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Abstract
Hermitian matrices have played an important role in matrix theory and complex 
quadratic optimization. The high-order generalization of Hermitian matrices, conju-
gate partial-symmetric (CPS) tensors, have shown growing interest recently in ten-
sor theory and computation, particularly in application-driven complex polynomial 
optimization problems. In this paper, we study CPS tensors with a focus on ranks, 
computing rank-one decompositions and approximations, as well as their applica-
tions. We prove constructively that any CPS tensor can be decomposed into a sum of 
rank-one CPS tensors, which provides an explicit method to compute such rank-one 
decompositions. Three types of ranks for CPS tensors are defined and shown to be 
different in general. This leads to the invalidity of the conjugate version of Comon’s 
conjecture. We then study rank-one approximations and matricizations of CPS ten-
sors. By carefully unfolding CPS tensors to Hermitian matrices, rank-one equiva-
lence can be preserved. This enables us to develop new convex optimization models 
and algorithms to compute best rank-one approximations of CPS tensors. Numerical 
experiments from data sets in radar wave form design, elasticity tensor, and quantum 
entanglement are performed to justify the capability of our methods.
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1  Introduction

As the complex counterpart of real symmetric matrices, Hermitian matrices are 
often considered to play a more important role than complex symmetric matrices 
in practice. This is mainly due to the fact that any complex quadratic form gener-
ated by a Hermitian matrix always takes real values and all the eigenvalues of 
a Hermitian matrix are real. It is especially important in many applications, for 
instance, in quantum physics where Hermitian matrices are operators that measure 
properties of a system, e.g., total spin which has to be real, and in mathemati-
cal optimization whereas objective functions need to be real-valued. Generaliz-
ing to high-order tensors, symmetric tensors, no matter in the real or in the com-
plex field, have been paid enormous attention in the recent decade. However, the 
high-order generalization of Hermitian matrices has not been formally proposed in 
mathematics until recently by Jiang et al. [24], who named it as conjugate partial-
symmetric (CPS) tensors. The concept of CPS tensors were later generalized to 
conjugate non-symmetric tensors called Hermitian tensors by Ni [32]. Neverthe-
less, various examples of CPS tensors can be extracted from real applications in 
forms of complex polynomial optimization problems. Aittomaki and Koivunen [1] 
considered the beampattern optimization and formulated it as a complex multi-
variate quartic minimization model. Sorber et al. [41] applied unconstrained com-
plex optimization to study the simulation of nonlinear circuits in the frequency 
domain. Aubry et al. [2] modeled a radar signal processing problem by optimizing 
a complex quartic polynomial which always takes real values. Josz [26] investi-
gated applications of complex polynomial optimization to electricity transmission 
network. Moreover, Madani et al. [30] studied the power system state estimation 
via complex polynomial optimization.

There were several discussions on high-order generalization of Hermitian 
matrices earlier and recently. The Hermitian tensor product, defined to be the Kro-
necker product of a Hermitian matrix, has been studied since 1960s [27, 31]. It has 
many applications in quantum entanglement [9] and enjoys certain nice proper-
ties; for instance, the Kronecker product of a Hermitian matrix remains a Hermi-
tian matrix. Fourth-order cumulant tensors in multivariate statistics were proposed 
and applied to the blind source separation [6]. Such tensors are called quadrico-
variance tensors, which is a special class of fourth-order CPS tensors. In material 
sciences [20, 38], an elastic tensor is a three-dimensional fourth-order CPS tensor. 
Ni et  al. [33] proposed the unitary eigenvalues and unitary symmetric eigenval-
ues for complex tensors and symmetric complex tensors, respectively, and demon-
strated a relation to the geometric measure of quantum entanglement. Zhang et al. 
[44] studied the unitary eigenvalues of non-symmetric complex tensors. Jiang 
et al. [24] characterized real-valued complex polynomial functions and their sym-
metric tensor representations, which naturally led to the definition of CPS tensors 
as well as its generalization called conjugate super-symmetric tensors. Eigenval-
ues and applications for these tensors were discussed as well. Derksen et  al. [8] 
studied entanglement of d-partite system in the field of quantum mechanics and 
introduced the notion of bisymmetric Hermitian tensor, which is essentially the 
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same definition of CPS tensors in [24]. Some elementary properties of bisymmet-
ric Hermitian tensors were discussed. Recently, Nie and Yang [36] studied decom-
positions of Hermitian tensors.

CPS tensors inherit many nice properties of Hermitian matrices. For instance, 
every symmetric complex form generated by a CPS tensor is real-valued and all the 
eigenvalues of a CPS tensor are real [24]. In contrast to the many efforts on the 
optimization aspect [12, 13, 19, 23, 40, 45] of CPS tensors, the current paper aims 
for their decompositions, ranks and approximations, which are important topics for 
high-order tensors. As we all know that the generalization of matrices to high-order 
tensors has led to interesting new findings as well as keeping many nice properties, 
CPS tensors, as a generalization of Hermitian matrices in terms of the high order 
and a generalization of real symmetric tensors in terms of the complex field, should 
also be expected to behave in that sense. One of our findings states that Comon’s 
type conjecture, i.e., the symmetric rank of a symmetric tensor is equal to the rank 
of the tensor, applied to CPS tensors is actually invalid in a simple example. We 
believe the analysis in this line will provide novel insights into CPS tensors, and 
hope these new findings will help in future modelling of practical applications. In 
fact, one of our results on rank-one equivalence via square matricization helps to 
develop new models and algorithms to compute best rank-one approximations and 
the extreme eigenvalue of CPS tensors.

