121 : : : 1 n) are i.i.d. Bernoulli
random variables taking 1 or −1 with equal probability, then Prob8f 4�11 �21 : : : 1 �n5≥ �n−d/2�F �19≥ �, where �1 � > 0 are
two universal constants and � · �1 denotes the summation of the absolute values of all its entries. Several new inequalities
concerning probabilities of the above nature are presented in this paper. Moreover, we show that the bounds are tight in most
cases. Applications of our results in optimization are discussed as well.
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1. Introduction. Let f 4x52 �n → � be a function, and S ⊆ �n be a given set, wherewith we consider:
maxx∈S f 4x5. A possible generic approximation method for solving this problem would be randomization and
sampling. In particular, we may proceed as follows: (i) choose a suitable and well-structured subset S0 ⊆ S;
(ii) design a suitable probability distribution on S0; (iii) take some random samples and pick the best solution.
The quality of this approach, of course, depends on the chance of hitting some “good solutions” by the random
sampling. In other words, a bound in the following format is of crucial importance to us:

Prob
�∼S0

{

f 4�5≥ � max
x∈S

f 4x5
}

≥ �1 (1)

where � > 0 and 0 < � < 1 are certain constants.
In another situation, the original problem of interest is maxx∈S0

f 4x5. Replacing the constraint set to be
x ∈ S is a relaxation and it can help to create an easier problem to analyze. In this setting, a bound like
(1) is useful in terms of deriving an approximate solution for solving the problem. A good example of this
approach is the max-cut formulation of Goemans and Williamson [6], where S0 is the set of rank-one positive
semidefinite matrices with diagonal elements being all-ones, and S is S0 dropping the rank-one restriction.
In Nesterov [19], Luo et al. [18], He et al. [10], this technique helped in the design of efficient randomized
approximation algorithms for solving quadratically constrained quadratic programs by semidefinite programming
(SDP) relaxation.

Motivated mainly due to its generic interest and importance, primarily in optimization, the current paper is
devoted to the establishment of inequalities of type (1), under various assumptions. Of course such probability
estimation cannot hold in general, unless some structures are in place. However, once (1) indeed holds, then
with probability � we will get a solution whose value is no worse than � times the best possible value of f 4x5
over S. In other words, with probability � we will be able to generate a �-approximate solution. In particular, if
we independently draw m trials of � on S0 and pick the one with the largest function value, then this process is

889

mailto:simaihe@cityu.edu.hk
mailto:isyebojiang@gmail.com
mailto:zheningli@gmail.com
mailto:zhangs@umn.edu


IN
F
O
R
M
S

ho
ld
s
co

p
yr
ig
h
t
to

th
is

ar
tic

le
an

d
di
st
rib

ut
ed

th
is

co
py

as
a
co

ur
te
sy

to
th
e
au

th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
s:
//p

ub
so

nl
in
e.
in
fo
rm

s.
or
g/
.

He et al.: Probability Bounds for Polynomial Functions in Random Variables
890 Mathematics of Operations Research 39(3), pp. 889–907, © 2014 INFORMS

a randomized approximation algorithm with approximation ratio � , where the probability to this quality solution
is at least 1 − 41 − �5m. If m= ln41/�5/� then 1 − 41 − �5m ≥ 1 − �, and this randomized algorithm indeed runs
in polynomial-time in the problem dimensions.

In fact, the framework of our investigation, viz. the probability bound (1), is sufficiently rich to include some
highly nontrivial results beyond optimization as well. As an example, let f 4x5 = aTx be a linear function, and
S = S0 = �n 2= 811−19n be a binary hypercube. Khot and Naor [13] derived the following probability bound,
which can be seen as a nontrivial instance of (1).

For every � ∈ 4011/25, there is a constant c14�5 > 0 with the following property: Fix a = 4a11 a21 : : : 1 an5
T ∈ �n and

let �11 �21 : : : 1 �n be i.i.d. symmetric Bernoulli random variables (taking ±1 with equal probability), then

Prob
{ n
∑

j=1

aj�j ≥

√

� lnn
n

�a�1

}

≥
c14�5

n�
0 (2)

Since maxx∈�n aTx = �a�1, (2) is of type (1), with � =
√

� lnn/n and � = c14�5/n
�. This bound indeed gives

rise to an ä4
√

lnn/n5-approximation algorithm for the binary constrained trilinear form maximization problem:

max F 4x1 y1 z5 2=
n
∑

i1 j1 k=1

aijkxiyjzk

s.t. x1 y1 z ∈�n0

To see why, let us denote its optimal solution to be 4x∗1 y∗1 z∗5 = arg maxx1 y1 z∈�n F 4x1 y1 z5. By letting a =

F 4·1 y∗1 z∗5 ∈�n and �11 �21 : : : 1 �n be i.i.d. symmetric Bernoulli random variables, it follows from (2) that

Prob
{

F 4�1 y∗1 z∗5≥

√

� lnn
n

�F 4·1 y∗1 z∗5�1

}

≥
c14�5

n�
0 (3)

Notice that by the optimality of (x∗1 y∗1 z∗), we have �F 4·1 y∗1 z∗5�1 = F 4x∗1 y∗1 z∗5. Besides for any fixed �,
the problem maxy1 z∈�n F 4�1 y1 z5 is a binary constrained bilinear form maximization problem, which admits a
deterministic approximation algorithm with approximation ratio 0003 (see Alon and Naor [1]). Thus we are able
to find two vectors y�1 z� ∈�n in polynomial-time such that

F 4�1 y�1 z�5≥ 0003 max
y1 z∈�n

F 4�1 y1 z5≥ 0003F 4�1 y∗1 z∗51

which by (3) implies

Prob
{

F 4�1 y�1 z�5≥ 0003

√

� lnn
n

F 4x∗1 y∗1 z∗5

}

≥
c14�5

n�
0

Now we may independently draw �11 �21 : : : 1 �n, followed by the algorithm proposed in Alon and Naor [1] to
solve maxy1 z∈�n F 4�1 y1 z5. If we apply this procedure n� ln41/�5/c14�5 times and pick the one with the largest
objective value, then it is actually a polynomial-time randomized approximation algorithm with approximation
ratio 0003

√

� lnn/n, whose chance of getting this quality bound is at least 1 − �.
The scope of applications for results of type (1) is certainly beyond optimization per se; it is significant in the

nature of probability theory itself. Recall that most classical results in probability theory is to upper bound the
tail of a distribution (e.g., the Markov inequality and the Chebyshev inequality), say Prob8� ≥ a9≤ b. In other
words, these are the upper bounds for the probability of a random variable beyond a threshold value. However,
in some applications a lower bound for such probability can be relevant, in the form of

Prob8� ≥ a9≥ b0 (4)

One interesting example is a result due to Ben-Tal et al. [2], where they proved a lower bound of 1/48n25 for
the probability that a homogeneous quadratic form of n i.i.d. symmetric Bernoulli random variables lies above
its mean. More precisely, they proved the following:

If F ∈�n×n is a symmetric matrix and � = 4�11 �21 : : : 1 �n5
T are i.i.d. symmetric Bernoulli random variables, then

Prob8�TF� ≥ tr4F 59≥
1

8n2
0
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As a matter of fact, the authors went on to conjecture in Ben-Tal et al. [2] that the lower bound can be as
high as 1/4, which was very recently disproved by Yuan [23]. However, the value of the tight bound remains
unknown. A significant progress towards this tight bound is due to He et al. [10], where the authors improved
the lower bound of 1/48n25 to 0003. Note that the result of He et al. [10] also holds for any �i’s being i.i.d.
standard normal random variables. Luo and Zhang [17] provides a constant lower bound for the probability
that a homogeneous quartic function of a zero mean multivariate normal distribution lies above its mean, which
was a first attempt to extend such probability bound for functions of random variables beyond quadratic. For
a univariate random variable, bounds of type (4) and its various extensions can be found in a recent paper by
He et al. [11].

