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APPROXIMATING TENSOR NORMS VIA SPHERE COVERING:
BRIDGING THE GAP BETWEEN PRIMAL AND DUAL*
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Abstract. The matrix spectral norm and nuclear norm appear in enormous applications. The
generalization of these norms to higher-order tensors is becoming increasingly important, but un-
fortunately they are NP-hard to compute or even approximate. Although the two norms are dual
to each other, the best-known approximation bound achieved by polynomial-time algorithms for the
tensor nuclear norm is worse than that for the tensor spectral norm. In this paper, we bridge this
gap by proposing deterministic algorithms with the best bound for both tensor norms. Our methods
not only improve the approximation bound for the nuclear norm but also are data independent and
easily implementable compared to existing approximation methods for the tensor spectral norm. The
main idea is to construct a selection of unit vectors that can approximately represent the unit sphere,
in other words, a collection of spherical caps to cover the sphere. For this purpose, we explicitly con-
struct several collections of spherical caps for sphere covering with adjustable parameters for different
levels of approximations and cardinalities. These readily available constructions are of independent
interest, as they provide a powerful tool for various decision-making problems on spheres and related
problems. We believe the ideas of constructions and the applications to approximate tensor norms
can be useful to tackle optimization problems over other sets, such as the binary hypercube.
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MSC codes. 15A60, 52C17, 90C59, 68Q17

DOI. 10.1137/22M1482391

1. Introduction. With the advances in data collection and storage capabilities,
massive multidimensional and multiway tensor data are being generated in a wide
range of emerging applications [21]. Tensor computations and optimizations have been
an active research area in the recent decade. Computing tensor norms is evidently
essential in modeling various tensor optimization problems. One typical example is
tensor completion (see e.g., [38]), in which the tensor nuclear norm is commonly used
as the convex surrogate of the tensor rank. However, most tensor norms are NP-
hard to compute [14], such as the spectral norm [13] and the nuclear norm [10] if
the order of a tensor is more than two, a sharp contrast to matrices (tensors of order
two) whose spectral and nuclear norms are easy to compute, e.g., using singular value
decompositions.
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The tensor spectral norm [24] is commonly known as the maximization of a mul-
tilinear form over Cartesian products of unit spheres, a standard higher-order gener-
alization of the matrix spectral norm. Taking a tensor \scrT = (tijk) \in \BbbR n\times n\times n of order
three as an example, its spectral norm

\| \scrT \| \sigma =max\{ \scrT (\bfitx ,\bfity ,\bfitz ) : \| \bfitx \| 2 = \| \bfity \| 2 = \| \bfitz \| 2 = 1, \bfitx ,\bfity ,\bfitz \in \BbbR n\} ,(1.1)

where \scrT (\bfitx ,\bfity ,\bfitz ) =
\sum n

i=1

\sum n
j=1

\sum n
k=1 tijkxiyjzk is a trilinear form of (\bfitx ,\bfity ,\bfitz ). This is

equivalent to the best rank-one approximation of the tensor \scrT in the tensor community

min\{ \| \scrT  - \lambda \bfitx \otimes \bfity \otimes \bfitz \| F : \lambda \in \BbbR ,\| \bfitx \| 2 = \| \bfity \| 2 = \| \bfitz \| 2 = 1, \bfitx ,\bfity ,\bfitz \in \BbbR n\} ,

where \| \cdot \| F stands for the Frobenius norm and \otimes stands for the vector outer product,
meaning that \bfitx \otimes \bfity \otimes \bfitz is a rank-one tensor.

Although the tensor spectral norm is NP-hard to compute, it is easy to obtain
feasible solutions of (1.1) to approximate this norm. There have been a lot of research
works [34, 39, 23, 12, 16] on approximation algorithms of (1.1) in the optimization
community since the seminal work of He, Li, and Zhang [13]. The best-known worst-

case bound to approximate (1.1) in polynomial time is \Omega (
\sqrt{} 

lnn
n ) [34, 12]. One simple

approach for this bound is a naive randomized algorithm in [12]:
1. Sample a vector \bfitv uniformly on the sphere \BbbS n := \{ \bfitx \in \BbbR n : \| \bfitx \| 2 = 1\} , and

compute the spectral norm of resulted matrix, i.e., max\| \bfitx \| 2=\| \bfity \| 2=1 \scrT (\bfitx ,\bfity ,\bfitv ).
2. Repeat the above procedure independently until the largest objective value

from all samples hits the desired bound.
If we were able to sample all vectors on the unit sphere for \bfitz , then this approach cer-
tainly finds max\| \bfitx \| 2=\| \bfity \| 2=\| \bfitz \| 2=1 \scrT (\bfitx ,\bfity ,\bfitz ). It is obviously not possible to cover the
unit sphere by enumerating unit vectors. However, if we are allowed some tolerance,
say, an approximation ratio \tau \in (0,1], then a sample unit vector \bfitv becomes a spherical
cap

\BbbB n(\bfitv , \tau ) :=
\bigl\{ 
\bfitx \in \BbbS n :\bfitx T\bfitv \geq \tau 

\bigr\} 
with the angular radius \theta = arccos \tau . In this setting, \bfitv is able to generate a
\tau -approximate solution if and only if the spherical cap \BbbB n(\bfitv , \tau ) includes an optimal
\bfitz in (1.1). Alternatively, if we have a collection of unit vectors whose correspond-
ing spherical caps joining together cover the whole sphere, then the best one in this
collection can generate a \tau -approximate solution. In fact, the above algorithm does
imply a randomized cover of the unit sphere whose covering volume is at least 1 - \epsilon 
for any \epsilon > 0 with high probability. However, this is much weaker than what we
need here and even cannot guarantee the existence of a full cover. One of the major
contributions in this paper is to find a reasonable number of spherical caps to cover
the sphere, deterministically and explicitly.

There are certainly lots of decision-making problems over spheres. Among them
many are hard problems for which approximate solutions are commonly acceptable,
such as wireless communications [36] and spherical facility location [37]. There are
even harder problems where sphere covering seems irrelevant but can be indeed help-
ful. One of these problems is computing the tensor nuclear norm. Taking \scrT \in \BbbR n\times n\times n

again as an example, its nuclear norm is

\| \scrT \| \ast =min

\Biggl\{ 
r\sum 

i=1

| \lambda i| : \scrT =

r\sum 
i=1

\lambda i\bfitx i \otimes \bfity i \otimes \bfitz i, \| \bfitx i\| 2 = \| \bfity i\| 2 = \| \bfitz i\| 2 = 1, r \in \BbbN 

\Biggr\} 
.

(1.2)
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A rank-one decomposition of \scrT that attains \| \scrT \| \ast in the above is called a nuclear
decomposition [10]. This is in general different to a CANDECOMP/PARAFAC (CP)
decomposition [15], which usually requires the number of rank-one terms to be min-
imum. In fact, the tensor nuclear norm and spectral norm are dual to each other
(see e.g., [25]), i.e.,

\| \scrT \| \ast = max
\| \scrX \| \sigma \leq 1

\langle \scrT ,\scrX \rangle and \| \scrT \| \sigma = max
\| \scrX \| \ast \leq 1

\langle \scrT ,\scrX \rangle ,

where \langle \cdot , \cdot \rangle stands for the Frobenius inner product. Computing or approximating the
tensor nuclear norm is much harder whether using the definition (1.2) or the dual
formulation---the corresponding feasibility problem is not easy at all. The situation
is different for the tensor spectral norm, as the feasibility to (1.1) is trivial. There are
various methods [7, 31, 21, 4, 35, 28, 19, 6] to compute the tensor spectral norm in
practice, but there is only one known method [27] to compute the tensor nuclear norm
to the best of our knowledge. This crucial fact has resulted in alternative concepts for
the tensor nuclear norm in practice, such as the average nuclear norms of the matrix
flattenings from three different ways. In terms of approximating the tensor nuclear
norm, the best polynomial-time worst-case approximation bound is \Omega ( 1\surd 

n
) via matrix

flattenings [18] or partitions into matrix slices [22]. This bound is worse than the best-

known one \Omega (
\sqrt{} 

lnn
n ) for the tensor spectral norm. It is natural to expect achieving

this bound for the dual norm to the tensor spectral norm. As another major work
in this paper, via certain reformulation and convex optimization proposed in [17], we
are able to bridge the gap between the primal and dual norms with the help of the
constructions of spherical caps for sphere covering.

Covering a sphere by identical spherical caps has been studied in computational
geometry since the pioneering work of Rogers [32]. Instead of describing spherical
caps via the angular radius, the caps are measured in normalized volume in the
study. Specifically, by defining the normalized volume of a spherical cap to be its
true volume over the volume of \BbbS n (in this sense the normalized volume of \BbbS n is one),
sphere covering asks, for a given positive integer m, what is the smallest \delta such that
there are m spherical caps with normalized volume \delta covering \BbbS n. The quantity \delta m
is called the density of the covering. Studying the bounds of this density has been
the main research topic along this line. An upper bound of O(n lnn) for the covering
density was obtained by Rogers [33] for sufficiently small \delta . This remains the best-
known asymptotic upper bound, although there were improvements made in terms of
the constant of the asymptotic bound and for any \delta in [2, 8].

For the lower bound of covering density, there is not a clear answer in general other
than the trivial one, i.e., \delta m \geq 1. Rogers [32] stated that the density of a covering
cannot beat a natural strategy based on tiling \BbbR n with regular simplices, known as
the simplex bound, whose value remains a conjecture and unproven. Rogers [32]
computed that for \delta \rightarrow 0, the density is close to n

e
\surd 
e
. It is believed that the density

is \Omega (n). Several special cases for the simplex bound have been confirmed, either for
very small \delta or for \delta in large cap regime; see [20] and references therein. Other than
the two trivial cases for m = 1 and m = 2, which correspond to \delta = 1 and \delta = 1

2 ,
respectively, perhaps the first nontrivial work along this line is due to Lusternik and
Schnirelmann [1]: If n open or closed sets cover \BbbS n, then one of these contains a pair
of antipodal points. This implies that if \delta < 1

2 , then m \geq n + 1, an obvious lower
bound of \Omega (n) for any universal constant \delta < 1

2 .
There are two optimization problems that are relevant to sphere covering in

the literature. The sphere coverage verification is to decide whether a given set of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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spherical caps cover the sphere. Petkovi\'c, Pokrajac, and Latecki [29] showed that
sphere coverage verification is NP-hard and proposed a recursive algorithm based on
quadratic optimization. The spherical discrepancy is to find the furthest point in
\BbbS n to a given set of points \{ \bfitv 1,\bfitv 2, . . . ,\bfitv m\} \subseteq \BbbS n, i.e., min\bfitx \in \BbbS n max1\leq i\leq m\bfitx T\bfitv i. The
spherical discrepancy is also NP-hard since it is the optimization version of sphere
coverage verification, which is a decision version of spherical discrepancy. Jones and
McPartlon [20] proposed a multiplicative weights-based algorithm that obtains an
approximation bound up to lower-order terms.

Although there is extensive research on the density of sphere covering and related
problems, they do not exactly serve the purpose of our study in this paper. The
asymptotic bounds on the normalized volumes are not aligned with the goal to ob-
tain approximation bounds based on inner products between unit vectors. The upper
bounds obtained in [2] are existence results via a randomized approach. The con-
struction in [30] works only in the large cap regime for \delta = e - 

\surd 
n, which has resulted

in the number of caps being exponential in n. A recent work on spherical discrepancy
minimization [20] showed an algorithm to generate spherical caps sequentially until a
covering is satisfied, but the running time to generate a cap is O(n10). Our goal is to
achieve a good balance between the approximation measured by cos\theta for the angular
radius \theta and the number of caps that are not too large, say, bounded by a polynomial
function of n. More important, we hope to obtain explicit constructions of spherical
caps to cover the unit sphere. These will be of great benefit to the algorithm and
optimization community apart from our applications in approximating tensor norms.
The products of our simple and explicit constructions, together with some trivial and
known constructions, are summarized in Table 1.

This paper is organized as follows. After introducing some uniform notations,
we propose various constructions of spherical caps for sphere covering and bound the
ratio \tau and number of caps of each construction in section 2. We work around a

key ratio \Omega (
\sqrt{} 

lnn
n ), which is the largest possible if the number of spherical caps is

O(n\alpha ) for some universal constant \alpha > 1, from randomized covering (section 2.1) to
deterministic covering (section 2.4) with some interesting by-products (sections 2.2
and 2.3). In section 3, we apply the covering results to approximate tensor norms.
Specifically, we propose the first implementable and deterministic algorithm with the
known-best approximation bound for the tensor spectral norm and related polynomial
optimization problems in section 3.1. A deterministic algorithm with an improved ap-
proximation bound for the tensor nuclear norm is proposed in section 3.2. Numerical
performance of the proposed algorithms is reported in section 3.3. Finally, some con-
cluding remarks are given in section 4.

Table 1
Constructions of spherical caps to cover the unit sphere.