The study of CPS tensors in this paper is focused on ranks, rank-one decomposi-
tions and approximations, as well as their applications. The analysis is conducted 
along side with a more general class of complex tensors called partial-symmetric 
(PS) tensors. We propose the Hermitian and skew-Hermitian parts of PS tensors, 
which are helpful to understand structures of PS tensors and CPS tensors. We 
prove constructively that any CPS tensor can be decomposed into a sum of rank-
one CPS tensors, using the tools in additive number theory, specifically, Hilbert’s 
identity [4, 22]. This provides an alternative definition of CPS tensors via real lin-
ear combinations of rank-one CPS tensors and a computational method to decom-
pose it. As a consequence, perhaps surprisingly, any PS tensors can be decomposed 
into a complex linear combinations of rank-one CPS tensors. We then define three 
types of ranks for CPS tensors and show that they are non-identical in general. For 
CPS tensors, this leads to the invalidity of conjugate version of Comon’s conjec-
ture, albeit it is not the exact form of Comon’s conjecture in [7]. We further study 
rank-one approximations of CPS tensors. Depending on the types of rank-one ten-
sors to be considered, rank-one approximations could also be different. As is known 
in the literature, if the square matricization of an even-order symmetric tensor is 
rank-one, then the original symmetric tensor is also rank-one. We figure out that 
the same property does hold for CPS tensors when they are unfolded to Hermitian 
matrices under a careful way of matricization. Based on the rank-one matricization 
equivalence, we propose two convex optimization models to compute best rank-one 
approximations of CPS tensors. Several numerical experiments from real data to 
simulated data are performed to justify the capability of our methods.

This paper is organized as follows. We start with preparations of various nota-
tions, definitions, and elementary properties in Section  2. In Section  3, we study 
decompositions of CPS tensors and discuss several concepts of ranks. We then focus 
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on rank-one approximations and rank-one equivalence via matricization for CPS 
tensors in Section 4, which provide an immediate application to compute best rank-
one approximations of CPS tensors via convex optimization. Finally in Section 5, 
we conducted several numerical experiments to illustrate effective performance of 
the methods proposed in Section 4.

2 � Preparations

Throughout this paper, we uniformly use lowercase letters, boldface lowercase let-
ters, capital letters, and calligraphic letters to denote scalars, vectors, matrices, and 
high-order tensors, respectively, e.g., a scalar x, a vector x , a matrix X, and a tensor 
X  . We use subscripts to denote their components, e.g., xi being the i-th entry of a 
vector x , Xij being the (i, j)-th entry of a matrix X, and Xijk being the (i, j, k)-th entry 
of a third-order tensor X  . As usual, the field of real numbers and the field of com-
plex numbers are denoted by ℝ and ℂ , respectively.

For any complex number z = x + �y ∈ ℂ with x, y ∈ ℝ , its real part and imaginary 
part are denoted by Re z ∶= x and Im z ∶= y , respectively. Its argument is denoted 
by arg(z) and its modulus is denoted by �z� ∶=

√
zz =

√
x2 + y2 , where z ∶= x − �y 

denotes the conjugate of z. For any vector z ∈ ℂ
n , we denote zH ∶= z

T to be the 
transpose of its conjugate, and we define it analogously for matrices. The norm of a 
complex vector z ∈ ℂ

n is defined as

2.1 � CPS tensor

Let us consider ℂnd , the space of complex tensors of order d and dimension n. A 
tensor T ∈ ℂ

nd is called symmetric if every entry of T  is invariant under all permuta-
tions of its indices, i.e., for every 1 ≤ i1 ≤ … ≤ id ≤ n,

where Π(i1,… , id) denotes the set of all distinctive permutations of {i1,… , id} . The 
set of symmetric tensors in ℂnd is denoted by ℂnd

s
.

Definition 2.1  (Jiang et  al. [24, Definition 2.3]). An even-order complex ten-
sor T ∈ ℂ

n2d is called partial-symmetric (PS) if for every 1 ≤ i1 ≤ … ≤ id ≤ n and 
1 ≤ id+1 ≤ … ≤ i2d ≤ n,

‖z‖ ∶=
√
zHz =

���� n�
i=1

�zi�2.

Tj1…jd
= Ti1…id

∀ (j1,… , jd) ∈ Π(i1,… , id),

Tj1…jd jd+1…j2d
= Ti1…id id+1…i2d

∀(j1,… , jd) ∈ Π(i1,… , id),

(jd+1,… , j2d) ∈ Π(id+1,… , i2d).



1 3

On decompositions and approximations of conjugate… Page 5 of 37     46 

Essentially, a PS tensor is symmetric with respect to its first half of the modes, 
and symmetric with respect to its last half of the modes as well, while a symmetric 
tensor is symmetric with respect to all the modes. The set of PS complex tensors in 
ℂ

n2d is denoted by ℂn2d

ps
 . When d = 1 , one has ℂn2

s
⊊ ℂ

n2

ps
= ℂ

n2 . However, for d ≥ 2 , it 
is obvious that ℂn2d

s
⊊ ℂ

n2d

ps
⊊ ℂ

n2d.
A special class of PS tensors, called conjugate partial-symmetric tensors, general-

izes Hermitian matrices to high-order tensor spaces.

Definition 2.2  (Jiang et  al. [24, Definition 3.7]). An even-order complex tensor 
T ∈ ℂ

n2d is called conjugate partial-symmetric (CPS) if it is partial-symmetric and

The set of CPS tensors in ℂn2d is denoted by ℂn2d

cps
 . Obviously when d = 1 , ℂn2

cps
 is 

nothing but the set of Hermitian matrices in ℂn2 . CPS tensors are the high-order gen-
eralization of Hermitian matrices. For d ≥ 2 , one has ℂn2d

cps
⊊ ℂ

n2d

ps
⊊ ℂ

n2d . However, 
ℂ

n2d

s
 and ℂn2d

cps
 are not comparable. Actually one has ℂn2d

s
∩ ℂ

n2d

cps
= ℝ

n2d

s
 , the set of real 

symmetric tensors. This is the the same for complex symmetric matrices and Hermi-
tian matrices, i.e., d = 1.

We remark that PS tensors are closed under addition and multiplication by com-
plex numbers, while CPS tensors are closed under addition and multiplication by 
real numbers only. This fact may not be obvious from their definitions. In fact, it can 
be easily seen from their equivalent definitions via partial-symmetric decomposi-
tions; see Section 3.1.