A well known result of Grünbaum [7] can also be put in the category of probability inequality (4). Grünbaum’s
theorem asserts:

If S ⊆�n is convex and � is uniformly distributed on S, then for any c ∈�n,

Prob
{

cT� ≥ cTE�
}

≥
1
e
0

The current paper aims at providing various new lower bounds for inequalities of type (1), when f is a
multivariate polynomial function. To enable the presentation of our results, let us first briefly introduce the
notations adopted in this paper. For any given d-th order tensor F ∈�n1×n2×···×nd , we denote F 4x11 x21 : : : 1 xd5
to be the multilinear form induced by the tensor F , i.e.,

F 4x11 x21 : : : 1 xd5 2=
∑

1≤i1≤n111≤i2≤n21 : : : 11≤id≤nd

Fi1i2 : : : idx
1
i1
x2
i2
: : : xd

id
= F · 4x1

⊗ x2
⊗ · · · ⊗ xd51

where xi ∈�ni for i = 1121 : : : 1 d. If F ∈�nd is super-symmetric (the component is invariant under the permu-
tation of the indices), we denote f 4x5 to be the homogeneous polynomial function of x ∈ �n induced by the
super-symmetric tensor F , i.e.,

f 4x5 2= F 4x1x1 : : : 1 x
︸ ︷︷ ︸

d

5=
∑

1≤i11i21 : : : 1id≤n

Fi1i2 : : : idxi1xi2 : : : xid = F · 4x⊗ x⊗ · · · ⊗ x
︸ ︷︷ ︸

d

50

For any given set S ⊆�n, � ∼ S stands for that � is a multivariate uniform distribution on the support S. Two
types of support sets are frequently used in this paper, namely

�n 2= 811−19n and �n 2= 8x ∈�n2 �x�2 = 190

It is easy to verify the following equivalent relationship:
1. � = 4�11 �21 : : : 1 �n5

T ∼�n is equivalent to �i ∼� (i = 1121 : : : 1 n), and �i’s are i.i.d. random variables;
2. � = 4�11 �21 : : : 1 �n5

T ∼�n is equivalent to �/���2, with � = 4�11�21 : : : 1�n5
T and �i’s are i.i.d. standard

normal random variables.
To simplify the presentation, the notion ä4f 4n55 signifies the fact that there are positive universal constants

�1� and n0 such that �f 4n5 ≤ ä4f 4n55 ≤ �f 4n5 for all n ≥ n0; i.e., it is of the same order as f 4n5. To avoid
confusion, the term constant sometimes also refers to a parameter depending only on the dimension of a
polynomial function, which is a given number independent of the input data of the problem. In this paper, we
use the L1 norm (the sum of the absolute values of its entries) or L2 norm (the square root of the sum of its
squared entries) for vectors, matrices, and high order tensors.

The paper is organized as follows. In §2, we present probability inequalities of type (1) where f is a mul-
tilinear form, and � is either a random vector with i.i.d. symmetric Bernoulli random variables, or a uniform
distribution over hypersphere. Then in §3, we present another set of probability bounds of homogeneous poly-
nomial function over a general class of independent random variables, including symmetric Bernoulli random
variables and uniform distribution over hypersphere. We discuss some polynomial optimization problems where
these probability bounds can be directly applied in §4. Finally, we summarize and discuss the main results
presented in the paper in §5, with concluding remarks.

2. Multilinear tensor function in random variables. In this section we present the following result, which
provides tight probability bounds for multilinear form in two different sets of random variables.
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Theorem 2.1. Let �i ∼ �ni 4i = 1121 : : : 1 d5 be independent of each other, and �i ∼ �ni (i = 1121 : : : 1 d)
be independent of each other. For any d-th order tensor F ∈�n1×n2×···×nd with n1 ≤ n2 ≤ · · · ≤ nd, and constant
� ∈ 4011/251� ∈ 401 nd/ lnnd5, it follows that

Prob

{

F 4�11 �21 : : : 1 �d5≥ cd−1
3

√

� lnnd
∏d

i=1 ni

�F �1

}

≥
c14�5c

2d−2
3

n�
d

∏d
i=2 n

i−1
i

1 (5)

Prob

{

F 4�11�21 : : : 1�d5≥
1

24d−15/2

√

� lnnd
∏d

i=1 ni

�F �2

}

≥
c24�5

4d−1n
2�
d

√
lnnd

∏d−1
i=1 ni

1 (6)

where c14�5 is a constant depended only on �, c24�5 is a constant depended only on �, and c3 2= 8/425
√

55 ≈

001431. Moreover, the order of magnitude “
√

lnnd/
∏d

i=1 ni” inside “Prob” in (5) and (6) cannot be improved,
if the probability bound on the right-hand-side is at least the reciprocal of a polynomial function in nd.

We remark here that the degree d is deemed a fixed constant in our discussion. If we let S = �n1×n2×···×nd

and S0 = 8X ∈ �n1×n2×···×nd � rank4X5 = 19, then (5) is in the form of (1). Similarly, if we let S = �n1×n2×···×nd

and S0 = 8X ∈�n1×n2×···×nd � rank4X5= 19, then (6) is in the form of (1). For clarity, we shall prove (5) and (6)
separately in the following two subsections. Before doing this, let us first comment on the tightness of the bound
�d 2=ä4

√

lnnd/
∏d

i=1ni5=ä4
√

ln
∏d

i=1 ni/
∏d

i=1 ni5, where the last equality holds because d is a fixed constant
and ni ≤ nd for i = 1121 : : : 1 d − 1. The tightness of the bounds is due to the inapproximability of computing
the diameters of convex bodies, as shown below.

Lemma 2.1 (Khot and Naor [13]). Let K ∈ �n be a convex body with a weak optimization oracle. Then
there is no randomized oracle-polynomial time algorithm that can compute the L1 diameter of K with accuracy
ä4

√
lnn/n5.

Lemma 2.2 (Brieden et al. [3, 4]). Let K ∈ �n be a convex body with a weak optimization oracle. Then
there is no randomized oracle-polynomial time algorithm that can compute the L2 diameter of K with accuracy
ä4

√
lnn/n5.

These results in fact lead to the tightness of �1 = ä4
√

lnn1/n15 in the case d = 1 (when the tensor F
in (5) and (6) is a vector), for, if �1 could be improved, then applying the same argument as in the proof of
Theorem 3.1 in Khot and Naor [13]: drawing enough (polynomial number of) samples of � ∈�n for the L1 case
(respective � ∈�n for the L2 case) followed by the oracle-polynomial time algorithm, would then improve the
approximation bound �1 for the L1 (respective L2) diameter.

In fact, �1 is a tight bound not only for � ∼ �n but also for other structural distributions on the support set
�n, also due to the inapproximability of computing the L1 diameters of convex bodies (Lemma 2.1). Now, for
any given degree d, if we denote n=

∏d
i=1 ni, then (5) is essentially

Prob
{

F · 4�1
⊗ �2

⊗ · · · ⊗ �d5≥ä

(

√

lnn
n

)

�F �1

}

≥ä

(

1
n�
d

)

(7)

for some constant �. Denote � = �1 ⊗ �2 ⊗ · · · ⊗ �d, and clearly it is an implementable distribution on the
support �n. Thus (7) can be regarded as in the form of (5) for d = 1. Due to the tightness of �1, the bound
�d = ä4

√

lnnd/
∏d

i=1 ni5 = ä4
√

lnn/n5 for general d in (5), once established, is tight too. The same argument
of the structural distribution on the support set �n with n=

∏d
i=1 ni can be applied to prove the tightness of �1

in (6), using Lemma 2.2. It is interesting to note that the difference between a completely free � and the more
restrictive � = �1 ⊗�2 ⊗· · ·⊗�d lies in the fact that the latter is rank-one. Hence, the establishment of (5) and (6)
actually implies that as far as the randomized solution is concerned, the rank-one restriction is immaterial.

2.1. Multilinear tensor function in Bernoulli random variables. This subsection is dedicated to the proof
of the first part of Theorem 2.1, namely (5). Let us start with some technical preparations. First, we have the
following immediate probability estimation.

Lemma 2.3. If � ∼�n, then for any vector a ∈�n,

E �aT�� ≥ 2c3�a�20
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Proof. Denote z= �aT��, and observe

E z2
= E

[ n
∑

i=1

�iai

]2

= E
[ n
∑

i=1

a2
i + 2

∑

1≤i<j≤n

�i�jaiaj

]

=

n
∑

i=1

a2
i = �a�

2
20

Direct computation shows that E z4 ≤ 94E z252. By the Paley-Zygmund inequality (Paley and Zygmund [20]), for
every � ∈ 40115,

Prob
{

z≥
√

�E z2
}

= Prob8z2
≥ �E z29≥ 41 −�524E z252/E z4

≥ 41 −�52/90

Since z≥ 0, we have

E z≥ Prob
{

z≥
√

�E z2
}

√

�E z2 ≥
41 −�52

9

√

�E z2 =
41 −�52

√
�

9
�a�20

By maximizing 41 −�52
√
�/9 over � ∈ 40115, we have E z≥ 416/425

√
555�a�2 = 2c3�a�2. �

We shall establish (5) by induction on the degree d. The first inductive step from d = 1 to d = 2 relies on the
next lemma.

Lemma 2.4. If � ∼�n, then for any matrix A ∈�m×n,

Prob
{

�A��1 ≥
c3
√
n

�A�1

}

≥
c2

3

m
0

Proof. Denote ai ∈�n (i = 1121 : : : 1m) to be the i-th row vector of the matrix A. By Lemma 2.3 we have
for each i = 1121 : : : 1m,

E ��Tai
� ≥ 2c3�a

i
�2 ≥

2c3
√
n

�ai
�10

Summing over all i = 1121 : : : 1m, we have

E�A��1 =

m
∑

i=1

E ��Tai
� ≥

2c3
√
n

�A�10

On the other hand,

4E�A��15
2
=

( m
∑

i=1

E ��Tai
�

)2

≥

m
∑

i=1

4E ��Tai
�52

≥

m
∑

i=1

4c2
3�a

i
�

2
2 = 4c2

3�A�
2
21

and

E�A��
2
1 = E

[ m
∑

i=1

��Tai
�

]2

≤ E
[

m
m
∑

i=1

��Tai
�
2

]

=m
m
∑

i=1

E 6�Tai72
=m

m
∑

i=1

�ai
�

2
2 =m�A�

2
20

Thus by the Paley-Zygmund inequality we conclude that for any � ∈ 40115,

Prob
{

�A��1 ≥
2�c3
√
n

�A�1

}

≥ Prob8�A��1 ≥ �E�A��19≥ 41 −�52 4E�A��15
2

E�A��2
1

≥ 41 −�52 4c2
3�A�2

2

m�A�2
2

0

Finally, letting �= 1
2 proves the lemma. �

We remark that in the above inequality, the coefficient c3/
√
n in front of �A�1 is independent of the number

of rows (m) for matrix A. Towards proving (5) by induction for general d, for ease of referencing we state the
following simple fact regarding joint conditional probability.