Set of \bfitv 's for \BbbB n(\bfitv , \tau ) \tau for \BbbB n(\bfitv , \tau ) Number of \BbbB n(\bfitv , \tau )'s

Any \{ \bfitv \} where \bfitv \in \BbbS n  - 1 1

Any \{ \bfitv , - \bfitv \} where \bfitv \in \BbbS n 0 2
Any regular simplex inscribed in \BbbS n 1/n n+ 1
Any basis of \BbbR n with their negations 1/

\surd 
n 2n

\BbbH n
1 (section 2.1), \BbbH n

4 and \BbbH n
5 (section 2.4) \Omega (

\sqrt{} 
lnn/n) O(n\alpha ) for \alpha > 1

\BbbH n
2 (section 2.2) \Omega (1/

\surd 
lnn) O(3n)

\BbbH n
3 (section 2.3) \Omega (1) O(\beta n) for \beta > 4

\BbbH n
0 (m) (grid points in spherical coordinates) 1 - O(n/m2) O(mn - 1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Some uniform notations. Throughout this paper, we uniformly adopt low-
ercase letters (e.g., x), boldface lowercase letters (e.g., \bfitx = (xi)), capital letters
(e.g., X = (xij)), and calligraphic letters (e.g., \scrX = (xi1i2...id)) to denote scalars, vec-
tors, matrices, and higher-order (order three or more) tensors, respectively. Denote
\BbbR n1\times n2\times \cdot \cdot \cdot \times nd to be the space of real tensors of order d with dimension n1\times n2\times \cdot \cdot \cdot \times nd.
The same notation applies for a vector space and a matrix space when d= 1 and d= 2,
respectively. Denote \BbbN to be the set of positive integers.

The Frobenius inner product between two tensors \scrU ,\scrV \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd is defined
as

\langle \scrU ,\scrV \rangle :=
n1\sum 

i1=1

n2\sum 
i2=1

. . .

nd\sum 
id=1

ui1i2...idvi1i2...id .

Its induced Frobenius norm is naturally defined as \| \scrT \| :=
\sqrt{} 

\langle \scrT ,\scrT \rangle . The two terms
automatically apply to tensors of order two (matrices) and tensors of order one
(vectors). This is the conventional norm (a norm without a subscript) used through-
out the paper.

All blackboard bold capital letters denote sets, such as \BbbR n, the unit sphere \BbbS n,
a spherical cap \BbbB n(\bfitv , \tau ), and the standard basis \BbbE n := \{ \bfite 1,\bfite 2, . . . ,\bfite n\} of \BbbR n, where
the superscript n indicates that the concerned set is a subset of \BbbR n. Three vector
operations are used, namely, the outer product \otimes , the Kronecker product \boxtimes , and
appending vectors \vee . Specifically, if \bfitx \in \BbbR n1 and \bfity \in \BbbR n2 , then

\bfitx \otimes \bfity =\bfitx \bfity T \in \BbbR n1\times n2 ,

\bfitx \boxtimes \bfity = (x1\bfity 
T, x2\bfity 

T, . . . , xn1
\bfity T)T \in \BbbR n1n2 ,

\bfitx \vee \bfity = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2)
T \in \BbbR n1+n2 .

These three operators also apply to vector sets via elementwise operations.

2. Sphere covering by spherical caps. This section is devoted to explicit
constructions of spherical caps to cover the unit sphere \BbbS n in \BbbR n for n\geq 2. Although
this is more commonly denoted by \BbbS n - 1 in the literature, our notation is to emphasize
that the sphere resides in the space of \BbbR n and to better understand the constructions
via Kronecker products.

Recall that for \bfitv \in \BbbS n and  - 1\leq \tau \leq 1, \BbbB n(\bfitv , \tau ) = \{ \bfitx \in \BbbS n : \bfitx T\bfitv \geq \tau \} is a closed
spherical cap with the angular radius arccos \tau . Obviously, \BbbB n(\bfitv , - 1) = \BbbS n, \BbbB n(\bfitv ,0)
is a hemisphere, and \BbbB n(\bfitv ,1) is a single point. A set of unit vectors \BbbH n = \{ \bfitv i \in 
\BbbS n : i= 1,2, . . . ,m\} is called a \tau -hitting set with cardinality m if

\bigcup m
i=1\BbbB 

n(\bfitv i, \tau ) = \BbbS n;
i.e., the m spherical caps cover the unit sphere. Denote all \tau -hitting sets of \BbbS n with
cardinality no more than m to be

\BbbT (n, \tau ,m) := \{ \BbbH n \subseteq \BbbS n :\BbbH n is a \tau -hitting set, | \BbbH n| \leq m\} .

It is easy to see the monotonicity, i.e.,

\BbbT (n, \tau 2,m)\subseteq \BbbT (n, \tau 1,m) if \tau 1 \leq \tau 2,
\BbbT (n, \tau ,m1)\subseteq \BbbT (n, \tau ,m2) if m1 \leq m2.

We will be working around \tau -hitting sets with \tau = \Omega (
\sqrt{} 

lnn
n ). This is the largest

possible if the cardinality of the hitting set is bounded by O(n\alpha ) with some univer-
sal constant \alpha > 1; see, e.g., [12]. Other useful \tau -hitting sets with larger \tau 's are

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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also constructed as by-products that are of independent interest. The aim is to con-
struct hitting sets with the cardinality as small as possible. Let us first look at some
elementary ones.

It is obvious that for any \bfitv \in \BbbS n,

\{ \bfitv \} \in \BbbT (n, - 1,1) and \{ \bfitv , - \bfitv \} \in \BbbT (n,0,2),

both attaining minimum cardinality. For \tau > 0, the famous Lusternik--Schnirelmann
theorem [1] rules out any possible \tau -hitting set with cardinality no more than n. There
is an elegant construction of 1

n -hitting sets with cardinality n+ 1. If \bfitv 1,\bfitv 2, . . . ,\bfitv n+1

are the vertices of a regular simplex centered at the origin and inscribed in \BbbS n, then

\{ \bfitv 1,\bfitv 2, . . . ,\bfitv n+1\} \in \BbbT 
\biggl( 
n,

1

n
,n+ 1

\biggr) 
.

Detailed construction is easier to be obtained from \BbbR n+1 and is left to the interested
reader. Raising \tau to 1\surd 

n
without increasing the number of vectors too much, one has

for any basis \{ \bfitv 1,\bfitv 2, . . . ,\bfitv n\} of \BbbR n,

\{ \pm \bfitv 1,\pm \bfitv 2, . . . ,\pm \bfitv n\} \in \BbbT 
\biggl( 
n,

1\surd 
n
,2n

\biggr) 
.

However, slightly increasing this threshold, say, to
\sqrt{} 

lnn
n , will significantly increase

the cardinality of a hitting set. As mentioned earlier, if the cardinality is bounded by

a polynomial function of n, then the largest possible \tau =\Omega (
\sqrt{} 

lnn
n ).

Toward the extreme case that \tau is close to one, the longitude and latitude of Earth
provide a clue. For any \bfitx = (x1, x2, . . . , xn)

T \in \BbbS n, we denote its spherical coordinates
to be (\varphi 1,\varphi 2, . . . ,\varphi n - 1) with \varphi 1,\varphi 2, . . . ,\varphi n - 2 \in [0, \pi ] and \varphi n - 1 \in [0,2\pi ) such that

x1 = cos\varphi 1

x2 = sin\varphi 1 cos\varphi 2

x3 = sin\varphi 1 sin\varphi 2 cos\varphi 3

...

xn - 1 = sin\varphi 1 . . . sin\varphi n - 2 cos\varphi n - 1

xn = sin\varphi 1 . . . sin\varphi n - 2 sin\varphi n - 1.

If we let \BbbD 1 =
\bigl\{ 

k\pi 
m : k= 0,1, . . . ,m - 1

\bigr\} 
and \BbbD 2 =

\bigl\{ 
k\pi 
m : k= 0,1, . . . ,2m - 1

\bigr\} 
, then the

grid points in spherical coordinates (see [17, Lemma 3.1]) are

\BbbH n
0 (m) := \{ \bfitx \in \BbbS n :\varphi 1, . . . ,\varphi n - 2 \in \BbbD 1, \varphi n - 1 \in \BbbD 2\} \in \BbbT 

\biggl( 
n,1 - \pi 2(n - 1)

8m2
,2mn - 1

\biggr) 
.

(2.1)

To see why \BbbH n
0 (m) is such a hitting set, for any \bfitz \in \BbbS n with spherical coordinates

\varphi (\bfitz ), there must exist \bfitx \in \BbbH n
0 (m) with spherical coordinates \varphi (\bfitx ) such that

\| \bfitx  - \bfitz \| \leq \| \varphi (\bfitx ) - \varphi (\bfitz )\| \leq 1

2
\cdot \pi 
m

\cdot 
\surd 
n - 1 =

\pi 
\surd 
n - 1

2m
.

Since \| \bfitx \| = \| \bfitz \| = 1, the above further leads to

\bfitx T\bfitz =
1

2

\bigl( 
2 - \| \bfitx  - \bfitz \| 2

\bigr) 
\geq 1

2

\biggl( 
2 - \pi 2(n - 1)

4m2

\biggr) 
= 1 - \pi 2(n - 1)

8m2
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2.1. Randomized \Omega (
\sqrt{} 

ln\bfitn /\bfitn )-hitting sets. It is instructive to consider ran-
domized hitting sets via the uniform distribution on \BbbS n. This is also important, as

it guarantees the existence of \Omega (
\sqrt{} 

lnn
n )-hitting sets. The following probability bound

(see, e.g., [12, 3]) provides an insight of such a hitting set.

Lemma 2.1. For any \gamma \in (0, n
lnn ), if \bfitu and \bfitv are drawn independently and uni-

formly on \BbbS n, then there is a constant \delta \gamma depending on \gamma only such that

Prob

\Biggl\{ 
\bfitu T\bfitv \geq 

\sqrt{} 
\gamma lnn

n

\Biggr\} 
\geq \delta \gamma 

n2\gamma 
\surd 
lnn

.

In fact, it is not difficult to cover 1 - \epsilon of the volume of the unit sphere for any
\epsilon > 0 by applying Lemma 2.1 with the union bound; see [12]. However, this is a much
weaker statement than Theorem 2.2 below. In particular, the event of covering 1 - \epsilon 
of the volume of \BbbS n for any given \epsilon > 0 does not even guarantee the existence of a
full cover. The following randomized hitting set has a cardinality O(n\alpha ) for some
constant \alpha > 1.

Theorem 2.2. For any \epsilon > 0 and \gamma \in (0, n
lnn ), there is a constant \kappa \gamma > 0

depending on \gamma only such that

\BbbH n
1 (\gamma , \epsilon ) :=

\biggl\{ 
\bfitz i is i.i.d. uniform on \BbbS n, i= 1,2, . . . ,

\biggl\lceil 
\kappa \gamma n

2\gamma 
\surd 
lnn

\biggl( 
n lnn+ ln

1

\epsilon 

\biggr) \biggr\rceil \biggr\} 
satisfies

Prob

\Biggl\{ 
\BbbH n

1 (\gamma , \epsilon )\in \BbbT 

\Biggl( 
n,

\sqrt{} 
\gamma lnn

2n
,

\biggl\lceil 
\kappa \gamma n

2\gamma 
\surd 
lnn

\biggl( 
n lnn+ ln

1

\epsilon 

\biggr) \biggr\rceil \Biggr) \Biggr\} 
\geq 1 - \epsilon .

Proof. The sphere covering is established in two steps: A spherical grid \BbbH n
0 to

cover the whole sphere and the randomized hitting set \BbbH n
1 to cover the grid.

According to (2.1), one has \BbbH n
0 (m)\in \BbbT (n,1 - \pi 2(n - 1)

8m2 ,2mn - 1). Letm\geq n. For any

\bfitx \in \BbbS n, there exists \bfity \in \BbbH n
0 (m) such that \bfitx T\bfity \geq 1 - \pi 2(n - 1)

8m2 . By Lemma 2.1, for any

\bfitz i \in \BbbH n
1 (\gamma , \epsilon ), there exists a \delta \gamma depending on \gamma and Prob\{ \bfity T\bfitz i \geq 

\sqrt{} 
\gamma lnn
n \} \geq \delta \gamma 

n2\gamma 
\surd 
lnn

,

i.e., Prob\{ \bfity T\bfitz i <
\sqrt{} 

\gamma lnn
n \} \leq 1 - \delta \gamma 

n2\gamma 
\surd 
lnn

. Denote t= | \BbbH n
1 (\gamma , \epsilon )| . By the independence

of \bfitz i's, we have

Prob

\Biggl\{ 
\bfity /\in 

t\bigcup 
i=1

\BbbB n

\Biggl( 
\bfitz i,

\sqrt{} 
\gamma lnn

n

\Biggr) \Biggr\} 
=Prob

\Biggl\{ 
max
1\leq i\leq t

\bfity T\bfitz i <

\sqrt{} 
\gamma lnn

n

\Biggr\} 

\leq 
\biggl( 
1 - \delta \gamma 

n2\gamma 
\surd 
lnn

\biggr) t

.