2.2 � Complex form

The Frobenius inner product of two complex tensors U,V ∈ ℂ
nd is defined as

and its induced Frobenius norm of a complex tensor T  is naturally defined as 
‖T‖ ∶=

√⟨T, T⟩. We remark that these two notations naturally apply to vectors and 
matrices, which are tensors of order one and order two, respectively. A rank-one ten-
sor, also called a simple tensor, is a tensor that can be written as outer products of 
vectors, i.e., x1 ⊗…⊗ xd ∈ ℂ

nd where xk ∈ ℂ
n for k = 1,… , d.

Given a complex tensor T ∈ ℂ
nd , the multilinear form of T  is defined as

where the variable xk ∈ ℂ
n for k = 1,… , d.

If a vector in a multilinear form  (1) is missing and replaced by a ‘ ∙ ’, say 
T(∙, x2,… , xd) , it then becomes a vector in ℂn . Explicitly, the i-th entry of 

Ti1…id id+1…i2d
= Tid+1…i2di1…id

∀ 1 ≤ i1 ≤ … ≤ id ≤ n, 1 ≤ id+1 ≤ … ≤ i2d ≤ n.

⟨U,V⟩ ∶=
n�

i1=1

…

n�
id=1

Ui1…id
Vi1…id

,

(1)T(x1,… , xd) ∶=

n�
i1=1

…

n�
id=1

Ti1…id
(x1)i1 …(xd)id = ⟨T, x1 ⊗…⊗ xd⟩,
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T(∙, x2,… , xd) is T(ei, x2,… , xd) for i = 1,… , n , where ei is the i-th unit vector of 
ℝ

n . When all xk ’s in (1) are the same, a multilinear form becomes a complex homog-
enous polynomial function (or complex form) of x ∈ ℂ

n , i.e.,

The notations, xd standing for d copies of x in a multilinear form, and x⊗d standing 
for outer products of d copies of x , will be used throughout this paper as long as 
there is no ambiguity.

To our particular interest in this paper, the following conjugate complex form, or 
conjugate form, is defined by a PS tensor T ∈ ℂ

n2d

ps
,

Remark that xd and xd in T(xdxd) cannot be swapped as otherwise it becomes a 
different form. Similarly, we may use the notation T(∙ xd−1xd) ∈ ℂ

n , which equals 
T(x

d−1
∙ xd) since T  is a PS tensor.

2.3 � Hermitian part and skew‑Hermitian part

It is shown in [24] that T(xdxd) is real-valued if and only if T  is CPS, extending the 
case of d = 1 , i.e., A(xx) is real-valued if and only if A is a Hermitian matrix. As is 
well known, any complex matrix A ∈ ℂ

n2 can be written as A = H(A) + S(A) , where

are the Hermitian part and the skew-Hermitian part of A, respectively. We extend 
this concept to high-order PS tensors, which is helpful in the analysis of our results.

Definition 2.3  The conjugate transpose of a PS tensor T ∈ ℂ
n2d

ps
 , denoted by TH , 

satisfies

The Hermitian part H(T) and the skew-Hermitian part S(T) of a PS tensor T  are 
defined as

respectively.

Obviously, one has (TH)H = T  for a PS tensor T  . It is clear from Definition 2.2 
that a PS tensor T  is CPS if and only if TH = T  , or S(T) = O , a zero tensor. The 
following property can be verified straightforwardly, similar to Hermitian matrices.

T(xd) ∶= T(x,… , x
���

d

) = ⟨T, x⊗…⊗ x
���������

d

⟩ =∶ ⟨T, x⊗d⟩.

T(x
d
xd) ∶= T(x,… , x

���
d

, x,… , x
���

d

) = ⟨T, x⊗d
⊗ x⊗d⟩.

H(A) =
1

2
(A + AH) and S(A) =

1

2
(A − AH)

(TH)i1…id id+1…i2d
= Tid+1…i2di1…id

∀ 1 ≤ i1 ≤ … ≤ id ≤ n, 1 ≤ id+1 ≤ … ≤ i2d ≤ n.

H(T) ∶=
1

2
(T + TH) and S(T) ∶=

1

2
(T − TH),
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Proposition 2.4  Any PS tensor T  can be uniquely written as T = U + �V , where both 
U and V are CPS tensors. In particular, U = H(T) and V = −�S(T) . Moreover, T  is 
a CPS tensor if and only if V = O.

Proof  Obviously T = H(T) + �(−�S(T)) . According to Definition 2.3, we have

implying that both U = H(T) and V = −�S(T) are CPS.
For the uniqueness, suppose that T = X + �Y with X,Y being CPS. We have

Using a similar argument, one can show that V = Y.
If T  is a CPS tensor, then

implies that V = O . If V = O , then obviously T  is a CPS tensor. 	�  ◻

3 � CPS decomposition and rank

This section is devoted to decompositions of CPS tensors as well as PS tensors. It is 
an extension of the symmetric decomposition of symmetric tensors. One main result 
is to propose a constructive method to decompose a CPS tensor into a sum of rank-
one CPS tensors, and hence provide an alternative definition of CPS tensors via real 
linear combination of rank-one CPS tensors. Based on these results, we discuss sev-
eral ranks for PS tensors and CPS tensors, which can be classified as the conjugate 
version of Waring’s decomposition [5, 10].

3.1 � CPS decomposition

Rank-one decompositions play an essential role in exploring structures of high-order 
tensors. For Hermitian matrices, they enjoy the following type of conjugate symmet-
ric decompositions: If A ∈ ℂ

n2

cps
 , then

H(T)H =
1

2
(T + TH)H =

1

2
(TH + T) = H(T),

(−�S(T))H =
(
−
�

2
(T − TH)

)H

=
�

2
(TH − T) = −�S(T),

U = H(T) =
T + TH

2
=

X + �Y + (X + �Y)H

2
=

X + �Y + XH − �YH

2
= X.