Proposition 2.1. Suppose � and � are two random variables with support sets U ⊆ �n and V ⊆ �m

respectively. For V ′ ⊆ V , W ′ ⊆U ×V and �> 0, if

Prob
�

84�1 y5 ∈W ′9≥ � ∀y ∈ V

and
Prob

�
8� ∈ V ′9 > 01

then the joint conditional probability

Prob
4�1�5

84�1�5 ∈W ′
� � ∈ V ′9≥ �0
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Proof. Notice that the first assumption is equivalent to

Prob
4�1�5

84�1�5 ∈W ′
� � = y9≥ � ∀y ∈ V 0 (8)

Suppose that � has a density g in V , then

Prob
4�1�5

84�1�5 ∈W ′
� � ∈ V ′9 = Prob

4�1�5
84�1�5 ∈W ′1� ∈ V ′9

/

Prob
�

8� ∈ V ′9

=

∫

V ′

Prob
4�1�5

84�1�5 ∈W ′1� = y9g4y5dy
/

Prob
�

8� ∈ V ′9

≥

∫

V ′

�g4y5dy
/

Prob
�

8� ∈ V ′9= �0

The case where � is a discrete random variable can be handled similarly. �

We are now ready to prove (5).

Proof of (5) in Theorem 2.1.

Proof. The proof is based on induction on d. The case for d = 1 has been established by Khot and Naor [13].
Suppose the inequality holds for d − 1, by treating �1 as a given parameter and taking F 4�11 ·1 ·1 : : : 1 ·5 as a
tensor of order d− 1, one has

Prob
4�21�31 : : : 1�d5

{

F 4�11 �21 : : : 1 �d5≥ cd−2
3

√

� lnnd
∏d

i=2 ni

�F 4�11 ·1 ·1 : : : 1 ·5�1

}

≥
c14�5c

2d−4
3

n�
d

∏d
i=3 n

i−2
i

0

Define the event E1 = 8�F 4�11 ·1 ·1 : : : 1 ·5�1 ≥ 4c3/
√
n15�F �19. By applying Proposition 2.1 with � =

4�21 �31 : : : 1 �d5 and � = �1, we have

Prob
4�11�21 : : : 1�d5

{

F 4�11 �21 : : : 1 �d5≥ cd−2
3

√

� lnnd
∏d

i=2 ni

�F 4�11 ·1 ·1 : : : 1 ·5�1

∣

∣

∣

∣

E1

}

≥
c14�5c

24d−25
3

n�
d

∏d
i=3 n

i−2
i

0 (9)

The desired probability can be bounded from below as follows:

Prob
{

F 4�11 �21 : : : 1 �d5≥ cd−1
3

√

� lnnd
∏d

i=1 ni

�F �1

}

≥ Prob
4�11�21 : : : 1�d5

{

F 4�11 �21 : : : 1 �d5≥ cd−2
3

√

� lnnd
∏d

i=2 ni

�F 4�11 ·1 ·1 : : : 1 ·5�1

∣

∣

∣

∣

E1

}

· Prob8E19

≥
c14�5c

2d−4
3

n�
d

∏d
i=3 n

i−2
i

·
c2

3
∏d

i=2 ni

=
c14�5c

2d−2
3

4d−1n�
d

∏d
i=2 n

i−1
i

1

where the last inequality is due to (9) and Lemma 2.4. �

2.2. Multilinear tensor function over hyperspheres. In this subsection we shall prove the second part of
Theorem 2.1, namely (6). The main construction is analogous to that of the proof for (5). First we shall establish
a counterpart of inequality (2), i.e., we prove (6) for d = 1, which is essentially the following Lemma 2.5.
Namely, if we uniformly and independently draw two vectors in �n, then there is nontrial probability that their
inner product is at least

√
� lnn/n for certain positive �.

Lemma 2.5. For every � > 0, if a1 x ∼�n with � lnn< n are drawn independently, then there is a constant
c24�5 > 0, such that

Prob
{

aTx ≥

√

� lnn
n

}

≥
c24�5

n2�
√

lnn
0
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Proof. By the symmetricity of �n, we may without loss of generality assume that a is a given vector in �n,
e.g., a = 41101 : : : 105T. Let �i 4i = 1121 : : : 1 n5 be i.i.d. standard normal random variables, then x = �/���2

and aTx = �1/���2.
First, we have for n≥ 2

Prob8�1 ≥ 2
√

� lnn9 =

∫ +�

2
√
� lnn

1
√

2�
e−x2/2 dx

≥

∫ 4
√
� lnn

2
√
� lnn

1
√

2�
e−x2/2 dx

≥

∫ 4
√
� lnn

2
√
� lnn

1
√

2�

x

4
√
� lnn

e−x2/2 dx

=
1

√
32�� lnn

(

1
n2�

−
1
n8�

)

0

Secondly, we have
Prob8���2 ≥ 2

√
n9≤ e−2n/30 (10)

To see why (10) holds, we may use a result on the �2-distribution estimation by Laurent and Massart
[14, Lemma 1]: For any vector b = 4b11 b21 : : : 1 bn5

T with bi ≥ 0 (i = 1121 : : : 1 n), denote z=
∑n

i=1 bi4�
2
i − 15,

then for any t > 0,
Prob

{

z≥ 2�b�2

√
t + 2�b��t

}

≤ e−t0

Letting b to be the all-one vector and t = 2n/3 leads to

Prob
{

���
2
2 ≥

7n
3

+

√

8
3
n

}

≤ e−2n/31

which implies (10).
By these two inequalities, we conclude that

Prob
{

aTx ≥

√

� lnn
n

}

= Prob
{

�1

���2

≥

√

� lnn
n

}

≥ Prob
{

�1 ≥ 2
√

� lnn1���2 ≤ 2
√
n
}

≥ Prob
{

�1 ≥ 2
√

� lnn
}

− Prob
{

���2 ≥ 2
√
n
}

≥
1

√
32�� lnn

(

1
n2�

−
1
n8�

)

− e−2n/30

Therefore, there exists n04�5 > 0, depending only on �, such that

Prob
{

aTx ≥

√

� lnn
n

}

≥
1

√
32�� lnn

(

1
n2�

−
1
n8�

)

− e−2n/3
≥

1

2n2�
√

32�� lnn
∀n≥ n04�50

On the other hand, 0 <� < n/ lnn implies that Prob8aTx ≥
√
� lnn/n9 > 0. Therefore

min
n<n04�51� lnn<n1n∈�

Prob
{

aTx ≥

√

� lnn
n

}

· n2�
√

lnn= t4�5 > 01

where t4�5 depends only on �. Finally, letting c24�5= min8t4�511/42
√

32��59 proves the lemma. �
We remark that similar bound was proposed by Brieden et al. ([3, Lemma 5.1], also in [4]), where the authors

showed that

Prob
{

aTx ≥

√

lnn
n

}

≥
1

10
√

lnn

(

1 −
lnn
n

)4n−15/2

1

for any n≥ 2. Lemma 2.5 gives a more flexible bound by incorporating the parameter �, though the probability
bound at � = 1 is worse. Now, for any vector a ∈�n, as a/�a�2 ∈�n, we have for x ∼�n

Prob
{

aTx ≥

√

� lnn
n

�a�2

}

= Prob
{(

a

�a�2

)T

x ≥

√

� lnn
n

}

≥
c24�5

n2�
√

lnn
1 (11)

which implies (6) holds when d = 1. To proceed to the high order case, let us introduce the following intermediate
result, which is analogous to Lemma 2.4 in previous subsection.
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Lemma 2.6. If x ∼�n, then for any matrix A ∈�m×n,

Prob
{

�Ax�2 ≥
1

√
2n

�A�2

}

≥
1

4n
0

Proof. Let ATA= PTåP , where P is orthonormal and å= diag4�11�21 : : : 1 �n5 with �1 ≥ �2 ≥ · · · ≥ �n ≥ 0
(since ATA is positive semidefinite). Denote y = Px. Since P is orthonormal and x ∼ �n, we have y ∼ �n.
Notice that �Ax�2

2 = xTATAx = xTPTåPx = yTåy =
∑n

i=1 �iy
2
i and �A�2

2 = tr4ATA5 =
∑n

i=1 �i, and the target
probability is then

Prob
{

�Ax�2 ≥
1

√
2n

�A�2

}

= Prob
{

�Ax�2
2 ≥

1
2n

�A�
2
2

}

= Prob
{ n
∑

i=1

�iy
2
i ≥

1
2n

n
∑

i=1

�i

}

1

where y ∼�n.
By the symmetricity of uniform distribution on the sphere, we have E 6y2