Since | \BbbH n
0 (m)| = 2mn - 1 and the points of \BbbH n

0 (m) are fixed, the probability that\bigcup t
i=1\BbbB 

n(\bfitz i,
\sqrt{} 

\gamma lnn
n ) fails to cover at least one point of \BbbH n

0 (m) is no more than

2mn - 1(1 - \delta \gamma 

n2\gamma 
\surd 
lnn

)t. In other words,

Prob

\Biggl\{ 
\BbbH n

0 (m)\subseteq 
t\bigcup 

i=1

\BbbB n

\Biggl( 
\bfitz i,

\sqrt{} 
\gamma lnn

n

\Biggr) \Biggr\} 
\geq 1 - 2mn - 1

\biggl( 
1 - \delta \gamma 

n2\gamma 
\surd 
lnn

\biggr) t

.
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By that m\geq n\geq 2, it is not difficult to verify that if t\geq n2\gamma 
\surd 
lnn

\delta \gamma 

\bigl( 
n lnm+ ln 1

\epsilon 

\bigr) 
, then

the right-hand side of the above is at least 1 - \epsilon .

To summarize, if \BbbH n
0 (m)\subseteq 

\bigcup t
i=1\BbbB 

n(\bfitz i,
\sqrt{} 

\gamma lnn
n ), then for any \bfitx \in \BbbS n, there exists

\bfity \in \BbbH n
0 (m) such that \bfity T\bfitx \geq 1 - \pi 2(n - 1)

8m2 , and further, there exists \bfitz \in \BbbH n
1 (\gamma , \epsilon ) such

that \bfitz T\bfity \geq 
\sqrt{} 

\gamma lnn
n . If we are able to verify \bfitz T\bfitx \geq 

\sqrt{} 
\gamma lnn
2n , then we must have\bigcup t

i=1\BbbB 
n(\bfitz i,

\sqrt{} 
\gamma lnn
2n ) = \BbbS n. This finally leads to

Prob

\Biggl\{ 
t\bigcup 

i=1

\BbbB n

\Biggl( 
\bfitz i,

\sqrt{} 
\gamma lnn

2n

\Biggr) 
= \BbbS n

\Biggr\} 
\geq Prob

\Biggl\{ 
\BbbH n

0 (m)\subseteq 
t\bigcup 

i=1

\BbbB n

\Biggl( 
\bfitz i,

\sqrt{} 
\gamma lnn

n

\Biggr) \Biggr\} 
\geq 1 - \epsilon .

To show that \bfitz T\bfitx \geq 
\sqrt{} 

\gamma lnn
2n , we let \theta 1 = arccos(\bfity T\bfitx ) and \theta 2 = arccos(\bfitz T\bfity ). As

cos\theta 1 \geq 1 - \pi 2(n - 1)
8m2 \geq 1 - 3

2m , one has | sin\theta 1| \leq 
\sqrt{} 
1 - 

\bigl( 
1 - 3

2m

\bigr) 2 \leq \sqrt{} 3
m . Therefore,

\bfitz T\bfitx \geq cos(\theta 1 + \theta 2)(2.2)

= cos\theta 1 cos\theta 2  - sin\theta 1 sin\theta 2

\geq 
\biggl( 
1 - 3

2m

\biggr) 
\cdot 
\sqrt{} 

\gamma lnn

n
 - 
\sqrt{} 

3

m
\cdot 1

\geq 
\sqrt{} 

\gamma lnn

2n

if n \geq n0 for some n0 that depends on \gamma only. By choosing m = n in \BbbH n
0 (m) and

\kappa \gamma =
1
\delta \gamma 
, we have the desired t for n\geq n0.

To finish the final piece for remaining n \leq n0, we may enlarge m in \BbbH n
0 (m) in

order for (2.2) to hold. If we choose \kappa \gamma =
lnm

\delta \gamma lnn correspondingly, this will ensure

\kappa \gamma n
2\gamma 
\surd 
lnn

\biggl( 
n lnn+ ln

1

\epsilon 

\biggr) 
=

lnm

lnn
\cdot n

2\gamma 
\surd 
lnn

\delta \gamma 

\biggl( 
n lnn+ ln

1

\epsilon 

\biggr) 
\geq n2\gamma 

\surd 
lnn

\delta \gamma 

\biggl( 
n lnm+ ln

1

\epsilon 

\biggr) 
.

The largest \kappa \gamma for these finite n\leq n0 provides the final \kappa \gamma that depends only on n0,
which itself depends on \gamma only.

Theorem 2.2 not only provides a simple construction with varying \gamma but also triv-

ially implies the existence of hitting sets in \BbbT (n,\Omega (
\sqrt{} 

lnn
n ),O(n\alpha )). Although \BbbH n

1 (\gamma , \epsilon )

is a full sphere covering with probability 1 - \epsilon for any small \epsilon > 0, it cannot be used
to derive deterministic algorithms, and even in some scenarios, the feasibility may be
questioned, as we will see in approximating the tensor nuclear norm in section 3.2.
Moreover, to verify whether \BbbH n

1 (\gamma , \epsilon ) covers the sphere, the sphere coverage verifica-
tion is NP-hard [29]. Therefore, explicit and deterministic constructions of hitting

sets in \BbbT (n,\Omega (
\sqrt{} 

lnn
n ),O(n\alpha )) are important. To get this job done, let us first look at

two types \tau -hitting sets with larger \tau .
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2.2. An \Omega (1/
\surd 
ln\bfitn )-hitting set. If the hitting ratio \tau goes beyond \Omega (

\sqrt{} 
lnn
n ),

we have to give up the polynomiality of n. Let us consider

\BbbH n
2 :=

\biggl\{ 
\bfitz 

\| \bfitz \| 
\in \BbbS n : \bfitz \in \{  - 1,0,1\} n, \| \bfitz \| \not = 0

\biggr\} 
.

It is obvious that | \BbbH n
2 | < 3n. We need to work out how large \tau is for this \tau -hitting

set, essentially Theorem 2.3 below. Interestingly, some results in matroid theory will
be used in the proof.

To begin with, let \BbbI := \{ 1,2, . . . , n\} and its power set 2\BbbI := \{ \BbbD : \BbbD \subseteq \BbbI \} . For any
\BbbD \in 2\BbbI , define

\BbbY n
\BbbD := \{ \bfity \in \BbbR n : yi \in \{  - 1,1\} for i\in \BbbD and yi = 0 for i\in \BbbI \setminus \BbbD \} ,

and denote \BbbY n :=
\bigcup 

\BbbD \in 2\BbbI \setminus \{ \emptyset \} \BbbY 
n
\BbbD . It is easy to see that \BbbH n

2 = \{ \bfity 
\| \bfity \| : \bfity \in \BbbY n\} . Our goal

is to establish a lower bound of min\bfitx \in \BbbS n max\bfitz \in \BbbH n
2
\bfitx T\bfitz .

Theorem 2.3. It holds that

min
\bfitx \in \BbbS n

max
\bfitz \in \BbbH n

2

\bfitx T\bfitz = min
\bfitx \in \BbbS n

max
\BbbD \in 2\BbbI \setminus \{ \emptyset \} 

max
\bfity \in \BbbY n

\BbbD 

\bfitx T\bfity 

\| \bfity \| 
= min

\bfitx \in \BbbS n
max

\BbbD \in 2\BbbI \setminus \{ \emptyset \} 

\sum 
i\in \BbbD 

| xi| \sqrt{} 
| \BbbD | 

\geq 2\surd 
lnn+ 5

.(2.3)

It is straightforward to verify all the equalities in (2.3). To show the inequality,
let us consider the following optimization problem:

max

\Biggl\{ 
\| \bfitx \| 2 :

\sum 
i\in \BbbD 

| xi| \leq \alpha 
\sqrt{} 

| \BbbD | for all \BbbD \in 2\BbbI \setminus \{ \emptyset \} 

\Biggr\} 
,

where \alpha \geq 0 is a given constant. This is equivalent to

max

\Biggl\{ 
\| \bfitx \| 2 :\bfitx \geq 0,

\sum 
i\in \BbbD 

xi \leq \alpha 
\sqrt{} 
| \BbbD | for all \BbbD \in 2\BbbI 

\Biggr\} 
,(2.4)

which is to maximize a strictly convex quadratic function over a polyhedron

\BbbX n =

\Biggl\{ 
\bfitx \in \BbbR n

+ :
\sum 
i\in \BbbD 

xi \leq \alpha 
\sqrt{} 

| \BbbD | for all \BbbD \in 2\BbbI 

\Biggr\} 
.

Therefore, the optimal solution of (2.4) must be obtained at some extreme points of
\BbbX n. To compute the optimal value, we now characterize extreme optimal points of
(2.4). We need the following two technical results for the preparation.

Lemma 2.4. If g : 2\BbbI \rightarrow \BbbR where g(\BbbD ) = \alpha 
\sqrt{} 
| \BbbD | with \alpha > 0, then \BbbX n is a

polymatroid with respect to the function g and the index set \BbbI .

Proof. It suffices to show that g is a rank function, i.e., normalized, nondecreasing,
and submodular. Obviously, g(\emptyset ) = 0 and g(\BbbD 1) = \alpha 

\sqrt{} 
| \BbbD 1| \leq \alpha 

\sqrt{} 
| \BbbD 2| = g(\BbbD 2)

whenever \BbbD 1 \subseteq \BbbD 2 \subseteq \BbbI . It remains to show the submodularity

g(\BbbD 1 \cup \BbbD 2) + g(\BbbD 1 \cap \BbbD 2)\leq g(\BbbD 1) + g(\BbbD 2) \forall \BbbD 1,\BbbD 2 \subseteq \BbbI .

If we let | \BbbD 1| = a, | \BbbD 2 \setminus \BbbD 1| = b, and | \BbbD 1 \cap \BbbD 2| = c, then the above inequality is
equivalent to

\surd 
a+ b+

\surd 
c\leq 

\surd 
a+

\surd 
b+ c \forall a\geq c\geq 0, b\geq 0.
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This is actually implied by

\surd 
a+ b - 

\surd 
a=

b\surd 
a+ b+

\surd 
a
\leq b\surd 

b+ c+
\surd 
c
=
\surd 
b+ c - 

\surd 
c.

The next result is well known regarding an optimal solution of maximizing a linear
function over a polymatroid; see, e.g., [9].

Lemma 2.5. Consider the linear program

max

\Biggl\{ 
\bfita T\bfitx :\bfitx \geq 0,

\sum 
i\in \BbbD 

xi \leq g(\BbbD ) for all \BbbD \in 2\BbbI 

\Biggr\} 
,

where \bfita \in \BbbR n
+ and g is a rank function. Let (\pi 1, \pi 2, . . . , \pi n) be a permutation of \BbbI 

with a\pi 1
\geq a\pi 2

\geq \cdot \cdot \cdot \geq a\pi n
\geq 0. An optimal solution \bfitx to the linear program can be

obtained by letting

x\pi i =

\biggl\{ 
g(\{ \pi i\} ) i= 1,
g(\{ \pi 1, . . . , \pi i\} ) - g(\{ \pi 1, . . . , \pi i - 1\} ) i= 2 . . . , n.

We can now characterize extreme optimal points and upper bound the optimal
value of (2.4).

Proposition 2.6. The optimal value of (2.4) is no more than lnn+5
4 \alpha 2.

Proof. Denote \bfitz to be an optimal solution of (2.4). In fact, \bfitz is the unique
optimal solution to the linear program

max
\bfitx \in \BbbX n

\bfitz T\bfitx .(2.5)

If this is not true, we then have another \bfity \in \BbbX n with \bfity \not = \bfitz and \bfitz T\bfity \geq \bfitz T\bfitz = \| \bfitz \| 2.
This implies that \| \bfity \| 2 > \| \bfitz \| 2, invalidating the optimality of \bfitz to (2.4).

Applying Lemma 2.4 and Lemma 2.5 to (2.5) with g(\BbbD ) = \alpha 
\sqrt{} 
| \BbbD | and \bfita = \bfitz \in \BbbR n

+

and choosing a permutation (\pi 1, \pi 2, . . . , \pi n) with z\pi 1 \geq z\pi 2 \geq \cdot \cdot \cdot \geq z\pi n \geq 0, one has

z\pi i
=

\biggl\{ 
\alpha i= 1

\alpha 
\bigl( \surd 

i - 
\surd 
i - 1

\bigr) 
i= 2, . . . , n.

As a consequence,

\| \bfitz \| 2

\alpha 2
= 1+

n\sum 
i=2

\Bigl( \surd 
i - 

\surd 
i - 1

\Bigr) 2
= 1+

n\sum 
i=2

\biggl( 
1\surd 

i+
\surd 
i - 1

\biggr) 2

\leq 1 +

n\sum 
i=2

1

4(i - 1)

\leq 1 +
lnn+ 1

4
.

This shows that the optimal value of (2.4), \| \bfitz \| 2, is upper bounded by lnn+5
4 \alpha 2.