U + �V = T = TH = UH − �VH = U − �V,

(2)A =

r∑
j=1

𝜆jajaj
T =

r∑
j=1

𝜆jaj ⊗ aj,
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where �j ∈ ℝ and aj ∈ ℂ
n for j = 1,… , r with some r ≤ n . As the high-order gen-

eralization of Hermitian matrices, CPS tensors do inherit this important property. 
Before presenting the main result in this section, let us first prove a technical result.

Lemma 3.1  For any positive integers d and n, there exists aj ∈ ℂ
n and �j ∈ ℝ for 

j = 1,… ,m with finite m, such that

Proof  For any nonzero �0, �1,… , �2d ∈ ℝ with �i ≠ �j if i ≠ j , consider the follow-
ing 2d + 1 linear equations with 2d + 1 variables:

where �0 = 1, �d =
√
d!, �2d = d! , and other �k ’s are zeros. The determinant of the 

coefficients of (3) is the Vandermonde determinant

and so  (3) has a unique real solution, which is denoted by (z0, z1,… , z2d) for 
simplicity.

Denote Ωd ∶= {e�
2k�

d ∶ k = 0, 1,… , d − 1} , the set of all complex solutions to 
zd = 1 . Let �1,… , �n be i.i.d. random variables uniformly distributed on Ωd . For any 
linear function of �i’s, say, c1�1 +…+ cn�n , it follows that

To see why (4) holds, we consider all terms

in the left hand side of  (4). They can be classified into three mutually exclusive 
cases: (i) If there is some i such that 1 ≤ |di − ti| ≤ d − 1 , then

since E[�ik] = 0 for any integer k with 1 ≤ |k| ≤ d − 1 ; (ii) If |di − ti| = 0 or d for 
i = 1,… , n and there is some k such that |dk − tk| = d , which implies that there is 

|||||

n∑
i=1

xi
d
|||||

2

=

m∑
j=1

�j
|||aj

Tx
|||
2d

.

(3)�0
kz0 + �1

kz1 +…+ �2d
kz2d = �k k = 0, 1,… , 2d,

||||||||

1 1 … 1

𝛼0 𝛼1 … 𝛼2d
⋮ ⋮ ⋮ ⋮

𝛼0
2d 𝛼1

2d … 𝛼2d
2d

||||||||
=

∏
0≤i<j≤d

(𝛼j − 𝛼i) ≠ 0,

(4)

E

[(
c1�1 +…+ cn�n

)d(
c1�1 +…+ cn�n

)d]

=
∑

d1+…+dn=d

(
d!

d1!… dn!

)2 n∏
i=1

||ci||2di +
∑
i≠j

ci
d
cj
d.

n∏
i=1

(
ci�i

)di(
ci�i

)ti with d1 +…+ dn = t1 +…+ tn = d

E

[
n∏
i=1

(
ci�i

)di(
ci�i

)ti
]
= E

[
ci
dici

ti�i
di
�i
ti

]
E

[∏
j≠i

(
cj�j

)dj(
cj�j

)tj
]
= 0
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another index � ≠ k such that |d� − t�| = d . As a result, there are i ≠ j such that 
di = tj = d and the rest are zeros. Therefore,

and (iii) If |di − ti| = 0 for i = 1,… , n , then

and the number of such terms in (4) is 
(

d!

d1!…dn!

)2

.
By applying (4) and (3), we obtain

where even(d) is one if d is even and zero otherwise. Notice that 1
d!

�∏n

�=1
zk�

�
 is 

real, and so (5) provides a constructive expression of 
∑m

j=1
�j
���ajTx

���
2d

 with finite m 
for ��

∑n

i=1
xi
d��2 when d is odd.

When d is even, we consider another system of d + 1 linear equations with d + 1 
variables:

E

[
n∏
i=1

(
ci�i

)di(
ci�i

)ti
]
= E

[(
ci�i

)d(
cj�j

)d]
= ci

d
cj
d;

E

[
n∏
i=1

(
ci�i

)di(
ci�i

)ti
]
=

n∏
i=1

E

[(
ci�i

)di(
ci�i

)di
]
=

n∏
i=1

||ci||2di

(5)

1

d!

2d∑
k1=0

…

2d∑
kn=0

(
n∏

�=1

zk�

)
E

[(
𝛼k1𝜉1x1 +…+ 𝛼kn𝜉nxn

)d(
𝛼k1𝜉1x1 +…+ 𝛼kn𝜉nxn

)d]

=
1

d!

2d∑
k1=0

…

2d∑
kn=0

(
n∏

�=1

zk�

)

(∑
i≠j

𝛼ki
d
xi
d
𝛼kj

dxj
d +

∑
d1+…+dn=d

(
d!

d1!… dn!

)2 n∏
i=1

|||𝛼ki xi
|||
2di

)

=
1

d!

∑
i≠j

2d∑
k1=0

…

2d∑
kn=0

(
n∏

�=1

zk�

)
𝛼ki

d
𝛼kj

dxi
d
xj
d

+ d!
∑

d1+…+dn=d

2d∑
k1=0

…

2d∑
kn=0

n∏
i=1

||xi||2di(
di!

)2
(
𝛼ki

2di zki

)

=
1

d!

∑
i≠j

xi
d
xj
d

(
2d∑
k=0

𝛼k
dzk

)2( 2d∑
k=0

zk

)n−2

+ d!
∑

d1+…+dn=d

n∏
i=1

||xi||2di(
di!

)2
(

2d∑
k=0

𝛼k
2di zk

)

=
∑
i≠j

xi
d
xj
d +

n∑
i=1

|xi|2d + even(d)
(d!)2

((d∕2)!)4

∑
i<j

|xi|d|xj|d

=
|||||

n∑
i=1

xi
d
|||||

2

+ even(d)
(d!)2

((d∕2)!)4

∑
i<j

|xi|d|xj|d,
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where nonzero �0, �1,… , �d ∈ ℝ with �i2 ≠ �j
2 if i ≠ j , and �0 = �d∕2 = 1 and other 

�k ’s are zeros. Similar to the linear system (3) whose Vandermonde determinant is 
nonzero, (6) also has a unique real solution, denoted by (y0, y1,… , yd) for simplicity.