17= E 6y2
27= · · · = E 6y2

n7. Combining
with E 6

∑n
i=1 y

2
i 7= 1 leads to E 6y2

i 7= 1/n for all 1 ≤ i ≤ n. Therefore

E
[ n
∑

i=1

�iy
2
i

]

=

n
∑

i=1

�iE 6y2
i 7=

1
n

n
∑

i=1

�i0

We are going to complete the proof by the Paley-Zygmund inequality. To this end, let us estimate E 6
∑n

i=1 �iy
2
i 7

2.
Again by the symmetricity of uniform distribution on the sphere, we have E 6y4

i 7 = � for all 1 ≤ i ≤ n, and
E 6y2

i y
2
j 7= � for any 1 ≤ i < j ≤ n, where �1�> 0 are constants to be determined. First

1 = E
[ n
∑

i=1

y2
i

]2

≥ E
[ n
∑

i=1

y4
i

]

= �n =⇒ �≤
1
n
0

Next
0 ≤ E 6y2

1 − y2
27

2
= E 6y4

17+ E 6y4
27− 2E 6y2

1y
2
27= 2�− 2� =⇒ �≤ �≤ 1/n0

Noticing that �1 ≥ �2 ≥ · · · ≥ �n ≥ 0 leads to

E
[ n
∑

i=1

�iy
2
i

]2

= �
n
∑

i=1

�2
i + 2�

∑

1≤i<j≤n

�i�j ≤
1
n

( n
∑

i=1

�i

)2

= n

(

E
[ n
∑

i=1

�iy
2
i

])2

0

Finally, by the Paley-Zygmund inequality, we have

Prob
{ n
∑

i=1

�iy
2
i ≥

1
2n

n
∑

i=1

�i

}

= Prob
{ n
∑

i=1

�iy
2
i ≥

1
2
E
[ n
∑

i=1

�iy
2
i

]}

≥

(

1 −
1
2

)2
4E 6

∑n
i=1 �iy

2
i 75

2

E 6
∑n

i=1 �iy
2
i 7

2
≥

1
4n

0 �

With the above preparations, the proof of (6) in Theorem 2.1 now follows from a similar induction argument
as the proof of (5); the details are omitted here. Essentially, Lemma 2.5 helps with the basis case, and Lemma 2.6
helps to complete the inductive step.

3. Homogeneous polynomial function in random variables. The previous section is concerned with tensor
forms of independent entry vectors. One important aspect of the tensors is the connection to the polynomial
functions. As is well known, a homogeneous d-th degree polynomial uniquely determines a super-symmetric
tensor of d entry vectors. In this section we shall discuss the probability for polynomial function of random
variables. In our discussion, the notion of square-free tensor plays an important role. Essentially, in the case
of matrices, “square-free” is equivalent to that the diagonal elements are all zero. For a general tensor F =

4ai1i21 : : : 1id
5, “square-free” means that ai1i21 : : : 1id

= 0 whenever at least two indices are equal.

Theorem 3.1. Let F ∈ �nd be a square-free super-symmetric tensor of order d, and let f 4x5 = F 4x1x1
: : : 1 x5 be a homogeneous polynomial function induced by F . If � = 4�11 �21 : : : 1 �n5

T are independent random
variables with E�i = 0, E�2

i = 1, E�4
i ≤ � for i = 1121 : : : 1 n, then

Prob
{

f 4�5≥

√

d!

16�
�F �2

}

≥
2
√

3 − 3
9d24d!5236d�d

1 (12)

Prob
{

f 4�5≥

√

d!

16�nd
�F �1

}

≥
2
√

3 − 3
9d24d!5236d�d

0 (13)
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Compared to Theorem 2.1 in the previous section, Theorem 3.1 only requires the random variables to be
independent from each other, and each with a bounded kurtosis, including the Bernoulli random variables
and normal random variables as special cases. It is easy to verify that, under the square-free property of F ,
together with the assumptions E�i = 0 and �i’s are independent from each other (i = 1121 : : : 1 n), we then have
E 6f 4�57 = 0. Since E�2

i = 1 (i = 1121 : : : 1 n), we compute that Var4f 4�55 = ä4�F �2
25. This means that the

standard deviation of f 4�5 is in the same order of �F �2. Assertion (12) essentially states that given any set of
independent random variables with bounded kurtosis, any square-free polynomial of these random variables will
have a certain thickness of the tail at some point.

The proof for Theorem 3.1 is technically involved, and we shall delegate the details to the appendix. Although
our main results in Theorem 3.1 are valid for arbitrary random variables, it is interesting to discuss its impli-
cations when the random variables are uniform distributions on �n and �n. In case of quadratic polynomial of
Bernoulli random variables, we have the following:

Proposition 3.1. If F is a diagonal-free symmetric matrix and � ∼�n, then

Prob
{

�TF� ≥
�F �2

2
√

30

}

≥
2
√

3 − 3
135

0

The proof of this proposition will be discussed in appendix too. We remark that Proposition 3.1 is an extension
to the result of Ben-Tal et al. [2] where it was shown that Prob8xTFx ≥ 09 ≥ 1/48n25, and the result of He
et al. [10] where it was shown that Prob8xTFx ≥ 09≥ 0003. Essentially, Proposition 3.1 is on the probability of
a strict tail rather than the probability above the mean.

Proposition 3.2. Let F ∈ �nd be a square-free super-symmetric tensor of order d, and let f 4x5 = F 4x1x1
: : : 1 x5 be a homogeneous polynomial function induced by F . If � ∼�n, then

Prob
{

f 4�5≥

√

d!

16nd
�F �1

}

≥
2
√

3 − 3
9d24d!5236d

0

Moreover, the order of magnitude n−d/2 inside “Prob” cannot be improved for d = 214.

As a remark, Proposition 3.2 can be seen as an instance of (1) in the case f 4X5 = F · X, S = 8X ∈�nd :
X is super-symmetric9 and S0 = 8X ∈ S2 rank4X5= 19. The probability bound in Proposition 3.2 directly follows
from (13), since E�i = 0, E�2

i = E�4
i = 1 for all i = 1121 : : : 1 n. It remains to show that even in this special

case, the bounds are tight when d = 2 and d = 4, which are illustrated by the following examples.

Example 3.1. For the case d = 2, define F = I − E, where I is the identity and E is the all-one matrix.
In this case, for any x ∈ �n, xTFx = n− 4eTx52 ≤ n and �F �1 = n2 − n. Therefore xTFx/�F �1 ≤ 1/4n− 15 for
any x ∈�n, implying that the ratio cannot be better than ä4n−15 for any positive probability.

Example 3.2. For the case d = 4, define F to be the square-free tensor of order 4, with all nonsquare-free
components being −1. It is obvious that �F �1 =ä4n45, and for any x ∈�n

F 4x1x1 x1 x5 =

n
∑

i=1

x4
i + 12

∑

i 6=j1 j 6=k1 i 6=k

x2
i xjxk + 6

∑

i 6=j

x2
i x

2
j + 4

∑

i 6=j

x3
i xj −

( n
∑

i=1

xi

)4

= n+ 124n− 25
∑

j 6=k

xjxk + 3n4n− 15+ 4
∑

i 6=j

xixj −

( n
∑

i=1

xi

)4

= 3n2
− 2n+ 46n− 105

∑

j 6=k

2xjxk −

( n
∑

i=1

xi

)4

= 3n2
− 2n+ 46n− 105

(( n
∑

i=1

xi

)2

− n

)

−

( n
∑

i=1

xi

)4

= 3n2
− 2n− n46n− 105+ 43n− 552

−

(( n
∑

i=1

xi

)2

− 43n− 55
)2

≤ 6n2
− 22n+ 250

Thus we have F 4x1x1 x1 x5/�F �1 ≤ä4n−25, implying that the ratio cannot be better than ä4n−25 for any positive
probability.
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We believe that examples of the above type exist for any given d ≥ 4; however, so far we are unable to
explicitly construct a general example.

Let us now specialize the random variables to be uniformly distributed on the hypersphere. Since the com-
ponents of the unit vector are not independent, we cannot directly apply Theorem 3.1. However, similar results
can still be obtained.

Proposition 3.3. Let F ∈ �nd be a square-free super-symmetric tensor of order d, and let f 4x5 = F 4x1x1
: : : 1 x5 be a homogeneous polynomial function induced by F . If � ∼�n, then

Prob
{

f 4�5≥

√

d!

4844n5d
�F �2

}

≥
2
√

3 − 3
9d24d!52108d

− e−2n/30

Proof. Let � = �/���2 with � = 4�11 �21 : : : 1 �n5
T being i.i.d. standard normal random variables. Since

E�i = 0, E�2
i = 1, E�4

i = 3 for all 1 ≤ i ≤ n, by applying (12) in Theorem 3.1 with �= 3, we have

Prob
{

f 4�5≥

√

d!

48
�F �2

}

≥
2
√

3 − 3
9d24d!52108d

0

Together with (10), we have

Prob
{

f 4�5≥

√

d!

4844n5d
�F �2

}

= Prob
{

f

(

�

���2

)

≥

√

d!