We are ready to finish the final piece, i.e., to show the inequality in (2.3). If this
is not true, then there is an \bfitx \in \BbbS n such that

max
\BbbD \in 2\BbbI \setminus \{ \emptyset \} 

\sum 
i\in \BbbD 

| xi| \sqrt{} 
| \BbbD | 

\leq 2\beta \surd 
lnn+ 5

with 0<\beta < 1.
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This means that | \bfitx | \in \BbbR n
+ with \| \bfitx \| 2 = 1 is a feasible solution to (2.4) for \alpha = 2\beta \surd 

lnn+5
.

However, according to Proposition 2.6, the optimal value of this problem is no more
than

lnn+ 5

4
\alpha 2 =

lnn+ 5

4
\cdot 4\beta 2

lnn+ 5
= \beta 2 < 1,

giving rise to a contradiction. Finally, we conclude this part as below.

Corollary 2.7. It holds that

\BbbH n
2 \in \BbbT 

\biggl( 
n,

2\surd 
lnn+ 5

,3n
\biggr) 
.

2.3. \Omega (1)-hitting sets. \BbbH n
2 is simple and almost close to help the construction

of deterministic \Omega (
\sqrt{} 

lnn
n )-hitting sets, the story of which will be revealed in the next

subsection. To make this final small but important step, \Omega (1)-hitting sets are needed.
A finely tuned version of \BbbH n

2 is in place.

Algorithm 2.1. Given \BbbS n and parameters \alpha \geq 1 and \beta \geq \alpha + 1, construct
\BbbH n

3 (\alpha ,\beta ).
1. Let m= \lceil log\beta \alpha n\rceil , and partition \BbbI into disjoint subsets \BbbI 1, \BbbI 2, . . . , \BbbI m, where

| \BbbI 1| = n - 
m\sum 

k=2

| \BbbI k| and | \BbbI k| =
\biggl\lfloor 

\alpha n

\beta k - 1

\biggr\rfloor 
for k= 2,3 . . . ,m.(2.6)

2. For any partition \{ \BbbI 1, \BbbI 2, . . . , \BbbI m\} of \BbbI satisfying (2.6), construct a set of vectors

\BbbZ n(\BbbI 1, \BbbI 2, . . . , \BbbI m) =
\Bigl\{ 
\bfitz \in \BbbR n : zi \in 

\Bigl\{ 
\pm 1,\pm \beta 

k - 1
2

\Bigr\} 
if i\in \BbbI k for all i and k

\Bigr\} 
.

3. Put all \BbbZ n(\BbbI 1, \BbbI 2, . . . , \BbbI m)'s together to form

\BbbZ n =
\bigcup 

\{ \BbbI 1,\BbbI 2,...,\BbbI m\} is a partition of \BbbI satisfying (2.6)

\BbbZ n(\BbbI 1, \BbbI 2, . . . , \BbbI m).

4. Project \BbbZ n onto the unit sphere, i.e., \BbbH n
3 (\alpha ,\beta ) := \{ \bfitz 

\| \bfitz \| \in \BbbS n : \bfitz \in \BbbZ n\} .

We see from the first step of Algorithm 2.1 that

m\sum 
k=2

| \BbbI k| \leq 
m\sum 

k=2

\alpha n

\beta k - 1
=

\alpha n

\beta  - 1
 - \alpha n

\beta m - 1(\beta  - 1)
\leq \alpha n

\beta  - 1
,

implying that

| \BbbI 1| = | \BbbI |  - 
m\sum 

k=2

| \BbbI k| \geq n - \alpha n

\beta  - 1
=

\biggl( 
1 - \alpha 

\beta  - 1

\biggr) 
n\geq 0.(2.7)

Therefore, the feasibility of the construction is guaranteed. On the other hand, as
m= \lceil log\beta \alpha n\rceil , we have

m\sum 
k=2

(| \BbbI k| + 1)\geq 
m\sum 

k=2

\alpha n

\beta k - 1
=

\alpha n

\beta  - 1
 - \alpha n

\beta m - 1(\beta  - 1)
\geq \alpha n

\beta  - 1
 - \beta 

\beta  - 1
\geq \alpha n

\beta  - 1
 - 2,
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implying that

| \BbbI 1| = n - 
m\sum 

k=2

| \BbbI k| (2.8)

= n+m - 1 - 
m\sum 

k=2

(| \BbbI k| + 1)

\leq n+ log\beta \alpha n - \alpha n

\beta  - 1
+ 2

\leq 
\biggl( 
1 - \alpha 

\beta  - 1

\biggr) 
n+ log\beta n+ 3.

Theorem 2.8. For any \bfitx \in \BbbS n, there is \bfitz \in \BbbH n
3 (\alpha ,\beta ) such that \bfitz T\bfitx \geq \alpha  - 1\surd 

\alpha \beta (\alpha +1)
.

Proof. For any given \| \bfitx \| = 1, define the index sets

\BbbD 0(\bfitx ) =

\biggl\{ 
i\in \BbbI : | xi| \leq 

1\surd 
\alpha n

\biggr\} 
and

\BbbD k(\bfitx ) =

\Biggl\{ 
i\in \BbbI :

\sqrt{} 
\beta k - 1

\alpha n
< | xi| \leq 

\sqrt{} 
\beta k

\alpha n

\Biggr\} 
for k= 1,2, . . . ,m.(2.9)

For any entry xi of \bfitx , | xi| \leq 1\leq 
\sqrt{} 

\beta m

\alpha n , and so \{ \BbbD 0(\bfitx ),\BbbD 1(\bfitx ), . . . ,\BbbD m(\bfitx )\} is a partition
of \BbbI .

We first estimate | \BbbD k(\bfitx )| for k\geq 2. It is obvious that for k\geq 2,

\beta k - 1

\alpha n
| \BbbD k(\bfitx )| =

\sum 
i\in \BbbD k(\bfitx )

\beta k - 1

\alpha n
<

\sum 
i\in \BbbD k(\bfitx )

| xi| 2 \leq 1.

This implies that | \BbbD k(\bfitx )| < \alpha n
\beta k - 1 , i.e., | \BbbD k(\bfitx )| \leq \lfloor \alpha n

\beta k - 1 \rfloor for k = 2,3, . . . ,m. Hence,
there exists a partition \{ \BbbI 1, \BbbI 2, . . . , \BbbI m\} of \BbbI satisfying (2.6) such that \BbbD k(\bfitx ) \subseteq \BbbI k for
k= 2,3, . . . ,m. Furthermore, we may find a vector \bfitz \in \BbbZ n(\BbbI 1, \BbbI 2, . . . , \BbbI m) such that

zi =

\biggl\{ 
sign (xi) i\in \BbbD 0(\bfitx ),

sign (xi)\beta 
k - 1
2 i\in \BbbD k(\bfitx ) for k= 1,2, . . . ,m,

where the sign function takes 1 for nonnegative reals and  - 1 for negative reals.
In the following, we shall estimate \bfitz T\bfitx and \| \bfitz \| . First of all,

\sum 
i\in \BbbD 0(\bfitx )

xi
2 \leq 

\sum 
i\in \BbbD 0(\bfitx )

1

\alpha n
\leq 1

\alpha 
and

m\sum 
k=1

\sum 
i\in \BbbD k(\bfitx )

xi
2 =

\sum 
i\in \BbbI 

xi
2  - 

\sum 
i\in \BbbD 0(\bfitx )

xi
2 \geq 1 - 1

\alpha 
.

Next, we have \sum 
i\in \BbbD 0(\bfitx )

zi
2 = | \BbbD 0(\bfitx )| \leq n and

m\sum 
k=1

\sum 
i\in \BbbD k(\bfitx )

zi
2 =

m\sum 
k=1

\sum 
i\in \BbbD k(\bfitx )

\beta k - 1 <

m\sum 
k=1

\sum 
i\in \BbbD k(\bfitx )

\alpha nxi
2 \leq \alpha n.

As \{ \BbbD 0(\bfitx ),\BbbD 1(\bfitx ), . . . ,\BbbD m(\bfitx )\} is a partition of \BbbI , summing the above two inequalities
would give us \| \bfitz \| 2 \leq (\alpha + 1)n.
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Finally, as sign (xi) = sign (zi) for every i\in \BbbI ,

\bfitz T\bfitx \geq 
m\sum 

k=1

\sum 
i\in \BbbD k(\bfitx )

\beta 
k - 1
2 | xi| \geq 

m\sum 
k=1

\sum 
i\in \BbbD k(\bfitx )

\sqrt{} 
\alpha n

\beta 
| xi| 2 \geq 

\sqrt{} 
\alpha n

\beta 

\biggl( 
1 - 1

\alpha 

\biggr) 
,

where the second inequality is due to the upper bound in (2.9).
To conclude, we find \bfitz 

\| \bfitz \| \in \BbbH n
3 (\alpha ,\beta ) such that

\bfitx T \bfitz 

\| \bfitz \| 
\geq 
\sqrt{} 

\alpha n

\beta 

\biggl( 
1 - 1

\alpha 

\biggr) 
\cdot 1\sqrt{} 

(\alpha + 1)n
=

\alpha  - 1\sqrt{} 
\alpha \beta (\alpha + 1)

,

proving the desired inequality.

We also need to estimate the cardinality of \BbbH n
3 (\alpha ,\beta ). To simplify the display, we

now replace \beta by \gamma + 1, where \gamma \geq \alpha in the rest of this subsection.

Proposition 2.9. Given two constants 1\leq \alpha \leq \gamma , one has

| \BbbH n
3 (\alpha ,\gamma + 1)| \leq 

\Biggl( 
2

\gamma +\alpha 
\gamma \alpha  - \alpha 

\gamma (\gamma + 1)
\alpha (\gamma +1)

\gamma 2

\biggl( 
\gamma 

\gamma  - \alpha 

\biggr) \gamma  - \alpha 
\gamma 

+ o(1)

\Biggr) n

.(2.10)

Proof. For any given partition \{ \BbbI 1, \BbbI 2, . . . , \BbbI m\} of \BbbI satisfying (2.6), xi can take
two values if i \in \BbbI 1 and four values if i \in \BbbI k for k \geq 2. By considering the number of
such partitions and possible overlaps after projecting on to \BbbS n, one has

| \BbbH n
3 (\alpha ,\gamma + 1)| \leq n!\prod m

k=1 | \BbbI k| !
2| \BbbI 1| 

m\prod 
k=2

4| \BbbI k| .

By (2.7), we have

2| \BbbI 1| 
m\prod 

k=2

4| \BbbI k| = 2| \BbbI 1| 4
\sum m

k=2 | \BbbI k| = 2 - | \BbbI 1| 4
\sum m

k=1 | \BbbI k| \leq 2 - (1 - \alpha 
\gamma )n4n = 2(1+

\alpha 
\gamma )n.

It remains to estimate n!\prod m
k=1 | \BbbI k| ! based on the following from (2.6), (2.7), and (2.8)

with \beta = \gamma + 1:

\eta 1n\leq | \BbbI 1| \leq \eta 1n+ ln\gamma +1 n+ 3 and | \BbbI k| = \lfloor \eta kn\rfloor for k= 2,3 . . . ,m,

where \eta 1 = 1  - \alpha 
\gamma and \eta k = \alpha 

(\gamma +1)k - 1 for k = 2,3 . . . ,m as well as
\sum m

k=1 | \BbbI k| = n,

m= \lceil log\gamma +1\alpha n\rceil and 1\leq \alpha \leq \gamma .
We first notice that\bigm| \bigm| \bigm| \bigm| \bigm| n - 

m\sum 
k=1

\eta kn

\bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| 

m\sum 
k=1

| \BbbI k|  - 
m\sum 

k=1

\eta kn

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
m\sum 

k=1

| | \BbbI k|  - \eta kn| \leq O(lnn) +

m\sum 
k=2

1 =O(lnn).

We then consider the function f(x) = x lnx  - x, which is increasing and convex
over [1,\infty ) since f \prime (x) = lnx and f \prime \prime (x) = 1

x . Therefore, for any x \geq 1 and y > 0,
f(x+y) - f(x)

y \leq f \prime (x + y) = ln(x + y), implying that f(x + y)  - f(x) \leq y ln(x + y).
Applying this fact to | \BbbI k| for k= 1,2, . . . ,m, we obtain

f(| \BbbI 1| ) - f(\eta 1n) =O(ln2 n) and f(\eta kn) - f(| \BbbI k| ) =O(lnn) for k= 2,3, . . . ,m.
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These, together with the Stirling approximation ln(n!) = f(n) +O(lnn), lead to

ln(| \BbbI 1| !) = f(\eta 1n) +O(ln2 n) and ln(| \BbbI k| !) = f(\eta kn) +O(lnn) for k= 2,3, . . . ,m.

We are ready to estimate n!\prod m
k=1 | \BbbI k| ! within a deviation of o(n) as follows:

ln
n!\prod m

k=1 | \BbbI k| !

= ln(n!) - 
m\sum 

k=1

ln(| \BbbI k| !)