Let �1,… , �n be i.i.d. random variables uniformly distributed on Ωd+1 . Similar to 
the proof of (4), we can obtain

Therefore,

where the last inequality is due to (6). This, together with (5) for even d, gives that

By taking the coefficients of x , (�k1�1,… , �kn�n) or (�k1�1,… , �kn�n) , and enumerat-
ing every possible value in the supports sets of �i ’s or �i’s, to form an aj ∈ ℂ

n , the 
above equality provides an expression of 

∑m

j=1
�j
���ajTx

���
2d

 with finite m for ��
∑n

i=1
xi
d��2 

when d is even. 	�  ◻

(6)�0
2ky0 + �1

2ky1 +…+ �d
2kyd = �k k = 0, 1,… , d,

E
[(
c1�1 +…+ cn�n

)d(
c1�1 +…+ cn�n

)d]
=

∑
d1+…+dn=d

(
d!

d1!… dn!

)2 n∏
i=1

||ci||2di .

d∑
k1=0

…

d∑
kn=0

(
n∏

�=1

yk�

)
E

[(
𝛽k1𝜂1x1 +…+ 𝛽kn𝜂nxn

)d(
𝛽k1𝜂1x1 +…+ 𝛽kn𝜂nxn

)d]

=

d∑
k1=0

…

d∑
kn=0

(
n∏

�=1

yk�

) ∑
d1+…+dn=d

(
d!

d1!… dn!

)2 n∏
i=1

|||𝛽ki xi
|||
2di

= (d!)2
∑

d1+…+dn=d

d∑
k1=0

…

d∑
kn=0

n∏
i=1

||xi||2di
(di!)

2

(
𝛽ki

2diyki

)

= (d!)2
∑

d1+…+dn=d

n∏
i=1

||xi||2di
(di!)

2

(
d∑

k=0

𝛽k
2diyk

)

=
∑
i<j

(d!)2

((d∕2)!)4
|xi|d|xj|d,

|||||

n∑
i=1

xi
d
|||||

2

=
1

d!

2d∑
k1=0

…

2d∑
kn=0

(
n∏

�=1

zk�

)

E

[(
�k1�1x1 +…+ �kn�nxn

)d(
�k1�1x1 +…+ �kn�nxn

)d]

−

d∑
k1=0

…

d∑
kn=0

(
n∏

�=1

yk�

)

E

[(
�k1�1x1 +…+ �kn�nxn

)d(
�k1�1x1 +…+ �kn�nxn

)d]
.
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The above lemma can be viewed as a conjugate type of Hilbert’s identity in the 
literature (see e.g., [4]), which states that for any positive integers d and n, there 
always exist a1,… , am ∈ ℝ

n , such chat

With Lemma 3.1 in hand, we are ready to show that any CPS tensor can be decom-
posed into a sum of rank-one CPS tensors.

Theorem 3.2  An even-order tensor T ∈ ℂ
n2d is CPS if and only if T  has the follow-

ing CPS decomposition

where �j ∈ ℝ and aj ∈ ℂ
n for j = 1,… ,m with finite m.

Proof  For any a ∈ ℂ
n , it is straightforward to check that the rank-one tensor 

a
⊗d

⊗ a⊗d is CPS by Definition 2.2. In fact, it is symmetric with respect to its first 
half of the modes, and also symmetric with respect to its last half of the modes, 
resulting a PS tensor. Besides, this PS tensor satisfies

resulting a CPS tensor. Therefore, as a real linear combination of such rank-one CPS 
tensors in (7), T  must also be CPS.

On the other hand, according to [24, Proposition 3.9] with a constructive algo-
rithm, any CPS tensor T  can be written as

where �j ∈ {−1, 1} and Zj ∈ ℂ
nd

s
 for j = 1,… , q with finite q. It suffices to prove 

that Z⊗ Z admits a decomposition of (7) if Z ∈ ℂ
nd

s
.

Since any symmetric complex tensor admits a finite symmetric decomposition 
(see e.g., [5, Algorithm 5.1] with a theoretical guarantee and [34, Algorithm 4.3] 
with numerical efficiency), we may let

where aj ∈ ℂ
n for j = 1,… , r with finite r. For any x ∈ ℂ

n , one has

and

(xTx)d =

m∑
j=1

(aj
Tx)2d.

(7)T =

m∑
j=1

𝜆jaj
⊗d

⊗ aj
⊗d,

(a
⊗d

⊗ a⊗d)H = a⊗d ⊗ a
⊗d

= a
⊗d

⊗ a⊗d,

(8)T =

q∑
j=1

𝜆jZj ⊗ Zj

Z =

r∑
j=1

aj
⊗d,

(Z⊗ Z)(x
d
xd) = ⟨Z⊗ Z, x

⊗d
⊗ x⊗d⟩ = ⟨Z, x⊗d⟩ ⋅ ⟨Z, x⊗d⟩ = Z(x

d
)Z(xd) = �Z(xd)�2
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where we let y = Ax ∈ ℂ
r and A = (a1,… , ar)

T ∈ ℂ
r×n . Therefore, by Lemma 3.1, 

there exist �k ∈ ℝ and bk ∈ ℂ
r for k = 1,… , s with finite s, such that

Finally, by letting ck = ATbk ∈ ℂ
n for k = 1,… , s , we obtain

This implies that Z⊗ Z =
∑s

k=1
𝛼kck

⊗d
⊗ ck

⊗d , completing the whole proof. 	�  ◻

Theorem 3.2 provides an alternative definition of a CPS tensor via a real linear 
combination of rank-one CPS tensors, i.e.,

The proof of Theorem 3.2 actually develops an explicit algorithm to decompose a 
general CPS tensor into a sum of rank-one CPS tensors. The procedure involves the 
following three main steps: 

	 (i)	 Find T =
∑q

j=1
𝜆jZj ⊗ Zj where �j ∈ {−1, 1} and Zj ∈ ℂ

nd

s
 is symmetric;

	 (ii)	 Find a symmetric rank-one decomposition for every Zj , i.e., Zj =
∑rj

k=1
ajk

⊗d 
where ajk ∈ ℂ

n;
	 (iii)	 Find 

∑rj

k=1
ajk

⊗d ⊗
�∑rj

k=1
ajk

⊗d
�
=
∑sj

k=1
𝛼jkcjk

⊗d
⊗ cjk

⊗d where �jk ∈ ℝ and 
cjk ∈ ℂ

n for every j.