4844n5d
�F �2

}

≥ Prob
{

f 4�5≥
√

d!/48�F �21���2 ≤ 2
√
n
}

≥ Prob
{

f 4�5≥
√

d!/48�F �29− Prob8���2 ≥ 2
√
n
}

≥
2
√

3 − 3
9d24d!52108d

− e−2n/30 �

Before concluding this section, we remark that Proposition 3.3 can still be categorized to the type of (1)
with f 4X5 = F ·X, S = 8X ∈ �nd 2 X is super-symmetric9 and S0 = 8X ∈ S2 rank4X5 = 19. Luo and Zhang [17]
offered a constant lower bound for the probability that a homogeneous quartic form of a zero mean multivariate
normal distribution lies above its mean. In particular, by restricting the distributions to be i.i.d. standard normals
and quartic form to be square-free, applying Theorem 3.1 in the case of d = 4, we obtain a constant bound for
the probability that the quartic form above the mean plus some constant times the standard deviation. We may
view this as a strengthening of the result in Luo and Zhang [17].

4. Applications of polynomial function optimization. As discussed in the introduction, the probability
bounds in the form of (1) have immediate applications in optimization. In particular, in this section we shall apply
the bounds derived in §2 and §3 to polynomial function optimization problems. We shall derive polynomial-
time randomized approximation algorithms, with the approximation ratios improving the existing ones in the
literature.

4.1. Polynomial optimization in binary variables. The general unconstrained binary polynomial opti-
mization model is maxx∈�n p4x5, where p4x5 is a multivariate polynomial function. He et al. [9] proposed a
polynomial-time randomized approximation algorithm with a relative performance ratio. When the polynomial
p4x5 is homogeneous, this problem has many applications in graph theory; e.g., the max-cut problem (Goemans
and Williamson [6]) and the matrix cut-norm problem (Alon and Naor [1]). In particular we shall discuss two
models in this subsection:

4B15 max F 4x11 x21 : : : 1 xd5

s.t. xi ∈�ni 1 i = 1121 : : : 1 d3

4B25 max f 4x5= F 4x1x1 : : : 1 x
︸ ︷︷ ︸

d

5

s.t. x ∈�n0

When d = 2, (B1) is to compute the matrix � 7→ 1 norm, which is related to so called matrix cut-norm
problem. The current best approximation ratio is 0.56, due to Alon and Naor [1]. When d = 3, (B1) is a slight
generalization of the model considered by Khot and Naor [13], where F was assumed to be super-symmetric
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and square-free. The approximation ratio estimated in Khot and Naor [13] is ä4
√

lnn1/n15, which is the best
bound till now. Recently, He et al. [9] proposed a polynomial-time randomized approximation algorithm for (B1)
for any fixed degree d, with approximation performance ratio ä4

∏d−2
i=1

√

1/ni5. The results in this subsection
will improve this approximation ratio for fixed d, thanks to Theorem 2.1.

Algorithm B1 (Randomized Algorithm for (B1))
1. Sort and rename the dimensions if necessary, so as to satisfy n1 ≤ n2 ≤ · · · ≤ nd.
2. Randomly and independently generate �i ∼�ni for i = 1121 : : : 1 d− 2.
3. Solve the following bilinear form optimization problem

max F 4�11 �21 : : : 1 �d−21 xd−11 xd5

s.t. xd−1
∈�nd−11 xd

∈�nd

using the deterministic algorithm of Alon and Naor [1], and get its approximate solution (�d−11 �d).
4. Compute the objective value F 4�11 �21 : : : 1 �d5.
5. Repeat the above procedures

∏d−2
i=1 n�

i /400034c14�55
d−25 ln41/�5 times for any constant � ∈ 401 1

2 5 and choose
a solution whose objective function is the largest.

We remark that Algorithm B1 was already mentioned in Khot and Naor [13] for odd d, where a similar order
of approximation bound as in Theorem 4.1 was suggested; however, no explicit polynomial-time algorithm and
the detailed proofs of approximation guarantee were provided. The approximation ratio for Algorithm B1 and
its proof are in the following theorem.

Theorem 4.1. Algorithm B1 solves (B1) in polynomial-time with probability at least 1 − �, and its approx-
imation performance ratio is �4d−25/2∏d−2

i=1

√

lnni/ni.

The proof is based on mathematical induction. Essentially, if an algorithm solves (B1) of order d− 1 approx-
imately with an approximation ratio � , then there is an algorithm solves (B1) of order d approximately with an
approximation ratio �

√

� lnn/n, where n is the dimension of the additional order.

Proof. For given problem degree d, the proof is based on induction on t = 2131 : : : 1 d. Suppose (�11 �21
: : : 1 �d) is the approximate solution generated by Algorithm B1. For t = 2131 : : : 1 d, we treat (�11 �21 : : : 1 �d−t)
as given parameters and define the following problems

4Dt5 max F 4�11 �21 : : : 1 �d−t1 xd−t+11 xd−t+21 : : : 1 xd5

s.t. xi ∈�ni 1 i = d− t + 11 d− t + 21 : : : 1 d1

whose optimal value is denoted by v4Dt5. By applying Algorithm B1 to (Dt), (�d−t+11 �d−t1 : : : 1 �d) can be
viewed as an approximate solution generated. In the remaining, we shall prove by induction that for each
t = 2131 : : : 1 d,

Prob
4�d−t+11�d−t+21 : : : 1�d5

{

F 4�11 �21 : : : 1 �d5≥ �4t−25/2
d−2
∏

i=d−t+1

√

lnni

ni

v4Dt5

}

≥
00034c14�55

t−2

∏d−2
i=d−t+1 n

�
i

0 (14)

In other words, (�d−t+11 �d−t+21 : : : 1 �d) has a nontrivial probability to be a �4t−25/2∏d−2
i=d−t+1

√

lnni/ni-
approximate solution of (Dt).

For the initial case t = 2, the deterministic algorithm by Alon and Naor [1] (Step 3 of Algorithm B1) guarantees
a constant ratio, i.e., F 4�11 �21 : : : 1 �d5≥ 0003v4D25, implying (14). Suppose now (14) holds for t−1. To prove
that (14) holds for t, we notice that (�11 �21 : : : 1 �d−t) are given fixed parameters. Denote (zd−t+11 zd−t+21 : : : 1 zd)
to be an optimal solution of 4Dt5, and define the following events

E3 =

{

z ∈�nd−t+1
∣

∣F 4�11 : : : 1 �d−t1 z1 zd−t+21 : : : 1 zd5≥

√

� lnnd−t+1

nd−t+1

v4Dt5

}

3

E4 =

{

�d−t+1
∈E31 �

d−t+2
∈�nd−t+21 : : : 1 �d

∈�nd

∣

∣

∣

F 4�11 : : : 1 �d5

≥ �4t−35/2
d−2
∏

i=d−t+2

√

lnni

ni

F 4�11 : : : 1 �d−t1 �d−t+11 zd−t+21 : : : 1 zd5

}

0
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Then we have

Prob
4�d−t+11 : : : 1�d5

{

F 4�11 : : : 1 �d5≥ �4t−25/2
d−2
∏

i=d−t+1

√

lnni

ni

v4Dt5

}

≥ Prob
4�d−t+11 : : : 1�d5

{

4�d−t+11 : : : 1 �d5 ∈E4 � �d−t+1
∈E3

}

· Prob
�d−t+1

8�d−t+1
∈E390 (15)

To lower bound (15), first note that (zd−t+21 : : : 1 zd) is a feasible solution of 4Dt−15, and so we have

Prob
4�d−t+11 : : : 1�d5

{

4�d−t+11 : : : 1 �d5 ∈E4 � �d−t+1
∈E3

}

≥ Prob
4�d−t+11 : : : 1�d5

{

F 4�11 : : : 1 �d5≥ �4t−35/2
d−2
∏

i=d−t+2

√

lnni

ni

v4Dt−15

∣

∣

∣

∣

�d−t+1
∈E3

}

≥
00034c14�55

t−3

∏d−2
i=d−t+2 n

�
i

1

where the last inequality is due to the induction assumption on t − 1, and Proposition 2.1 for joint conditional
probability with � = 4�d−t+21 : : : 1 �d5 and � = �d−t+1. Secondly, we have

Prob
�d−t+1

8�d−t+1
∈E39

= Prob
�d−t+1

{

F 4�11 : : : 1 �d−t+11 zd−t+21 : : : 1 zd5≥

√

� lnnd−t+1

nd−t+1

F 4�11 : : : 1 �d−t1 zd−t+11 : : : 1 zd5

}

= Prob
�d−t+1

{

F 4�11 : : : 1 �d−t+11 zd−t+21 : : : 1 zd5≥

√

� lnnd−t+1

nd−t+1

∥

∥F 4�11 : : : 1 �d−t1 ·1 zd−t+21 : : : 1 zd5
∥

∥

1

}

≥
c14�5

n�
d−t+1

1

where the last inequality is due to Theorem 2.1 for the case d = 1. With the above two facts, we can lower
bound the right hand side of (15), and conclude

Prob
4�d−t+11 : : : 1�d5

{

F 4�11 : : : 1 �d5≥ �4t−25/2
d−2
∏

i=d−t+1

√

lnni

ni

v4Dt5

}

≥
00034c14�55

t−3

∏d−2
i=d−t+2 n

�
i

·
c14�5

n�
d−t+1

=
00034c14�55

t−2

∏d−2
i=d−t+1 n

�
i

0

As 4Dt5 is exactly (B1), Algorithm B1 solves (B1) approximately with probability at least 1 − �. �
We remark that theoretically we may get a better approximate solution, using the 0056-randomized algorithm

in Alon and Naor [1] to replace the subroutine in Step 3 of Algorithm B1, though that algorithm is quite
complicated. In a similar vein, we obtain approximation results for (B2).