= n lnn - n - 
m\sum 

k=1

\eta kn ln(\eta kn) +

m\sum 
k=1

\eta kn+ o(n)

=

\Biggl( 
n - 

m\sum 
k=1

\eta kn

\Biggr) 
(lnn - 1) - 

m\sum 
k=2

\eta kn ln\eta k  - \eta 1n ln\eta 1 + o(n)

= - n

m\sum 
k=2

\alpha 

(\gamma + 1)k - 1
ln

\alpha 

(\gamma + 1)k - 1
 - n

\gamma  - \alpha 

\gamma 
ln

\gamma  - \alpha 

\gamma 
+ o(n)

= - n

m\sum 
k=2

\alpha ln\alpha 

(\gamma + 1)k - 1
+ n

m\sum 
k=2

\alpha (k - 1)

(\gamma + 1)k - 1
ln(\gamma + 1) +

\biggl( 
\gamma  - \alpha 

\gamma 
ln

\gamma 

\gamma  - \alpha 

\biggr) 
n+ o(n)

= - 
\biggl( 
\alpha 

\gamma 
ln\alpha 

\biggr) 
n+

\biggl( 
\alpha (\gamma + 1)

\gamma 2
ln(\gamma + 1)

\biggr) 
n+

\biggl( 
\gamma  - \alpha 

\gamma 
ln

\gamma 

\gamma  - \alpha 

\biggr) 
n+ o(n),

where the last equality is due to the fact that m= \lceil log\gamma +1\alpha n\rceil implies

m\sum 
k=2

1

(\gamma + 1)k - 1
=

1

\gamma 
 - 1

\gamma (\gamma + 1)m - 2
=

1

\gamma 
+ o(1) and

m\sum 
k=2

k - 1

(\gamma + 1)k - 1
=

\gamma + 1

\gamma 2
 - m

\gamma 2(\gamma + 1)m - 2
+

m - 1

\gamma 2(\gamma + 1)m - 1
=

\gamma + 1

\gamma 2
+ o(1).

Finally, by combining the upper bound of 2| \BbbI 1| 
\prod m

k=2 4
| \BbbI k| , we have | \BbbH n

3 (\alpha ,\gamma +1)| \leq 
tn, where

t= 2
\gamma +\alpha 
\gamma \alpha  - \alpha 

\gamma (\gamma + 1)
\alpha (\gamma +1)

\gamma 2

\biggl( 
\gamma 

\gamma  - \alpha 

\biggr) \gamma  - \alpha 
\gamma 

eo(1)

= 2
\gamma +\alpha 
\gamma \alpha  - \alpha 

\gamma (\gamma + 1)
\alpha (\gamma +1)

\gamma 2

\biggl( 
\gamma 

\gamma  - \alpha 

\biggr) \gamma  - \alpha 
\gamma 

+ o(1).

In a nutshell, we have the following.

Corollary 2.10. For any given 1\leq \alpha \leq \gamma ,

\BbbH n
3 (\alpha ,\gamma + 1)

(2.11)

\in \BbbT 

\Biggl( 
n,

\alpha  - 1\sqrt{} 
\alpha (\alpha + 1)(\gamma + 1)

,

\Biggl( 
2

\gamma +\alpha 
\gamma \alpha  - \alpha 

\gamma (\gamma + 1)
\alpha (\gamma +1)

\gamma 2

\biggl( 
\gamma 

\gamma  - \alpha 

\biggr) \gamma  - \alpha 
\gamma 

+ o(1)

\Biggr) n\Biggr) 
.
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Table 2
Properties of \BbbH n

3 (\alpha ,\alpha + 1) for some \alpha .

\alpha 17.42 7.64 4.75 4.24 4.00 3.00 2.00

\tau for the \tau -hitting set 0.213 0.278 0.299 0.30028 0.300 0.288 0.235

t for | \BbbH n
3 (\alpha ,\alpha + 1)| \leq tn 5.00 6.00 7.00 7.31 7.48 8.47 10.40

For a fixed \alpha \geq 1, the largest \alpha  - 1\surd 
\alpha (\alpha +1)(\gamma +1)

is \alpha  - 1
(\alpha +1)

\surd 
\alpha 
, achieved when \gamma = \alpha .

Correspondingly,

| \BbbH n
3 (\alpha ,\alpha + 1)| \leq 

\Bigl( 
4\alpha  - 1(\alpha + 1)

\alpha +1
\alpha + o(1)

\Bigr) n
\leq (4 + \epsilon )n for some large \alpha .

If we maximize \alpha  - 1
(\alpha +1)

\surd 
\alpha 

in order to achieve the best \tau for the \tau -hitting set, this is\sqrt{} 
1
2 (5

\surd 
5 - 11) \approx 0.30028 when \alpha = 2 +

\surd 
5 \approx 4.236. For reference, we list the \tau and

the cardinality for some \BbbH n
3 (\alpha ,\alpha + 1) in Table 2.

If we are interested to minimize the upper bound of | \BbbH n
3 (\alpha ,\gamma +1)| in (2.10), then

by fixing \alpha and choosing \gamma sufficiently large, the bound can even be (2+\epsilon )n. However,
this makes sense only if \gamma \ll n. Moreover, the corresponding \tau = \alpha  - 1\surd 

\alpha (\alpha +1)(\gamma +1)
will

decrease quickly as \gamma goes large.

2.4. \Omega (
\sqrt{} 

ln\bfitn /\bfitn )-hitting sets. The hitting sets in sections 2.2 and 2.3 can be
used to construct new hitting sets which in fact derandomize the constructions in
section 2.1. Recall that \BbbE n = \{ \bfite 1,\bfite 2, . . . ,\bfite n\} is the standard basis of \BbbR n, \boxtimes denotes
the Kronecker product, and \vee denotes vector appending.

Lemma 2.11. If a hitting set \BbbH n1 \in \BbbT (n1, \tau ,m) with \tau \geq 0, then \BbbE n2 \boxtimes \BbbH n1 \in 
\BbbT (n1n2,

\tau \surd 
n2

,mn2).

Proof. First, for any \bfite i \in \BbbE n2 and \bfitz \in \BbbH n1 , one has \| \bfite i \boxtimes \bfitz \| = \| \bfite i\| \cdot \| \bfitz \| = 1.
Thus, \BbbE n2 \boxtimes \BbbH n1 \subseteq \BbbS n1n2 . For any \bfitx \in \BbbS n1n2 , let \bfitx = \bfitx 1 \vee \bfitx 2 \vee \cdot \cdot \cdot \vee \bfitx n2

, where
\bfitx k \in \BbbR n1 for k = 1,2, . . . , n2. Since

\sum n2

k=1 \| \bfitx k\| 2 = \| \bfitx \| 2 = 1, there exists an \bfitx i such
that \| \bfitx i\| 2 \geq 1

n2
.

Observing that \bfitx i

\| \bfitx i\| \in \BbbS n1 , there exists \bfity \in \BbbH n1 such that \bfity T \bfitx i

\| \bfitx i\| \geq \tau . Therefore,

we have \bfite i \boxtimes \bfity \in \BbbE n2 \boxtimes \BbbH n1 satisfying

(\bfite i \boxtimes \bfity )T\bfitx = \bfity T\bfitx i \geq \tau \| \bfitx i\| \geq 
\tau 

\surd 
n2

.

Finally, by some possible overlaps, one has | \BbbE n2 \boxtimes \BbbH n1 | \leq | \BbbE n2 | \cdot | \BbbH n1 | \leq n2m.

Lemma 2.12. If two hitting sets \BbbH n1 \in \BbbT (n1, \tau 1,m1) and \BbbH n2 \in \BbbT (n2, \tau 2,m2) with
\tau 1, \tau 2 > 0, then

(\BbbH n1 \vee 0n2)
\bigcup 

(0n1 \vee \BbbH n2)\in \BbbT 
\biggl( 
n1 + n2,

\tau 1\tau 2\surd 
\tau 12 + \tau 22

,m1 +m2

\biggr) 
.

Proof. For any \bfitx \in \BbbS n1+n2 , let \bfitx =\bfitx 1 \vee \bfitx 2, where \bfitx 1 \in \BbbR n1 and \bfitx 2 \in \BbbR n2 . If one
of them is a zero vector, say, \bfitx 1 = 0n1

, then \| \bfitx 2\| = 1. There exists \bfity \in \BbbH n2 such that
\bfity T\bfitx 2 \geq \tau 2, and so

\langle 0n1 \vee \bfity ,\bfitx 1 \vee \bfitx 2\rangle = \bfity T\bfitx 2 \geq \tau 2 \geq 
\tau 1\tau 2\surd 

\tau 12 + \tau 22
.
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If both \bfitx 1 and \bfitx 2 are nonzero, then \bfitx k

\| \bfitx k\| \in \BbbS nk for k = 1,2. There exist \bfity k \in \BbbH nk

with
\bfity \mathrm{T}
k \bfitx k

\| \bfitx k\| \geq \tau k for k= 1,2. We have

\langle \bfity 1 \vee 0n2 ,\bfitx 1 \vee \bfitx 2\rangle = \bfity T
1 \bfitx 1 \geq \tau 1\| \bfitx 1\| and

\langle 0n1
\vee \bfity 2,\bfitx 1 \vee \bfitx 2\rangle = \bfity T

2 \bfitx 2 \geq \tau 2\| \bfitx 2\| .

As \| \bfitx 1\| 2 + \| \bfitx 2\| 2 = \| \bfitx \| 2 = 1, we must have either \| \bfitx 1\| \geq \tau 2\surd 
\tau 12+\tau 22 or \| \bfitx 2\| \geq 

\tau 1\surd 
\tau 12+\tau 22 . In any case, we have

max\{ \tau 1\| \bfitx 1\| , \tau 2\| \bfitx 2\| \} \geq 
\tau 1\tau 2\surd 

\tau 12 + \tau 22
,

implying that either \bfity 1 \vee 0n2 or 0n1 \vee \bfity 2 is close enough to \bfitx .

We are ready to construct new hitting sets using \BbbH n
2 \in \BbbT (n,\Omega ( 1\surd 

lnn
),3n) in

section 2.2 and \BbbH n
3 \in \BbbT (n,\mu , \nu n) with universal constants \mu ,\nu > 0, a handy nota-

tion of (2.11) in section 2.3.

Theorem 2.13. Given an integer n \geq 2, let n1 = \lceil lnn\rceil , n2 = \lfloor n
n1

\rfloor , and n3 =
n - n1n2. One has

\BbbH n
4 := ((\BbbE n2 \boxtimes \BbbH n1

2 )\vee 0n3)
\bigcup 

(0n1n2 \vee \BbbH n3
2 )\in \BbbT 

\Biggl( 
n,\Omega 

\Biggl( \sqrt{} 
lnn

n ln lnn

\Biggr) 
,O(n1+ln3)

\Biggr) 
.

(2.12)

Proof. First, as n3 = n - n1\lfloor n
n1

\rfloor <n1, we have

n1 \leq lnn+ 1, n2 \leq 
n

lnn
, and n3 \leq lnn.(2.13)

According to Corollary 2.7 and Lemma 2.11,

\BbbE n2 \boxtimes \BbbH n1
2 \in \BbbT 

\biggl( 
n1n2,\Omega 

\biggl( 
1\surd 

n2 lnn1

\biggr) 
, n23

n1

\biggr) 
\subseteq \BbbT 

\Biggl( 
n1n2,\Omega 

\Biggl( \sqrt{} 
lnn

n ln lnn

\Biggr) 
,
3n1+ln3

lnn

\Biggr) 
.

Besides, one has

\BbbH n3
2 \in \BbbT 

\biggl( 
n3,\Omega 

\biggl( 
1\surd 
lnn3

\biggr) 
,3n3

\biggr) 
\subseteq \BbbT 

\biggl( 
n3,\Omega 

\biggl( 
1\surd 

ln lnn

\biggr) 
, nln 3

\biggr) 
.

Since 1\surd 
ln lnn

\geq 
\sqrt{} 

lnn
n ln lnn , (2.12) can be obtained by applying Lemma 2.12.

Although \Omega (
\sqrt{} 

lnn
n ln lnn ) is slightly lower than \Omega (

\sqrt{} 
lnn
n ), the construction of \BbbH n

4 in

(2.12) is very simple (using \BbbH n
2 ) and enjoys a low cardinality O(n1+ln3) \leq O(n2.1).

We remark that it is even possible to construct an \Omega (
\sqrt{} 

lnn
n ln lnn )-hitting set with a

lower cardinality O(n1.5). This can be done by using \BbbH n1
0 (m) with m= \lceil 

\surd 
lnn\rceil and

n1 = \lceil lnn
ln lnn\rceil in place of \BbbH n1

2 in constructing \BbbH n
4 in Theorem 2.13. We leave the details

to the interested reader. In order to remove the 1\surd 
ln lnn

factor, we need to make use

of \BbbH n
3 (\alpha ,\beta ).
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Theorem 2.14. Given an integer n \geq 2, let n1 = \lceil lnn\rceil , n2 = \lfloor n
n1

\rfloor , and n3 =
n - n1n2. By choosing any \BbbH n

3 (\alpha ,\beta )\in \BbbT (n,\mu , \nu n) in (2.11) with \alpha \geq 1 and \beta \geq \alpha +1,
one has

\BbbH n
5 (\alpha ,\beta ) := ((\BbbE n2 \boxtimes \BbbH n1

3 (\alpha ,\beta ))\vee 0n3)
\bigcup 

(0n1n2 \vee \BbbH n3
3 (\alpha ,\beta ))

\in \BbbT 

\Biggl( 
n,\mu 

\sqrt{} 
lnn

n+ lnn
,O(n1+ln\nu )

\Biggr) 
.