In fact, as a consequence of Theorem 3.2, perhaps surprisingly, PS tensors also enjoy 
similar decompositions, via complex linear combinations of rank-one CPS tensors.

Z(xd) = ⟨Z, x⊗d⟩ =
�

r�
j=1

aj
⊗d

, x⊗d

�
=

r�
j=1

⟨aj⊗d
, x⊗d⟩ =

r�
j=1

(aj
Tx)d =

r�
j=1

yj
d,

(Z⊗ Z)(x
d
xd) = |Z(xd)|2 =

||||||

r∑
j=1

yj
d

||||||

2

=

s∑
k=1

𝛼k
|||bk

Ty
|||
2d

=

s∑
k=1

𝛼k
|||bk

TAx
|||
2d

.

(Z⊗ Z)(x
d
xd) =

s�
k=1

𝛼k
���ck

Tx
���
2d

=

s�
k=1

𝛼k⟨ck⊗d ⊗ ck
⊗d

, x
⊗d

⊗ x⊗d⟩

=

�
s�

k=1

𝛼kck
⊗d ⊗ ck

⊗d
, x

⊗d
⊗ x⊗d

�

=

�
s�

k=1

𝛼kck
⊗d

⊗ ck
⊗d

�
(x

d
xd).

ℂ
n2d

cps
∶=

{
m∑
j=1

𝜆jaj
⊗d

⊗ aj
⊗d ∶ 𝜆j ∈ ℝ, aj ∈ ℂ

n, j = 1,… ,m

}
.
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Corollary 3.3  An even-order tensor T ∈ ℂ
n2d is PS if and only if T  has the following 

PS decomposition

where �j ∈ ℂ and aj ∈ ℂ
n for j = 1,… ,m with finite m.

Proof  The proof of the ‘if’ part can be straightforwardly verified by Definition 2.1 
using a PS decomposition as that in the proof of Theorem 3.2.

For the ‘only if’ part, by Proposition 2.4, T = H(T) + S(T) where H(T) and �S(T) 
are CPS. By Theorem 3.2, both H(T) and �S(T) can be decomposed into a sum of 
rank-one CPS tensors as in  (7), with coefficients being real numbers. Therefore, 
T = H(T) + (−�)�S(T) can be decomposed into a sum of rank-one CPS tensors as 
in (9), with coefficients being complex numbers. 	�  ◻

Corollary 3.3 also provides an alternative definition of a PS tensor via a complex 
linear combination of rank-one CPS tensors, i.e.,

In terms of rank-one decompositions shown in Theorem 3.2 and Corollary 3.3, CPS 
tensors and PS tensors are straightforward generalization of Hermitian matrices and 
complex matrices, respectively.

Some remarks on decompositions of PS tensors are necessary in place. From 
Definition 2.1, in particular the symmetry with respect to its first half of the modes 
and symmetry with respect to its last half of the modes, it can be shown that any PS 
tensor T ∈ ℂ

n2d

ps
 can also be decomposed as

where aj, bj ∈ ℂ
n for j = 1,… ,m with some finite m. This decomposition seems 

natural from its original definition, but is quite different to and less symmetric 
than  (9) in Corollary  3.3. In fact,  (10) can be immediately obtained from  (9) by 
absorbing each �j into aj

⊗d . This makes the decomposition (9) interesting as it links 
the first half and the last half of the modes of a PS tensor, which is not obvious 
either from Definition 2.1 or the decomposition (10). Even for d = 1, (9) reduces to 
that any complex matrix A ∈ ℂ

n2 can be written as

(9)T =

m∑
j=1

𝜆jaj
⊗d

⊗ aj
⊗d,

ℂ
n2d

ps
∶=

{
m∑
j=1

𝜆jaj
⊗d

⊗ aj
⊗d ∶ 𝜆j ∈ ℂ, aj ∈ ℂ

n, j = 1,… ,m

}
.

(10)T =

m∑
j=1

aj
⊗d ⊗ bj

⊗d,

A =

m∑
j=1

�jajaj
H with �j ∈ ℂ and aj ∈ ℂ

n for j = 1,… ,m,
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which, to the best of our knowledge, has not been seen in the literature. However, 
the connection between CPS tensors and PS tensors makes (9) more straightforward 
as a consequence of Theorem 3.2.

3.2 � CPS rank

The discussion in Section  3.1 obviously raises the question for the shortest CPS 
decomposition, a common question of interest for matrices and high-order tensors, 
called rank. For any tensor T ∈ ℂ

nd , the rank of T  , denoted by rank (T) , is the small-
est number r that T  can be written as a sum of rank-one complex tensors, i.e.,

Depending on the types of rank-one tensors, we define the partial-symmetric rank 
and the conjugate partial-symmetric rank as follows.

Definition 3.4  The partial-symmetric rank (PS rank) of a PS tensor T ∈ ℂ
n2d

ps
 , 

denoted by rank PS(T) , is defined as

The conjugate partial-symmetric rank (CPS rank) of a CPS tensor T ∈ ℂ
n2d

cps
 , denoted 

by rank CPS(T) , is defined as

To echo the discussion at the end of Section 3.1, we remark that by the origi-
nal definition (Definition  2.1) of PS tensors, another rank for PS tensors can 
be defined based on the decomposition  (10), i.e., the minimum r such that 
T =

∑r

j=1
aj

⊗d ⊗ bj
⊗d . This rank is different to the PS rank in Definition  3.4 (see 

Example 3.6). Our interest here is to emphasize the conjugate property and to better 
understand CPS tensors.