Algorithm B2 (Randomized Algorithm for (B2))
1. Randomly generate � ∼�n and compute f 4�5.
2. Repeat this procedure 9d24d!5236d/42

√
3 − 35 ln41/�5 times and choose a solution whose objective function

is the largest.

The model (B2) has been studied extensively in the quadratic cases, i.e., d = 2. Goemans and Williamson [6]
gave a 0.878-approximation ratio for the case F being the Laplacian of a given graph. Later, Nesterov [19] gave
a 0.63-approximation ratio for the case F being positive semidefinite. For diagonal-free matrix, the best possible
approximation ratio is ä41/ lnn5, due to Charikar and Wirth [5], which is also known to be tight. For d = 3
and F is square-free, Khot and Naor [13] gave an ä4

√
lnn/n5-approximation bound. They also pointed out

an iterative procedure to get an ä4lnd/2−1 n/nd/2−15-approximation bound for odd d, which requires a linkage
between multilinear tensor function and homogeneous polynomial of any degree (see He et al. [8, Lemma 1]).
For general d, He et al. [9] proposed polynomial-time randomized approximation algorithms with approximation
ratio ä4n−4d−25/25 when F is square-free for odd d; however for even d, they can only propose a relative
approximation ratio ä4n−4d−25/25. Now, by virtue of Theorem 3.1 (more precisely Proposition 3.2), since �F �1

is an upper bound for the optimal value of (B2), absolute approximation ratios are also established when d is
even, as shown below.

Theorem 4.2. When d is even and F is square-free, Algorithm B2 solves (B25 in polynomial-time (in terms
of ln41/�5) with probability at least 1 − �, and approximation performance ratio

√

d!/416nd5.
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4.2. Polynomial optimization over hyperspheres. Polynomial function optimization over hyperspheres
have much applications in biomedical engineering, material sciences, numerical linear algebra, among many
others. Readers are referred to He et al. [8], Li [15], Li et al. [16] and references therein for more information.
Let us consider:

4S15 max F 4x11 x21 : : : 1 xd5

s.t. xi ∈�ni 1 i = 1121 : : : 1 d3

4S25 max f 4x5= F 4x1x1 : : : 1 x
︸ ︷︷ ︸

d

5

s.t. x ∈�n0

When d = 2, 4S15 and 4S25 reduce to computing matrix spectrum norms and can be solved in polynomial-time.
However they are NP-hard when d ≥ 3. For general d, 4S25 is to compute the largest eigenvalue of the tensor F .
As far as approximation algorithms are concerned, He et al. [8] proposed polynomial-time approximation algo-
rithms for 4S15 with approximation ratio ä4

∏d−2
i=1

√

1/ni5. In He et al. [8], a generic linkage relating 4S25 and
4S15 is established. This linkage enables one to get a solution with the same approximation ratio (relative ratio
for even d though) for 4S25 whenever a solution with an approximation ratio for 4S15 is available. Therefore, let
us now focus on 4S15. For 4S15, recently So [21] improved the result of He et al. [8] from ä4

∏d−2
i=1

√

1/ni5 to
ä4
∏d−2

i=1

√

lnni/ni5. Unfortunately, the method in So [21] relies on the equivalence (polynomial-time reduction)
between convex optimization and membership oracle queries using the ellipsoid method, and it is computation-
ally impractical. On the other hand, the algorithm that we present below is straightforward, while retaining the
same quality of approximation as the result in So [21].

Algorithm S1 (Randomized Algorithm for 4S15)
1. Sort and rename the dimensions if necessary, so as to satisfy n1 ≤ n2 ≤ · · · ≤ nd.
2. Randomly and independently generate �i ∼�ni for i = 1121 : : : 1 d− 2.
3. Solve the largest singular value problem

max F 4�11�21 : : : 1�d−21 xd−11 xd5

s.t. xd−1
∈�nd−11 xd

∈�nd 1

and get its optimal solution (�d−11�d).
4. Compute the objective value F 4�11�21 : : : 1�d5.
5. Repeat the above procedures

∏d−2
i=1 n

2�
i

√
lnni/4c24�55

d−2 ln41/�5 times for any constant � ∈ 401 n1/ lnn15 and
choose a solution whose objective function is the largest.

Theorem 4.3. Algorithm S1 solves 4S15 in polynomial-time with probability at least 1−�, and approximation
performance ratio �4d−25/2∏d−2

i=1

√

lnni/ni.

The proof is similar to that for Theorem 4.1, and is omitted here.

4.3. Polynomial function mixed integer programming. This last subsection deals with optimization of
polynomial functions under binary variables and variables with spherical constraints mixed up. Such problems
have applications in matrix combinatorial problem, vector-valued maximum cut problem; see e.g., He et al. [9].
In He et al. [9], the authors considered

4M15 max F 4x11 x21 : : : 1 xd1 y11 y21 : : : 1 yd
′

5
s.t. xi ∈�ni 1 i = 1121 : : : 1 d3 yj ∈�mj 1 j = 1121 : : : 1 d′3

4M25 max F 4x1x1 : : : 1 x
︸ ︷︷ ︸

d

1 y1 y1 : : : 1 y
︸ ︷︷ ︸

d′

5

s.t. x ∈�n1 y ∈�m3

4M35 max F 4x11 x11 : : : 1 x1

︸ ︷︷ ︸

d1

1 : : : 1 xs1 xs1 : : : 1 xs

︸ ︷︷ ︸

ds

1 y11 y11 : : : 1 y1

︸ ︷︷ ︸

d′
1

1 : : : 1 yt1 yt1 : : : 1 yt
︸ ︷︷ ︸

d′
t

5

s.t. xi ∈�ni 1 i = 1121 : : : 1 s3 yj ∈�mj 1 j = 1121 : : : 1 t3

and proposed polynomial-time randomized approximation algorithms when the tensor F is square-free in x (the
binary part). In fact, 4M35 is a generalization of 4M15 and 4M25, and it can also be regarded as a generalization
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of (B1), (B2), 4S15 and 4S25 as well. Essentially the approximative results can be applied by using the linkage
we mentioned earlier (see He et al. [8]) if approximation result for 4M15 can be established. In fact, 4M15 plays
the role as a cornerstone for the whole construction. The approximation ratio for 4M15 derived in He et al. [9]
is ä4

∏d−1
i=1

√

1/ni

∏d′−1
j=1

√

1/mj5. The results in §2 lead to the following improvements:

Theorem 4.4. Denote N to be the set of the d + d′ − 2 smallest numbers in 8n11 : : : 1 nd1m11 : : : 1md′9.
4M15 admits a polynomial-time randomized approximation algorithm with approximation performance ratio
ä4
∏

n∈N

√
lnn/n5.

The method for solving 4M15 is similar to that for solving (B1) and 4S15, and we shall not repeat the detailed
discussions. Basically we shall sample multiple times to get a solution with high probability. For the d+d′ − 2
numbers in N , if it is the dimension of binary constraints, the algorithm uniformly picks a vector in the discrete
hypercube; and if it is the dimension of spherical constraints, the algorithms uniformly pick a vector in the
hypersphere. All the randomized procedures will be done independent from each other. As the first inductive
step, we will then come across a bilinear function optimization problem in either of the three possible cases:

• maxx∈�n1 y∈�m xTFy, which can be solved by the algorithm proposed in Alon and Naor [1] to get a solution
with the guaranteed constant approximation ratio;

• maxx∈�n1 y∈�m xTFy, which can be solved by the algorithm proposed in He et al. [9] to get a solution with
the guaranteed constant approximation ratio;

• maxx∈�n1 y∈�m xTFy, which can be solved by computing the largest singular value of matrix F .

5. Summary and concluding remark. To put the results presented in the paper in perspective, in this
section let us highlight and briefly summarize our new findings.

We set out to explore the probability bound in the form of Prob�∼S0
8f 4�5≥ � maxx∈S f 4x59≥ � with S0 ⊆ S,

denoted by (1) in this paper. The function F in our discussion is either a multilinear tensor form or a homo-
geneous polynomial function. To enable probability bounds in the form of (1), we will need some structure in
place. In particular, we consider the choice of the structural sets S0 and S respectively as follows:

1. Consider S = �n1×n2×···×nd and S0 = 8X ∈ S � rank4X5 = 19, and F ∈ �n1×n2×···×nd . If we draw � uniformly
over S0, then

Prob

{

F · � ≥ cd−1
3

√

� lnnd
∏d

i=1 ni

max
X∈S

F ·X = cd−1
3

√

� lnnd
∏d

i=1 ni

�F �1

}

≥
c14�5c

2d−2
3

n�
d

∏d
i=2 n

i−1
i

1

where c14�5 is a constant depending only on constant � ∈ 401 1
2 5 and c3 = 8/425

√
55. Moreover, the order of

√
lnnd/

∏d
i=1 ni cannot be improved if the bound is required to be at least a polynomial function of 1/nd.