Proof. The proof is similar to that of Theorem 2.13 by noticing (2.13) and apply-
ing Lemmas 2.11 and 2.12. We only need to carry out the calculations.

The \tau for the \tau -hitting set \BbbE n2 \boxtimes \BbbH n1
3 (\alpha ,\beta ) is \mu \surd 

n2
, and that for \BbbH n3

3 (\alpha ,\beta ) is \mu .

By Lemma 2.12, the \tau for \BbbH n
5 (\alpha ,\beta ) is

\mu \surd 
n2

\cdot \mu \sqrt{} 
\mu 2

n2
+\mu 2

= \mu \surd 
n2+1

\geq \mu 
\sqrt{} 

lnn
n+lnn .

For the cardinality, one has

| \BbbE n2 \boxtimes \BbbH n1
3 (\alpha ,\beta )| \leq n2\nu 

n1 \leq \nu n1+ln\nu 

lnn
and | \BbbH n3

3 (\alpha ,\beta )| \leq \nu n3 \leq nln\nu .

Adding up these two would give O(n1+ln\nu ).

With the cardinality O(n1+ln\nu ) in place, it is natural to select the best \mu for
\BbbH n

3 (\alpha ,\beta ) with \beta = \gamma +1 in (2.11). According to Table 2, the largest \mu = 0.30028 with
\nu = 7.31, obtained when \alpha = 2 +

\surd 
5 and \beta = 3 +

\surd 
5. This results in a cardinality

O(n1+ln\nu )\leq O(n3). To conclude, we have

\BbbH n
5 (2 +

\surd 
5,3 +

\surd 
5)\in \BbbT 

\Biggl( 
n,0.3

\sqrt{} 
lnn

n
,O(n3)

\Biggr) 
.(2.14)

To conclude this section, we remark that the estimated \tau serves a lower bound
and that m serves an upper bound for the proposed hitting sets. We evaluate their
exact values of one example (n = 6) by numerical computations, shown in Table 3,
where the Greek letters in estimated values are some unknown constants. Due to the
randomness of \BbbH n

1 , we try ten times for any m and provide corresponding \tau by an
interval range.

For our main constructions of \Omega (
\sqrt{} 

lnn
n )-hitting sets, \BbbH n

1 , \BbbH 
n
4 , and\BbbH n

5 , comparisons

of \tau and m for a few small n's are shown in Table 4. We observe that random hitting
sets outperform deterministic ones when n increases, although they are worse when
n is small.

Table 3
Exact and theoretical estimates of \tau and m for hitting sets in \BbbS 6.

Hitting set in \BbbS 6 Exact \tau Exact m Estimated \tau Estimated m

A regular simplex in \BbbS 6 0.167 7 0.167 7

\BbbE 6 \cup ( - \BbbE 6) 0.408 12 0.408 12

\BbbH 6
1(\gamma 1, \epsilon 1) [0.331, 0.442] 27 \omega 1 \cdot 0.546 o1 \cdot 6\alpha 1

\BbbH 6
1(\gamma 2, \epsilon 2) [0.521, 0.592] 60 \omega 2 \cdot 0.546 o2 \cdot 6\alpha 2

\BbbH 6
4 0.546 27 \omega 3 \cdot 0.546 o3 \cdot 62.792

\BbbH 6
5(2 +

\surd 
5,3 +

\surd 
5) 0.544 36 \omega 4 \cdot 0.546 o4 \cdot 62.989

\BbbH 6
2 0.835 728 \omega 5 \cdot 0.747 36 = 729

\BbbH 6
3(2 +

\surd 
5,3 +

\surd 
5) 0.820 16896 \omega 6 \cdot 1.000 7.316 = 152582

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



APPROXIMATING TENSOR NORMS VIA SPHERE COVERING 2079

Table 4
Exact \tau and m for \Omega (

\sqrt{} 
lnn/n)-hitting sets in \BbbS n.

\BbbH n n= 6 n= 8 n= 12 n= 15

\tau m \tau m \tau m \tau m

\BbbH n
1 [0.331, 0.442] 24 [0.272, 0.384] 32 [0.368, 0.410] 104 [0.320, 0.391] 130

\BbbH n
1 [0.521, 0.592] 60 [0.460, 0.502] 80 [0.441, 0.484] 184 [0.428, 0.452] 235

\BbbH n
4 0.546 24 0.485 32 0.4653 104 0.431 130

\BbbH n
5 0.544 36 0.489 48 0.4713 256 0.433 320

3. Approximating tensor norms. In this section, we apply explicit construc-

tions for sphere covering, in particular, the deterministic \Omega (
\sqrt{} 

lnn
n )-hitting sets in

section 2.4, to derive new approximation methods for the tensor spectral norm and
nuclear norm. Let us formally define the approximation bound for tensor norms.

Definition 3.1. A tensor norm \| \cdot \| \omega can be approximated with an approximation
bound \tau \in (0,1] if there exists a polynomial-time algorithm that computes a quantity
\omega \scrT for any tensor instance \scrT in the concerned space such that \tau \| \scrT \| \omega \leq \omega \scrT \leq \| \scrT \| \omega .

Obviously, the larger the \tau , the better the approximation bound. We consider
the tensor space \BbbR n1\times n2\times \cdot \cdot \cdot \times nd of order d \geq 3 and assume without loss of generality
that 2\leq n1 \leq n2 \leq \cdot \cdot \cdot \leq nd.

3.1. Approximation bound for tensor spectral norm. Given a tensor \scrT \in 
\BbbR n1\times n2\times \cdot \cdot \cdot \times nd , let us denote (recall that \otimes stands for the outer product)

\scrT (\bfitx 1,\bfitx 2, . . . ,\bfitx d) = \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle (3.1)

=

n1\sum 
i1=1

n2\sum 
i2=1

. . .

nd\sum 
id=1

ti1i2...id(x1)i1(x2)i2 . . . (xd)id

to be the multilinear function of vector entries (\bfitx 1,\bfitx 2, . . . ,\bfitx d), where \bfitx k \in \BbbR nk

for k = 1,2, . . . , d. If any vector entry, say, \bfitx 1, is missing and replaced by \bullet , then
\scrT (\bullet ,\bfitx 2,\bfitx 3, . . . ,\bfitx d)\in \BbbR n1 becomes a vector. Similarly, \scrT (\bullet ,\bullet ,\bfitx 3,\bfitx 4, . . . ,\bfitx d)\in \BbbR n1\times n2

is a matrix and so on.

Definition 3.2. For a given tensor \scrT \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd , the spectral norm of \scrT 
is defined as

\| \scrT \| \sigma :=max\{ \scrT (\bfitx 1,\bfitx 2, . . . ,\bfitx d) : \| \bfitx k\| = 1, \bfitx k \in \BbbR nk , k= 1,2, . . . , d\} .(3.2)

The tensor spectral norm was proposed by Lim [24] in terms of singular values of
a tensor. In light of (3.1), \| \scrT \| \sigma is the maximal value of the Frobenius inner product
between \scrT and a rank-one tensor whose Frobenius norm is one since \| \bfitx 1\otimes \bfitx 2\otimes \cdot \cdot \cdot \otimes 
\bfitx d\| =

\prod d
k=1 \| \bfitx k\| = 1.

When d= 2, (3.2) is reduced to the matrix spectral norm or the largest singular
value of the matrix, which can be computed in polynomial time (e.g., via singular
value decompositions). He, Li, and Zhang [13] showed that (3.2) is NP-hard when
d \geq 3. They also proposed the first polynomial-time algorithm with a worst-case
approximation bound (

\prod d - 2
k=1

1
nk

)
1
2 . The best-known approximation bound for the

tensor spectral norm is \Omega ((
\prod d - 2

k=1
lnnk

nk
)

1
2 ) by So [34]. However, the method in [34]

relies on the equivalence between convex optimization and membership oracle queries
using the ellipsoid method, and it is computationally impractical. There is also a
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simple but randomized algorithm for the same best bound proposed in [12]. Here
in this subsection, we are able to present the first easily implementable and deter-
ministic algorithm based on sphere covering, with the same approximation bound
\Omega ((
\prod d - 2

k=1
lnnk

nk
)

1
2 ). To make an exact bound without involving \Omega , we need to use

\BbbH n
5 (2 +

\surd 
5,3 +

\surd 
5)\in \BbbT (n,0.3

\sqrt{} 
lnn
n ,O(n3)) in (2.14).

Algorithm 3.1. Given \scrT \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd , find an approximate spectral norm
of \scrT .

1. Enumerate \bfitz k \in \BbbH nk
5 (2+

\surd 
5,3+

\surd 
5) for k= 1,2, . . . , d - 2, and solve resulted

matrix spectral norm problem

max\{ \scrT (\bfitz 1,\bfitz 2, . . . ,\bfitz d - 2,\bfitx d - 1,\bfitx d) : \| \bfitx d - 1\| = \| \bfitx d\| = 1\} ,

whose optimal solution is denoted by (\bfitz d - 1,\bfitz d).
2. Compare all the objective values in the first step and output the largest one.

It is obvious that Algorithm 3.1 runs in polynomial time as | \BbbH nk
5 (2 +

\surd 
5,3 +\surd 

5)| = O(nk
3) and that the matrix spectral norm is polynomial-time computable.

Moreover, the corresponding approximate solution (\bfitz 1,\bfitz 2, . . . ,\bfitz d - 2) is universal; i.e.,
\bfitz k \in \BbbH nk

5 (2 +
\surd 
5,3 +

\surd 
5) is independent of the data \scrT for k= 1,2, . . . , d - 2.

Theorem 3.3. Algorithm 3.1 is a deterministic polynomial-time algorithm that
approximates \| \scrT \| \sigma with a worst-case approximation bound 0.3d - 2(

\prod d - 2
k=1

lnnk

nk
)

1
2 for

any \scrT \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd ; i.e., \bfitz k \in \BbbH nk
5 (2 +

\surd 
5,3 +

\surd 
5) for k = 1,2, . . . , d  - 2 and

\bfitz k \in \BbbS nk for k= d - 1, d can be found such that

0.3d - 2

\Biggl( 
d - 2\prod 
k=1

lnnk

nk

\Biggr) 1
2

\| \scrT \| \sigma \leq \scrT (\bfitz 1,\bfitz 2, . . . ,\bfitz d)\leq \| \scrT \| \sigma .

Proof. Let us denote \tau k = 0.3
\sqrt{} 

lnnk

nk
for k = 1,2, . . . , d  - 2. Let (\bfity 1,\bfity 2, . . . ,\bfity d)

be an optimal solution of (3.2), i.e., \scrT (\bfity 1,\bfity 2, . . . ,\bfity d) = \| \scrT \| \sigma . For the vector \bfitv 1 =
\scrT (\bullet ,\bfity 2,\bfity 3, . . . ,\bfity d), either \| \bfitv 1\| = 0 or there exists \bfitz 1 \in \BbbH n1

5 (2+
\surd 
5,3+

\surd 
5) such that

\bfitz T
1

\bfitv 1

\| \bfitv 1\| \geq \tau 1. In any case, one has

\scrT (\bfitz 1,\bfity 2,\bfity 3, . . . ,\bfity d) = \bfitz T
1 \bfitv 1 \geq \tau 1\| \bfitv 1\| \geq \tau 1\bfity 

T
1 \bfitv 1 = \tau 1\scrT (\bfity 1,\bfity 2, . . . ,\bfity d).

Similarly, for every k = 2,3, . . . , d - 2 that are chosen one by one increasingly, there
exists \bfitz k \in \BbbH nk

5 (2 +
\surd 
5,3 +

\surd 
5) such that

\scrT (\bfitz 1, . . . ,\bfitz k - 1,\bfitz k,\bfity k+1, . . . ,\bfity d) = \bfitz T
k \scrT (\bfitz 1, . . . ,\bfitz k - 1,\bullet ,\bfity k+1, . . . ,\bfity d)

\geq \tau k
\bigm\| \bigm\| \scrT (\bfitz 1, . . . ,\bfitz k - 1,\bullet ,\bfity k+1, . . . ,\bfity d)

\bigm\| \bigm\| 
\geq \tau k\bfity 

T
k \scrT (\bfitz 1, . . . ,\bfitz k - 1,\bullet ,\bfity k+1, . . . ,\bfity d)

= \tau k\scrT (\bfitz 1, . . . ,\bfitz k - 1,\bfity k,\bfity k+1, . . . ,\bfity d).

By applying the above inequalities recursively, we obtain

\scrT (\bfitz 1,\bfitz 2, . . . ,\bfitz d - 2,\bfity d - 1,\bfity d)\geq 

\Biggl( 
d - 2\prod 
k=1

\tau k

\Biggr) 
\scrT (\bfity 1,\bfity 2 . . . ,\bfity d) =

\Biggl( 
d - 2\prod 
k=1

\tau k

\Biggr) 
\| \scrT \| \sigma .