Obviously by Definition 3.4, for a CPS tensor T  , one has

An interesting question is whether the above inequality is an equality or not. It is 
obvious that (11) are equalities when the rank, PS rank, or CPS rank of a CPS tensor 
is one. The equality also holds in the case of matrices, i.e., for any Hermitian matrix, 
the three ranks must be the same. However, this is not true in general for high-order 
CPS tensors, as stipulated in Theorem 3.5.

In ℂnd

s
 , the space of symmetric tensors, a similar problem was posed by Comon: 

The symmetric rank of a symmetric tensor is equal to the rank of the tensor, known 

rank (T) ∶= min

{
r ∶ T =

r∑
j=1

aj1 ⊗…⊗ ajd, ajk ∈ ℂ
n, j = 1,… , r, k = 1,… , d

}
.

rank PS(T) ∶= min

{
r ∶ T =

r∑
j=1

𝜆jaj
⊗d

⊗ aj
⊗d, 𝜆j ∈ ℂ, aj ∈ ℂ

n, j = 1,… , r

}
.

rank CPS(T) ∶= min

{
r ∶ T =

r∑
j=1

𝜆jaj
⊗d

⊗ aj
⊗d, 𝜆j ∈ ℝ, aj ∈ ℂ

n, j = 1,… , r

}
.

(11)rank (T) ≤ rank PS(T) ≤ rank CPS(T).
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as Comon’s conjecture [7]. It received a considerable amount of attention in recent 
years; see e.g., [39] and references therein. Comon’s conjecture was shown to be 
true in various special cases and was only recently disproved by Shitov [39] using 
a sophisticate counter example of complex symmetric tensor. Nevertheless, the real 
version of Comon’s conjecture remains open. Our result on the ranks of CPS tensors 
below can be taken as a disproof for the conjugate version of Comon’s conjecture. In 
fact, our counter example (Example 3.6) is very simple.

Theorem 3.5  If T ∈ ℂ
n2d

cps
 is a CPS tensor, then

Moreover, there exists a CPS tensor T  such that rank (T) < rank PS(T).

Proof  Let rank PS(T) = r and T  has the following PS decomposition

where �j ∈ ℂ and aj ∈ ℂ
n for j = 1,… , r . It is easy to see that T  can be written as

We notice that both 
∑r

j=1
(Re 𝜆j)aj

⊗d
⊗ aj

⊗d and 
∑r

j=1
(Im 𝜆j)aj

⊗d
⊗ aj

⊗d are CPS 
tensors. By the uniqueness result in Proposition 2.4 and the fact that T  is already 
CPS, 

∑r

j=1
(Im 𝜆j)aj

⊗d
⊗ aj

⊗d must be a zero tensor. Therefore,

This implies that rank CPS(T) ≤ r = rank PS(T) since Re �j ∈ ℝ . Together with the 
obvious fact that rank CPS(T) ≥ rank PS(T) we conclude rank CPS(T) = rank PS(T).

Example 3.6 shows a CPS tensor T  with rank (T) < rank PS(T) . 	�  ◻

Example 3.6  Let T ∈ ℂ
24

cps
 where T1122 = T2211 = 1 and other entries are zeros. It fol-

lows that

Proof  Obviously T  can be written as a sum of two rank-one tensors, each match-
ing a nonzero entry of T  . It is also easy to show that rank (T) ≠ 1 by contradiction. 
Therefore, rank (T) = 2.

We now prove rank CPS(T) ≥ 3 by contradiction. According to Theorem  3.5, 
rank CPS(T) = rank PS(T) ≥ 2 . Suppose that one has rank CPS(T) = rank PS(T) = 2 . 
There exist nonzero �1, �2 ∈ ℝ and u = (u1, u2)

T, v = (v1, v2)
T ∈ ℂ

2 such that

rank (T) ≤ rank PS(T) = rank CPS(T).

T =

r∑
j=1

𝜆jaj
⊗d

⊗ aj
⊗d.

T =

r∑
j=1

(Re 𝜆j)aj
⊗d

⊗ aj
⊗d + �

r∑
j=1

(Im 𝜆j)aj
⊗d

⊗ aj
⊗d.

T =

r∑
j=1

(Re 𝜆j)aj
⊗d

⊗ aj
⊗d.

rank (T) = 2 < rank PS(T) = rank CPS(T).
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By comparing the entries T1111 = T1112 = T2222 = 0 and T1122 = 1 , we obtain 

First, we claim that none of u1, u2, v1, v2 can be zero. Otherwise, if either u1 or 
v1 is zero, we have both u1 and v1 are zeros by (12a), which invalidates (12d). In the 
other case, if either u2 or v2 is zero, we have both u2 and v2 are zeros by (12c), which 
also invalidates (12d).

Let us now multiply u2 to (12a) and multiply u1 to (12b), and we obtain

Combining the above two equations leads to

which implies that v1u2 = v2u1 , i.e., u1
v1

=
u2

v2
 . There exists � ∈ ℂ such that u = �v , 

and so we get

Therefore, we arrive at rank CPS(T) ≤ 1 , which is obviously a contradiction. 	�  ◻

Although Example 3.6 invalids the conjugate version of Comon’s conjecture, the 
rank and the PS rank of a generic PS tensor (including CPS tensor) can still be the 
same when its PS rank is no more than its dimension; see Proposition 3.7. This is 
similar to [7, Proposition 5.3] for a generic symmetric complex tensor.

Proposition 3.7  If a PS tensor T ∈ ℂ
n2d

ps
 satisfies rank PS(T) ≤ n , then generically 

rank (T) = rank PS(T).