2. Consider S = 8X ∈ �n1×n2×···×nd � X ·X = 19 and S0 = 8X ∈ S � rank4X5 = 19, and F ∈ �n1×n2×···×nd . If we
draw � uniformly over S0, then

Prob

{

F · � ≥
1

24d−15/2

√

� lnnd
∏d

i=1 ni

max
X∈S

F ·X =
1

24d−15/2

√

� lnnd
∏d

i=1 ni

�F �2

}

≥
c24�5

4d−1n
2�
d

√
lnnd

∏d−1
i=1 ni

1

where c24�5 is a constant depended only on constant � ∈ 401 nd/ lnnd5. Moreover, the order of
√

lnnd/
∏d

i=1 ni

cannot be improved if the bound is required to be at least a polynomial function of 1/nd.
3. Consider S = 8X ∈ �nd � X is super-symmetric9 and S0 = 8X ∈ S � rank4X5 = 19, and a square-free super-

symmetric tensor F ∈�nd . If we draw � uniformly over S0, then there exists a universal constant c > 0, such that

Prob
{

F · � ≥

√

d!

16nd
max
X∈S

F ·X =

√

d!

16nd
�F �1

}

≥ c0

Moreover, when d = 2 or d = 4, the order of n−d/2 cannot be improved for any positive bound.
4. Consider S = 8X ∈ �nd 2 X ·X = 11X is super-symmetric9 and S0 = 8X ∈ S � rank4X5 = 19, and a square-

free super-symmetric tensor F ∈ �nd . If we draw � uniformly over S0, then there exists a universal constant
c > 0, such that

Prob
{

F · � ≥

√

d!

4844n5d
max
X∈S

F ·X =

√

d!

4844n5d
�F �2

}

≥ c0
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Applying the results straightforwardly, we obtain polynomial-time randomized approximation algorithms for
solving various polynomial optimization models with high probability. Specifically, our results include:

1. ä4
∏d−2

i=1

√

lnni/ni5-approximation ratio for

max F 4x11 x21 : : : 1 xd5

s.t. xi
∈�ni 1 i = 1121 : : : 1 d0

This ratio improves that of ä4
∏d−2

i=1

√

1/ni5 proposed by He et al. [9].
2. ä4n−d/25-approximation ratio for

max f 4x5 2= F 4x1x1 : : : 1 x
︸ ︷︷ ︸

d

5

s.t. x ∈�n1

where f 4x5 is a homogeneous polynomial function with the tensor F being square-free. This ratio is new. In
the literature, when d ≥ 4 and is even, the only previous approximation ratio for this model was in He et al. [9];
however, the ratio there is a relative one.

3. ä4
∏d−2

i=1

√

lnni/ni5-approximation ratio for

max F 4x11 x21 : : : 1 xd5

s.t. xi
∈�ni 1 i = 1121 : : : 1 d0

This improves the
∏d−2

i=1

√

1/ni approximation ratio in He et al. [8], and achieves the same theoretical bound as
in So [21]. However, the algorithm proposed here is straightforward to implement, while the one in So [21] is
very involved.

4. ä4
∏

n∈N

√
lnn/n5-approximation ratio for

max F 4x11 x21 : : : 1 xd1 y11 y21 : : : 1 yd
′

5

s.t. xi
∈�ni 1 i = 1121 : : : 1 d1

yj ∈�mj 1 j = 1121 : : : 1 d′1

where N is the set of the d+d′ − 2 smallest numbers in 8n11 : : : 1 nd1m11 : : : 1md′9. This ratio improves that of
ä4
∏d−1

i=1

√

1/ni

∏d′−1
j=1

√

1/mj5 proposed in He et al. [9].
Before concluding the whole paper, let us finally remark the results in this paper are also connected to

Khintchine’s inequality (Khintchine [12]), which asserts that:

If � = 4�11 �21 : : : 1 �n5
T are i.i.d. symmetric Bernoulli random variables, then for any p > 0, there exist constants bp

and cp such that for any vector a ∈�n,

bp�a�2 ≤ 4E ��Ta�
p51/p

≤ cp�a�20 (16)

Since Khintchine’s result in early 1923, much effort has been on determining the sharp values of the constants
bp and cp or some sort of extensions of Khintchine’s inequality. In particular, similar inequality in the matrix
case (the vector a is replaced by a matrix) has been established. Recently, So [22] proved a conjecture proposed
by Nemirovskii through matrix version Khintchine’s inequality.

Observe that Lemma 2.3 is exactly the lower bound part of Khintchine’s inequality with p = 1. Furthermore
our new probability inequality (Theorem 3.1) also implies the lower bound part of Khintchine’s inequality where
the random variables are endowed with some dependent structures.

Corollary 5.1. Suppose F ∈�nd is a square-free super-symmetric tensor of orderd, andæ= � ⊗ � ⊗ · · · ⊗ �
︸ ︷︷ ︸

d

,

where � = 4�11 �21 : : : 1 �n5
T are independent random variables with E�i = 0, E�2

i = 1, E�4
i ≤ �. Then for any

p > 0, there exists a constant bp = 442
√

3 − 35/44p+d91+dd24d!52−p/2�d+p/2551/p, such that

bp�F �2 ≤ 4E �F ·æ�
p51/p0 (17)

To see why, by Theorem 3.1 we have Prob8�F · æ� ≥
√
d!�F �2/44

√
�59 ≥ 42

√
3 − 35/49d24d!5236d�d5.

Therefore

E �F ·æ�
p
≥ Prob

{

�F ·æ�
p
≥

(

√
d!�F �2

4
√
�

)p}

·

(

√
d!�F �2

4
√
�

)p

≥
2
√

3 − 3
9d24d!5236d�d

(

√
d!�F �2

4
√
�

)p

1

which implies (17).
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Appendix. Proofs of Theorem 3.1 and Proposition 3.1. The whole appendix is devoted to the proof of Theorem 3.1,
among which Proposition 3.1 is proved as a byproduct. First, we observe that �F �2 ≥ n−d/2�F �1 since F ∈�nd , and thus (13)
can be immediately derived from (12). Hence we shall focus on (12).

Furthermore, we observe that Theorem 3.1 is almost equivalent to the fact that any homogeneous polynomial function of
independent random variables with bounded kurtosis should also have a bounded kurtosis itself, as formulated as follows:

Theorem A.1. Let F ∈ �nd be a square-free super-symmetric tensor of order d, and let f 4x5 = F 4x1x1 : : : 1 x5 be a
homogeneous polynomial function induced by F . If � = 4�11 �21 : : : 1 �n5

T are independent random variables with E�i = 0,
E�2

i = 1, E�4
i ≤ � for all i = 1121 : : : 1 n, then E f 44�5≤ d24d!5236d�d4E f 24�552.

Before proving the theorem, let us note another important fact required in the proof, namely if a random variable has a
bounded kurtosis, then it has a constant probability above the mean plus some constant proportion of the standard deviation.

Lemma A.1. For any random variable z with its kurtosis upper bounded by �> 0, namely

E 6z−E z74 ≤ �4E 6z−E z72521

we have

Prob
{

z≥ E z+

√

Var4z5

4
√
�

}

≥
2
√

3 − 3
9�

0

Proof. By normalizing z, i.e., letting y = 4z− E z5/
√

Var4z5, we shall have Ey = 0, Ey2 = 1 and Ey4 ≤ �. Thus we
only need to show Prob8y ≥ 1/44

√
�59≥ 42

√
3 − 35/49�50

Denote x = t − y, where the constant t > 0 will be decided later. We have

Ex = t −Ey = t1

Ex2
= t2

− 2tEy+Ey2
= t2

+ 11

Ex4
= t4

− 4t3Ey+ 6t2Ey2
− 4tEy3

+Ey4
≤ t4

+ 6t2
+ 4t

√
�+�1

where 4Ey352 ≤ Ey2Ey4 ≤ � is applied in the last inequality.
By applying He et al. [11, Theorem 2.3], for any constant v > 0

Prob8y ≥ t9 = Prob8x ≤ 09

≥
442

√
3 − 35
9

(

−
2Ex

v
+

3Ex2

v2
−

Ex4

v4

)

≥
442

√
3 − 35
9

(

−
2t
v

+
3t2 + 3
v2

−
t4 + 6t2 + 4t

√
�+�

v4

)

(

let t =
1

4
√
�

and v =
√
�

)

=
442

√
3 − 35
9

(

−
1

2�
+

3
16�2

+
3
�

−
1

256�4
−

6
16�3

−
1
�2

−
1
�

)

=
442

√
3 − 35
9

(

24
16�

−
13

16�2
−

6
16�3

−
1

256�4

)

4notice �≥ Ey4
≥ 4Ey252

= 15 ≥
442

√
3 − 35
9

·
4

16�
=

2
√

3 − 3
9�

0 �

Let us now prove Theorem A.1. We start with a special case when d = 2 and � are symmetric Bernoulli random variables,
which helps to illustrate the ideas underlying the proof for the general case.