The first step of Algorithm 3.1 must have enumerated this (\bfitz 1,\bfitz 2, . . . ,\bfitz d - 2) and
computed corresponding \bfitz d - 1 \in \BbbS nd - 1 and \bfitz d \in \BbbS nd such that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



APPROXIMATING TENSOR NORMS VIA SPHERE COVERING 2081

\scrT (\bfitz 1,\bfitz 2, . . . ,\bfitz d) = max
\| \bfitx d - 1\| =\| \bfitx d\| =1

\scrT (\bfitz 1,\bfitz 2, . . . ,\bfitz d - 2,\bfitx d - 1,\bfitx d)

\geq \scrT (\bfitz 1,\bfitz 2, . . . ,\bfitz d - 2,\bfity d - 1,\bfity d)

\geq 

\Biggl( 
d - 2\prod 
k=1

\tau k

\Biggr) 
\| \scrT \| \sigma .

Finally, the best one found by the second step must be no less than the above
\scrT (\bfitz 1,\bfitz 2, . . . ,\bfitz d).

A closely related problem to the tensor spectral norm (3.2) is sphere constrained
homogeneous polynomial optimization max\{ p(\bfitx ) : \| \bfitx \| = 1\} , where p(\bfitx ) is a homoge-
neous polynomial function of degree d. In other words, there is a symmetric (entries
are invariant under permutations of indices) tensor \scrT \in \BbbR n\times n\times \cdot \cdot \cdot \times n of order d such
that p(\bfitx ) = \scrT (\bfitx ,\bfitx , . . . ,\bfitx ). This is a widely applicable optimization problem but
is also NP-hard when the degree of the polynomial d \geq 3 [26]. The current best

approximation bound for this problem is \Omega 
\bigl( 
( lnn

n

\bigr) d/2 - 1
), obtained by a randomized

algorithm [12] or a deterministic but not implementable method [34]. In fact, it is not
difficult to obtain an easily implementable deterministic algorithm with the same best
approximation bound with the help of a polarization formula [13, Lemma 1] below.

Lemma 3.4. Let \scrT \in \BbbR n\times n\times \cdot \cdot \cdot \times n be a symmetric tensor of order d and p(\bfitx ) =
\scrT (\bfitx ,\bfitx , . . . ,\bfitx ) a homogeneous polynomial of degree d. If \xi i, \xi 2, . . . , \xi d are i.i.d. sym-
metric Bernoulli random variables (taking values \pm 1 with equal probability), then

\bfsansE 

\Biggl[ \Biggl( 
d\prod 

i=1

\xi i

\Biggr) 
p

\Biggl( 
d\sum 

k=1

\xi k\bfitx k

\Biggr) \Biggr] 
= d!\scrT (\bfitx 1,\bfitx 2, . . . ,\bfitx d).

We only state the results but leave the details to the interested reader.

Theorem 3.5. Let p(\bfitx ) be a homogeneous polynomial function of dimension n
and degree d \geq 3. If d is odd, then there is a deterministic polynomial-time approxi-
mation algorithm which outputs \bfitz \in \BbbS n such that

p(\bfitz )\geq 0.3d - 2d!d - d

\biggl( 
lnn

n

\biggr) d/2 - 1

max
\| \bfitx \| =1

p(\bfitx ).

If d is even, then there is a deterministic polynomial-time approximation algorithm
which outputs \bfitz \in \BbbS n such that

p(\bfitz ) - min
\| \bfitx \| =1

p(\bfitx )\geq 0.3d - 2d!d - d

\biggl( 
lnn

n

\biggr) d/2 - 1\biggl( 
max
\| \bfitx \| =1

p(\bfitx ) - min
\| \bfitx \| =1

p(\bfitx )

\biggr) 
.

3.2. Approximation bound for the tensor nuclear norm. We now study
the approximation for the tensor nuclear norm.

Definition 3.6. For a given tensor \scrT \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd , the nuclear norm of \scrT 
is defined as

\| \scrT \| \ast :=min

\Biggl\{ 
r\sum 

i=1

| \lambda i| : \scrT =

r\sum 
i=1

\lambda i\bfitx 
(i)
1 \otimes \bfitx 

(i)
2 \otimes \cdot \cdot \cdot \otimes \bfitx 

(i)
d , \lambda i \in \BbbR ,\| \bfitx (i)

k \| = 1, r \in \BbbN 

\Biggr\} 
.

(3.3)
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From (3.3), we see that the tensor nuclear norm is the minimum of the sum of
Frobenius norms of rank-one tensors among all rank-one decompositions. A rank-one
decomposition of \scrT that attains \| \scrT \| \ast is called a nuclear decomposition of \scrT [10].
When d = 2, the tensor nuclear norm is reduced to the matrix nuclear norm, which
is the sum of all singular values. Similar to the role of matrix nuclear norm used
in many matrix rank minimization problems, the tensor nuclear norm is the convex
envelope of the tensor rank and is widely used in tensor completions [11, 38].

The tensor nuclear norm is the dual norm to the tensor spectral norm and vice
versa, whose proof can be found in [25, 5].

Lemma 3.7. For given tensors \scrT and \scrZ in a same tensor space, it follows that

\| \scrT \| \sigma = max
\| \scrZ \| \ast \leq 1

\langle \scrT ,\scrZ \rangle and \| \scrT \| \ast = max
\| \scrZ \| \sigma \leq 1

\langle \scrT ,\scrZ \rangle .(3.4)

Computing the tensor nuclear norm is also NP-hard when d \geq 3, as shown by
Friedland and Lim [10]. In fact, it is much harder than computing the tensor spectral
norm. From the definition (3.3), finding a CP decomposition is not an easy task for
a given r, and from the dual formulation (3.4), checking the feasibility \| \scrZ \| \sigma \leq 1 is
also NP-hard. Perhaps the only known method is due to Nie [27], which is based
on the sum-of-squares relaxation and can only work for symmetric tensors of low
dimensions. In terms of polynomial-time approximation bounds, the best bound is\prod d - 2

k=1
1\surd 
nk

. There are two methods to achieve this bound; one is via matrix flattenings

of the tensor [18], and the other is via partitioning the tensor into matrix slices [22].
This bound is worse than the best one for the tensor spectral norm. Let us now bridge
the gaps using an idea similar to grid sampling in [17].

To better illustrate our main idea, we discuss the details for a tensor \scrT \in 
\BbbR n1\times n2\times n3 of order three. According to the dual formulation (3.4),

\| \scrT \| \ast =max\{ \langle \scrT ,\scrZ \rangle : \| \scrZ \| \sigma \leq 1\} 
=max\{ \langle \scrT ,\scrZ \rangle :\scrZ (\bfitx ,\bfity ,\bfitz )\leq 1 for all \| \bfitx \| = \| \bfity \| = \| \bfitz \| = 1\} 

=max

\biggl\{ 
\langle \scrT ,\scrZ \rangle : max

\| \bfity \| =\| \bfitz \| =1
\scrZ (\bfitx ,\bfity ,\bfitz )\leq 1 for all \| \bfitx \| = 1

\biggr\} 
.(3.5)

Notice that for a given \bfitx , the constraint max\| \bfity \| =\| \bfitz \| =1\scrZ (\bfitx ,\bfity ,\bfitz )\leq 1 is the same to
\| \scrZ (\bfitx ,\bullet ,\bullet )\| \sigma \leq 1, or the largest singular value of the matrix \scrZ (\bfitx ,\bullet ,\bullet ) is no more
than one. This can be equivalently represented by I \succeq \scrZ (\bfitx ,\bullet ,\bullet )\scrZ (\bfitx ,\bullet ,\bullet )T. Here a
symmetric matrix A \succeq O means that A is positive semidefinite, and A \succeq B means
that A - B \succeq O. Applying the Schur complement, we then have

max
\| \bfity \| =\| \bfitz \| =1

\scrZ (\bfitx ,\bfity ,\bfitz )\leq 1\Leftarrow \Rightarrow I \succeq \scrZ (\bfitx ,\bullet ,\bullet )\scrZ (\bfitx ,\bullet ,\bullet )T

\Leftarrow \Rightarrow 
\biggl[ 

I \scrZ (\bfitx ,\bullet ,\bullet )
\scrZ (\bfitx ,\bullet ,\bullet )T I

\biggr] 
\succeq O.

Combining with (3.5), we obtain an equivalent formulation of the tensor nuclear norm

\| \scrT \| \ast =max

\biggl\{ 
\langle \scrT ,\scrZ \rangle :

\biggl[ 
I \scrZ (\bfitx ,\bullet ,\bullet )

\scrZ (\bfitx ,\bullet ,\bullet )T I

\biggr] 
\succeq O for all \| \bfitx \| = 1

\biggr\} 
.(3.6)

Obviously, there is no way to enumerate all \bfitx in \BbbS n1 in (3.6), but the sphere
covering is indeed helpful in this scenario. If we replace \| \bfitx \| = 1 with \bfitx \in \BbbH n1 for
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some deterministic \BbbH n1 \in \BbbT (n1, \tau ,O(n1
\alpha )) with some university constant \alpha , (3.6) is

then relaxed to

max

\biggl\{ 
\langle \scrT ,\scrZ \rangle :

\biggl[ 
I \scrZ (\bfitx ,\bullet ,\bullet )

\scrZ (\bfitx ,\bullet ,\bullet )T I

\biggr] 
\succeq O for all \bfitx \in \BbbH n1

\biggr\} 
.

This becomes a semidefinte program with O(n1
\alpha ) number of positive semidefinite

constraints.

Algorithm 3.2. Given \scrT \in \BbbR n1\times n2\times n3 , find an approximate nuclear norm
of \scrT .

1. Pick a \tau -hitting set \BbbH n1 \in \BbbT (n1, \tau ,O(n1
\alpha )), and solve the semidefinite program

u=max

\biggl\{ 
\langle \scrT ,\scrZ \rangle :

\biggl[ 
I \scrZ (\bfitx ,\bullet ,\bullet )

\scrZ (\bfitx ,\bullet ,\bullet )T I

\biggr] 
\succeq O for all \bfitx \in \BbbH n1

\biggr\} 
.(3.7)

2. Output \tau u.

Theorem 3.8. For any \BbbH n1 \in \BbbT (n1, \tau ,O(n1
\alpha )), Algorithm 3.2 is a deterministic

polynomial-time algorithm that approximates \| \scrT \| \ast with a worst-case approximation
bound \tau .

Proof. Denote \scrY to be an optimal solution of (3.7). It is easy to see that (3.7)
is a relaxation of the maximization problem (3.6) since \BbbH n1 \subseteq \BbbS n1 . Therefore, u =
\langle \scrT ,\scrY \rangle \geq \| \scrT \| \ast .

For any \bfity ,\bfitz , denote \bfitv =\scrY (\bullet ,\bfity ,\bfitz ), and either we have \| \bfitv \| = 0 or there exists \bfitx \in 
\BbbH n1 such that \bfitx T \bfitv 

\| \bfitv \| \geq \tau , both leading to \scrY (\bfitx ,\bfity ,\bfitz ) = \bfitx T\bfitv \geq \tau \| \bfitv \| = \tau \| \scrY (\bullet ,\bfity ,\bfitz )\| .
Therefore,

max
\bfitx \in \BbbH n1 ,\| \bfity \| =\| \bfitz \| =1

\scrY (\bfitx ,\bfity ,\bfitz )\geq \tau max
\| \bfity \| =\| \bfitz \| =1

\| \scrY (\bullet ,\bfity ,\bfitz )\| 

= \tau max
\| \bfitx \| =\| \bfity \| =\| \bfitz \| =1

\scrY (\bfitx ,\bfity ,\bfitz )

= \tau \| \scrY \| \sigma .

By the feasibility of \scrY in (3.7), \| \scrY (\bfitx ,\bullet ,\bullet )\| \sigma \leq 1 for all \bfitx \in \BbbH n1 , implying that

\| \tau \scrY \| \sigma = \tau \| \scrY \| \sigma \leq max
\bfitx \in \BbbH n1 ,\| \bfity \| =\| \bfitz \| =1

\scrY (\bfitx ,\bfity ,\bfitz ) = max
\bfitx \in \BbbH n1

\| \scrY (\bfitx ,\bullet ,\bullet )\| \sigma \leq 1.

This means that \tau \scrY is a feasible solution to the dual formulation (3.4), and so

\| \scrT \| \ast = max
\| \scrZ \| \sigma \leq 1

\langle \scrT ,\scrZ \rangle \geq \langle \scrT , \tau \scrY \rangle = \tau \langle \scrT ,\scrY \rangle = \tau u\geq \tau \| \scrT \| \ast .