Proposition A.1. Let F ∈ �n×n be a diagonal-free symmetric matrix, and let f 4x5 = xTFx. If � ∼ �n, then E f 44�5 ≤

154E f 24�552.

Proof. Rewrite y = f 4�5=
∑

� a��
� , where � ∈ç 2= 8411251 411351 : : : 1 4n− 11 n59 and �4i1 j5 2= �i�j . Since E�d

i = 0
for odd d and E�d

i = 1 for even d, the nonzero terms in Ey4 are all in the forms of aijaijaijaij , aijaijaikaik, aijaijak`ak`1

and aijaikaj`ak`, where we assume i1 j1 k and ` are distinctive.
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Let us count the different types of terms.
Type A: aijaijaijaij . The total number of such type of terms is

(

n
2

)

;
Type B: aijaijaikaik. The total number of such type of terms is n ·

(

n−1
2

)

·
(4

2

)

;
Type C: aijaijak`ak`. The total number of such type of terms is

(

n
4

)

· 3 ·
(4

2

)

; and
Type D: aijaikaj`ak`. The total number of such type of terms is

(

n
4

)

· 3 · 4!.
Notice that

4Ey252
=

(

∑

�∈ç

a2
�

)2

=
∑

�∈ç

a4
� + 2

∑

�1 6=�2

a2
�1
a2
�2

=2 “Part I” + “Part II.”

Type A terms constitute exactly “Part I” in 4Ey252; each item of Types B and C will appear exactly once in “Part II”
of 4Ey252; each term of Type D can be bounded by an average of two terms in “Part II” of 4Ey252 since aijaikaj`ak` ≤

4a2
ija

2
k` + a2

ika
2
j`5/2. The number of the terms of Types B, C and D is:

n ·

(

n− 1
2

)(

4
2

)

+

(

n
4

)

· 3 ·

(

4
2

)

+

(

n
4

)

· 3 · 4! =
n4n− 154n− 25415n− 335

4
=2 N

and there are
(

n
2

)

·

((

n
2

)

− 1
)

=
n4n− 154n− 254n+ 15

4
=2 N ′

terms in “Part II” of 4Ey252. Clearly N ≤ 15N ′, which leads to Ey4 ≤ 154Ey252. �

We are now in a position to prove Proposition 3.1, which follows from Proposition A.1 and Lemma A.1.

Proof of Proposition 3.1.

Proof. Since F is diagonal-free and symmetric, it is easy to verify E 6�TF�7= 0 and

Var4�TF�5=
∑

�∈ç

a2
� = 4

∑

�∈ç

4a�/252
= 2�F �

2
20

By Lemma A.1 we have Prob8�TF� ≥
√

Var4�TF�5/44
√

1559≥ 42
√

3 − 35/135, the desired inequality holds. �

Let us now come to the proof of main theorem in the appendix.

Proof of Theorem A.1.

Proof. Let I 2= 81121 : : : 1 n9 be the index set, and ç be the set containing all the combinations of d distinctive
indices in I . Obviously �ç� =

(

n
d

)

. For any � ∈ ç, we denote x� 2=
∏

i∈� xi and x�1+�2 2= x�1x�2 (e.g., x81129 = x1x2 and
x81129+81139 = x81129x81139 = x1x2 · x1x3 = x2

1x2x3).
Since F is square-free and super-symmetric, y can be written as

∑

�∈ç a�x
� , or simply

∑

� a�x
� (whenever we write

summation over �, it means the summation over all � ∈ç). We thus have

Ey2
= E

[

∑

�11�2

a�1
x�1a�2

x�2

]

=
∑

�11�2

a�1
a�2

Ex�1+�2 =
∑

�1=�2

a�1
a�2

Ex�1+�2 =
∑

�

a2
� 0

Our task is to bound

Ey4
= E

[

∑

�11�21�31�4

a�1
x�1a�2

x�2a�3
x�3a�4

x�4

]

=
∑

�11�21�31�4

a�1
a�2

a�3
a�4

Ex�1+�2+�3+�4 0 (18)

For any combination quadruple 8�11�21�31�49, there are in total 4d indices, with each index appearing at most 4 times.
Suppose there are a number of indices appearing 4 times, b number of indices appearing 3 times, c number of indices
appearing twice, and g number of indices appearing once. Clearly 4a+3b+2c+g = 4d. In order to compute the summation
of all the terms a�1

a�2
a�3

a�4
Ex�1+�2+�3+�4 over �11�21�31�4 ∈ ç in (18), we shall group them according to different

8a1 b1 c1 g9.
1. g ≥ 1: as we know Exi = 0 for all i ∈ I , all the terms in this group will vanish.
2. b = c = g = 0: the summation of all the terms in this group is

∑

�1=�2=�3=�4

a�1
a�2

a�3
a�4

Ex�1+�2+�3+�4 =
∑

�1

a4
�1

Ex4�1 ≤ �d
∑

�

a4
� 0

3. g = 0 and b + c ≥ 1: we shall classify all the terms in this group step by step. In the following, we assume �ç� ≥ 2
and n≥ d+ 1 to avoid triviality.

• It is clear that 4a+3b+2c = 4d, 0 ≤ a≤ d−1, 0 ≤ b ≤ 44d−4a5/3 and b must be even. In this group, the number
of different 8a1 b1 c9 is at most

∑d−1
a=041 + �44d− 4a5/6�5≤ d2.
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• For any given triple 8a1 b1 c9, there are total
(

n
a

)(

n−a
b

)(

n−a−b
c

)

number of distinctive ways to assign indices. Clearly,
we have

(

n
a

)(

n−a
b

)(

n−a−b
c

)

≤ n!/4n− a− b− c5! ≤ n!/4n− 2d5+! 0
• For any given a indices appearing 4 times, b indices appearing 3 times, and c indices appearing twice, we shall

count how many distinctive ways they can form a particular combination quadruple 8�11�21�31�49 (note that orders do
count). For the indices appearing 4 times, they do not have choice but to be located in 8�11�21�31�49 each once; for indices
appearing 3 times, each has at most 4 choices; for indices appearing twice, each has at most 6 choices. Therefore, the total
number of distinctive ways to formulate the combination of quadruples is upper bounded by 4b6c ≤ 62d .

• For any given combination quadruple 8�11�21�31�49, noticing that 4Ex3
i 5

2 ≤ Ex2
i Ex4

i ≤ � for all i ∈ I , we have
�Ex�1+�2+�3+�4 � ≤ �a · 4

√
�5b · 1c = �a+b/2 ≤ �d .

• For any given combination quadruple 8�11�21�31�49, in this group each combination can appear at most twice.
Specifically, if we assume i 6= j (implying �i 6=�j ), then the forms of 8�11�11�11�29 and 8�11�11�11�19 do not appear.
The only possible forms are 8�11�21�31�49, 8�11�11�21�39 and 8�11�11�21�29. We notice that

a�1
a�2

a�3
a�4

≤ 4a2
�1
a2
�2

+ a2
�1
a2
�3

+ a2
�1
a2
�4

+ a2
�2
a2
�3

+ a2
�2
a2
�4

+ a2
�3
a2
�4
5/61

a�1
a�1

a�2
a�3

≤ 4a2
�1
a2
�2

+ a2
�1
a2
�3
5/21

a�1
a�1

a�2
a�2

= a2
�1
a2
�2
0

Therefore, in any possible form, each a�1
a�2

a�3
a�4

can be on average upper bounded by one item a2
�1
a2
�2
4�1 6= �25 in

∑

�1 6=�2
a2
�1
a2
�2

.
Overall, in this group, by noticing the symmetry of ç, the summation of all the terms is upper bounded by d2 ·

4n!/4n − 2d5+!5 · 62d · �d number of items in form of a2
�1
a2
�2
4�1 6= �25 in

∑

�1 6=�2
a2
�1
a2
�2

. Notice that there are in total
�ç�4�ç� − 15/2 = 1

2

(

n
d

)

4
(

n
d

)

− 15 items in
∑

�1 6=�2
a2
�1
a2
�2

, and each item is evenly distributed. By symmetry, the summation
of all the terms in this group is upper bounded by

d2 · 4n!/4n− 2d5+!5 · 62d ·�d

1
2

(

n
d

)((

n
d

)

− 1
)

∑

�1 6=�2

a2
�1
a2
�2

≤ d24d!5236d�d
· 2

∑

�1 6=�2

a2
�1
a2
�2
0

Finally, we are able to bound Ey4 by

Ey4
≤ �d

∑

�

a4
� +d24d!5236d�d

· 2
∑

�1 6=�2

a2
�1
a2
�2

≤ d24d!5236d�d

(

∑

�

a4
� + 2

∑

�1 6=�2

a2
�1
a2
�2

)

= d24d!5236d�d

(

∑

�

a2
�

)2

= d24d!5236d�d4Ey2520

Putting the pieces together, the theorem follows. �

Finally, combining Theorem A.1 and Lemma A.1, and noticing Var4f 4�55 = d!�F �2
2 in Theorem 3.1, lead us to the

probability bound (12) in Theorem 3.1, which concludes the whole proof.
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