Compared to Algorithm 3.1, which requires (possibly large) enumeration and then
comparison, Algorithm 3.2 only needs to solve one semidefinite program, albeit the
size is large if \BbbH n1 is large. We emphasize that \BbbH n1 in Algorithm 3.2 needs to be a
deterministic \tau -hitting set in order to archive a feasible solution of \| \scrZ \| \sigma \leq 1 in (3.4)
with the desired approximation bound \tau in Theorem 3.8. Although a randomized
hitting set \BbbH n1

1 (\gamma , \epsilon ) can be used in Algorithm 3.2, it is likely that \tau \scrY in the proof
of Theorem 3.8 is not feasible to (3.4). However, \langle \scrT ,\scrY \rangle could still be a good upper
bound of \| \scrT \| \ast in this case. Let us now extend Algorithm 3.2 to a general tensor of
order d.
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Algorithm 3.3. Given \scrT \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd , find an approximate nuclear norm
of \scrT .

1. Pick \BbbH nk \in \BbbT (nk, \tau k,O(nk
\alpha k)) for k= 1,2, . . . , d - 2, and solve the semidefinite

program

u=max

\biggl\{ 
\langle \scrT ,\scrZ \rangle :

\biggl[ 
I Q(Xd - 2)

Q(Xd - 2)
T I

\biggr] 
\succeq O for all \bfitx k \in \BbbH nk

\biggr\} 
,

where Q(Xd - 2) =\scrZ (\bfitx 1,\bfitx 2, . . . ,\bfitx d - 2,\bullet ,\bullet ).
2. Output u

\prod d - 2
k=1 \tau k.

We state the final theorem, which obtains an improved approximation bound for
the tensor nuclear norm using the hitting set \BbbH n

5 (2+
\surd 
5,3+

\surd 
5) in (2.14). This bound

finally matches the current best one for the tensor spectral norm; see Theorem 3.3.
The proof is similar to that of Theorem 3.8 and is omitted.

Theorem 3.9. By choosing \BbbH nk
5 (2 +

\surd 
5,3 +

\surd 
5) for k = 1,2, . . . , d  - 2,

Algorithm 3.3 is a deterministic polynomial-time algorithm that approximates \| \scrT \| \ast 
with a worst-case approximation bound 0.3d - 2(

\prod d - 2
k=1

lnnk

nk
)

1
2 for any \scrT \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd .

3.3. Numerical performance of approximation methods. We now test the
numerical performance of the methods for approximating tensors norms in comple-
ment to the theoretical results established earlier. All the experiments are conducted
on a Linux server (Ubuntu 20.04) with an Intel Xeon Platinum 8358 at 2.60GHz
and 512GB of RAM. The computations are implemented in Python 3. The semidef-
inite optimization solver1 in COPT Fusion API for Python 9.3.13 is called whenever
semidefinite programs are involved.

We first test Algorithm 3.1 to approximate the tensor spectral norm using exam-
ples in Nie and Wang [28, Examples 3.12, 3.13, and 3.14]. The semidefinite relaxation
method in [28] works well in practice and usually finds optimal values. It also enable
us to check the true approximation bounds in practice rather than the conservative
theoretical bounds. The results for the first two examples are shown in Table 5. For
Example 3.13, the method in [28] calls the fmincon function in MATLAB for a local
improvement. This is the benchmark optimal value used to compute the approxi-
mation bounds. We also apply the classic alternating least square (ALS) method
[21] as a local improvement starting from the approximate solutions obtained by
Algorithm 3.1. Whenever a local improvement method is applied, the corresponding
indicator is appended with a ``+"" sign.

The results for Example 3.14 in [28] are shown in Table 6. In this example,
the method in [28] obtained global optimality directly without applying the local

Table 5
Numerical results for Examples 3.12 and 3.13 in [28].

Example Method CPU CPU+ Value Value+ Bound Bound+

Ex 3.12 [28] 0.703 2.8167 1.0000
Alg 3.1 0.000 0.000 2.2076 2.8167 0.7837 1.0000

Ex 3.13 [28] 0.545 0.612 0.9862 1.0000 0.9862 1.0000
Alg 3.1 0.000 0.250 0.8397 1.0000 0.8397 1.0000

1https://docs.mosek.com/latest/pythonfusion/tutorial-sdo-shared.html.
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Table 6
Numerical results for Example 3.14 in [28].

n Method CPU CPU+ Value Value+ Bound Bound+
\sqrt{} 

lnn/n

5 [28] 0.997 6.0996 1.0000

Alg 3.1 0.020 0.050 4.3058 6.0996 0.7059 1.0000 0.5674

10 [28] 1.411 14.7902 1.0000
Alg 3.1 0.320 1.920 8.4779 14.7902 0.5732 1.0000 0.4799

15 [28] 3.696 25.4829 1.0000

Alg 3.1 1.670 3.680 11.4022 25.4829 0.4474 1.0000 0.4249
20 [28] 8.763 33.7020 1.0000

Alg 3.1 4.870 20.120 13.3617 33.7020 0.3964 1.0000 0.3870

25 [28] 37.535 46.7997 1.0000
Alg 3.1 50.310 110.000 19.5674 46.7997 0.4181 1.0000 0.3588

30 [28] 52.994 64.9106 1.0000

Alg 3.1 101.380 152.160 24.5234 64.9106 0.3778 1.0000 0.3367
35 [28] 111.547 80.7697 1.0000

Alg 3.1 197.510 350.360 28.6220 80.7697 0.3543 1.0000 0.3187
40 [28] 241.565 95.0878 1.0000

Alg 3.1 362.230 548.350 33.7020 95.0878 0.3307 1.0000 0.3037

improvement. We also listed the theoretical approximation bound
\sqrt{} 

lnn
n (without

showing the constant disguised under the \Omega ) of our algorithm for comparison.
Observed from the numerical results of these three examples, Algorithm 3.1 ob-

viously fails to obtain optimality in contrast to a practical method, but with the
help of the ALS method, the global optimality is obtained for all the test instances.
The approximation bounds calculated by these numerical instances are better than
the theoretical approximation bounds shown in section 3.1. In terms of the compu-
tational time by comparing with the method in [28], Algorithm 3.1 runs quicker for
low dimensions, but the running time increases quickly when the dimension of the
problem increases.

To systematically verify and compare with the theoretical approximation bounds
obtained by our algorithms, we perform tests on randomly generated tensors whose
spectral and nuclear norms can be easily obtained. In particular, let

\scrT =

r\sum 
i=1

\lambda i\bfitx i \otimes \bfity i \otimes \bfitz i with \lambda i > 0 and \| \bfitx i\| = \| \bfity i\| = \| \bfitz i\| = 1 for all i,(3.8)

where (\bfitx T
i \bfitx j)(\bfity 

T
i \bfity j) = \bfitz T

i \bfitz j = 0 for i \not = j. This is a special type of orthogonally
decomposable tensor. With the special structure of \scrT in (3.8), it is not difficul to see
that \| \scrT \| \sigma = max1\leq i\leq r \lambda i and \| \scrT \| \ast =

\sum r
i=1 \lambda i. The components of \scrT in (3.8), \lambda i's,

\bfitx i's, \bfity i's, and \bfitz i's, are generated from i.i.d. standard normal distributions and made
positive (by taking the absolute value) or orthogonal if necessary.

We apply Algorithm 3.1 to approximate the spectral norm and Algorithm 3.2
to approximate the nuclear norm for n \times 10 \times 10 tensors and 10 \times n \times n tensors,
both with varying n. Instead of the deterministic hitting set \BbbH 5 used in the original
algorithms, we replace it with a randomized hitting set \BbbH 1 that is numerically more
stable and efficient. The results are shown in Tables 7 and 8 for the spectral norm
and in Tables 9 and 10 for the nuclear norm. For each type of tensor with a fixed size,
say, 5\times 10\times 10, we randomly generate 200 instances and find an approximate solution
of the spectral norm by Algorithm 3.1, whose approximation bound is then computed
since the optimal value is known. We then use the approximate solution as a starting
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Table 7
Approximating the spectral norm by Algorithm 3.3 (using \BbbH n

1 ) for n\times 10\times 10 tensors.

n 5 10 20 30 40 50\sqrt{} 
lnn/n 0.5674 0.4799 0.3870 0.3367 0.3037 0.2797

Min bound 0.6317 0.6344 0.5751 0.5263 0.4663 0.4602

Min bound+ 0.6921 0.6500 0.5847 0.5371 0.4768 0.8603

Max bound 0.9879 0.9611 0.8572 0.7653 0.7025 0.6579
Max bound+ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Mean bound 0.8898 0.8219 0.6786 0.6459 0.5778 0.5278

Mean bound+ 0.9895 0.9896 0.9859 0.9825 0.9758 0.9932
\% of optimality+ 92.0\% 92.0\% 91.0\% 87.5\% 84.5\% 89.0\%

Mean CPU+ 0.02 0.23 0.78 6.84 12.47 18.39

Table 8
Approximating the spectral norm by Algorithm 3.3 (using \BbbH 10

1 ) for 10\times n\times n tensors.

n 5 10 20 30 40 50

Min bound 0.6574 0.5016 0.5094 0.6858 0.5133 0.5905

Min bound+ 0.6746 0.5321 0.5109 0.7236 0.5261 0.6099

Max bound 0.9451 0.9453 0.9472 0.9375 0.9819 0.9620
Max bound+ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Mean bound 0.8271 0.8292 0.8308 0.8280 0.8326 0.8295

Mean bound+ 0.9899 0.9826 0.9893 0.9933 0.9814 0.9851
\% of optimality+ 90.0\% 85.5\% 91.0\% 93.5\% 88.5\% 90.0\%

Mean CPU+ 0.06 0.23 0.76 1.81 3.12 5.53

Table 9
Approximating the nuclear norm by Algorithm 3.9 (using \BbbH n

1 ) for n\times 10\times 10 tensors.

n 5 10 20 30 40 50\sqrt{} 
n/ lnn 1.7626 2.0840 2.5838 2.9699 3.2929 3.5751

Min bound 1.1791 1.2521 1.7417 1.8815 2.1672 2.5568

Max bound 1.4998 1.5263 2.0248 2.0187 2.2854 3.2108

Mean bound 1.3078 1.4135 1.9055 1.9522 2.2221 2.9763
Mean CPU+ 0.69 13.31 101.49 1957.03 5365.99 11609.46

Table 10
Approximating the nuclear norm by Algorithm 3.9 (using \BbbH 10

1 ) for 10\times n\times n tensors.

n 5 10 20 30 40 50

Min bound 1.2999 1.3110 1.3008 1.3225 1.3638 1.3511
Max bound 1.5275 1.5303 1.5257 1.5405 1.5099 1.5726

Mean bound 1.4120 1.4112 1.4148 1.4148 1.4200 1.4239
Mean CPU+ 2.06 13.23 160.03 941.46 6618.63 9488.85

point to apply the ALS method as a local improvement. As before, the corresponding
indicator is appended with a ``+"" sign when a local improvement is involved. The
same setting is implemented for the tensor nuclear norm by Algorithm 3.2 except that
(1) there is no local improvement method to improve our approximation solution and
(2) we do not multiply \tau to the output solution \scrY , as \tau involves an \Omega , but directly use
\langle \scrT ,\scrY \rangle to obtain an upper bound (see the proof of Theorem 3.8), and so the bound is
larger than one. In this scenario, the closer to one, the better the bound.
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From these tables, we see that the approximation bounds obtained by numeri-

cal instances outperform the theoretical bound \Omega (
\sqrt{} 

lnn
n ) for both the spectral norm

and the nuclear norm. For the latter, it obviously beats the previous known best
one \Omega ( 1\surd 

n
). For the spectral norm, running the ALS method starting with our ap-

proximate solutions can lead to global optimality for most random generated tensor
instances.

4. Concluding remarks. We constructed hitting sets or collections of spherical
caps to cover the unit sphere with adjustable parameters for different levels of approx-
imations and cardinalities, listed roughly in Table 1. These readily available products
can be used for various decision-making problems on spheres or related problems. By
applying the covering results, we proposed easily implementable and deterministic
algorithms to approximate the tensor spectral norm with the current known best ap-
proximation bound. The algorithms can be extended to provide approximate solutions
for sphere constrained homogeneous polynomial optimization problems. Determinis-
tic algorithms with an improved approximation bound for the tensor nuclear norm
were proposed as well. This newly improved bound attains the best-known one for
the tensor spectral norm.

For 1\leq p\leq \infty , the tensor spectral p-norm [24] generalizes the tensor spectral norm
in which the unit sphere \| \bfitx \| = 1 is replaced by the \ell p-sphere \| \bfitx \| p = 1. The tensor
nuclear p-norm can also be defined similarly [10]. Hou and So [16] studied related
\ell p-sphere constrained homogeneous polynomial optimization problems and proposed
approximation bounds. It is natural to ask whether one can construct \ell p-sphere
coverings and apply them to approximate the tensor spectral and nuclear p-norms.
The answer is likely yes but still challenging. In fact, one can construct randomized
hitting sets using similar ideas in section 2.1 to show an \ell p version of Theorem 2.2,
but deterministic constructions remain difficult. Perhaps a more interesting problem
is to explicitly construct hitting sets for the binary hypercube \{ 1, - 1\} n with different
levels of approximations and cardinalities. It will have wider applications, particularly
in discrete optimization and graph theory. We leave these to future works.
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