Proof  Let rank (T) = r and rank PS(T) = m ≤ n . There exist decompositions

T = 𝜆1u⊗ u⊗ u⊗ u + 𝜆2v⊗ v⊗ v⊗ v.

(12a)0 = �1|u1|4 + �2|v1|4,

(12b)0 = �1|u1|2u1u2 + �2|v1|2v1v2,

(12c)0 = �1|u2|4 + �2|v2|4,

(12d)1 = �1u1
2
u2

2 + �2v1
2
v2

2.

0 = �1|u1|4u2 + �2|v1|4u2,
0 = �1|u1|4u2 + �2|v1|2v1v2u1.

�2|v1|2v1(v1u2 − v2u1) = 0,

T = 𝜆1𝛼v⊗ 𝛼v⊗ (𝛼v)⊗ (𝛼v) + 𝜆2v⊗ v⊗ v⊗ v = (𝜆1|𝛼|4 + 𝜆2)v⊗ v⊗ v⊗ v.

(13)
r∑

j=1

cj1 ⊗…⊗ cj2d = T =

m∑
j=1

𝜆jaj
⊗d ⊗ aj

⊗d
,
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where cjk ∈ ℂ
n for j = 1,… , r and k = 1,… , 2d , and nonzero �j ∈ ℂ and aj ∈ ℂ

n 
for j = 1,… ,m . As m ≤ n , it is not difficulty to show that the set of n-dimensional 
vectors {a1,… , am} are generically linearly independent; see e.g., [7, Lemma 5.2]. 
As a consequence, one may find xj ∈ ℂ

n for j = 1,… ,m , such that

By applying the multilinear form of ∙ xk
d−1

xk
d on both sides of (13), we obtain

Therefore, for any 1 ≤ k ≤ m

i.e., a complex linear combination of {c11,… , cr1} . This implies that m ≤ r . Com-
bining with the obvious fact that r = rank (T) ≤ rank PS(T) = m , we obtain that 
r = m . In other words, rank (T) = rank PS(T) holds generically. 	� ◻

We remark that the above result already holds for CPS tensors. This is because 
CPS tensors are PS, and PS rank of a CPS tensor is equal to CPS rank of the tensor 
(Theorem 3.5).

Corollary 3.8  If a CPS tensor T ∈ ℂ
n2d

cps
 satisfies rank CPS(T) ≤ n , then generically 

rank (T) = rank CPS(T).

4 � Rank‑one approximation and matricization equivalence

Finding tensor ranks is in general very hard [18]. This makes low-rank approxima-
tions important, and in fact it has been one of the main topics for high-order ten-
sors. Along this line, the rank-one approximation is perhaps the most simple and 
important problem. In this section, we study several rank-one approximations and 
the rank-one equivalence via matricization for CPS tensors. As an application of the 
matricization equivalence, new convex optimization models are developed to find 
best rank-one approximations of CPS tensors.

⟨xi, aj⟩ =
�

1 i = j

0 i ≠ j.

�
r�

j=1

cj1 ⊗…⊗ cj2d

�
(∙ xk

d−1
xk

d) =

r�
j=1

�
d�
i=2

⟨cji, xk⟩
��

2d�
i=d+1

⟨cji, xk⟩
�
cj1

�
m�
j=1

𝜆jaj
⊗d ⊗ aj

⊗d

�
(∙ xk

d−1
xk

d) = 𝜆kak.

ak =
1

�k

r�
j=1

�
d�
i=2

⟨cji, xk⟩
��

2d�
i=d+1

⟨cji, xk⟩
�
cj1,
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4.1 � Rank‑one approximation

It is well known that finding best rank-one approximations of a real tensor is equiv-
alent to finding the largest singular value [29] of the tensor; see e.g., [28]. For a 
real symmetric tensor, best rank-one approximations can be obtained at a symmetric 
rank-one tensor [3, 11], and is equivalent to finding the largest eigenvalue [37] of 
the tensor or spherical constrained polynomial optimization [17, 46]. In the complex 
field, Sorber et al. [42] proposed line search and plane search for tensor optimization 
including best rank-one approximation as a special case. Ni et al. [33] studied best 
symmetric rank-one approximations of symmetric complex tensors. Along this line, 
PS and CPS tensors possess similar properties. Let us first introduce eigenvalues of 
these tensors.

Definition 4.1  (Jiang et al. [24, Definition 4.4]). � ∈ ℂ is called a C-eigenvalue of a 
CPS tensor T ∈ ℂ

n2d

cps
 if there exists a vector x ∈ ℂ

n called C-eigenvector, such that 
T(∙ x

d−1
xd) = �x and ‖x‖ = 1.

All the C-eigenvalues of CPS tensors are real [24]. The C-eigenvalue of PS ten-
sors has not been defined, and we can simply adopt Definition 4.1 as the definition 
of C-eigenvalue and C-eigenvector for PS tensors. In this paper, as long as their is 
no ambiguity, we call C-eigenvalue and C-eigenvector to be the eigenvalue and the 
eigenvector for PS tensors (including CPS tensors), respectively, and call (�, x) in 
Definition 4.1 to be the eigenpair. We also need to clarify a couple of terms. For 
a CPS tensor T  , if rank (T) = 1 , then rank PS(T) = rank CPS(T) = 1 , and so the term 
rank-one CPS tensor has no ambiguity. However, for a PS tensor T  , rank (T) = 1 
does not imply rank PS(T) = 1 . Here, the term rank-one PS tensor stands for a PS 
tensor T  with rank PS(T) = 1.

Theorem 4.2  For a PS tensor T ∈ ℂ
n2d

ps
 , � ∈ ℂ is a largest (in terms of the modulus) 

eigenvalue in an eigenpair (�, x) of T  if and only if 𝜆 x⊗d ⊗ x
⊗d is a best rank-one 

PS tensor approximation of T  , i.e.,

Proof  Straightforward computation shows that

To minimize the right hand side of the above for given T  and fixed x , � ∈ ℂ must 
satisfy arg(�) = arg(T(x

d
xd)) , which implies that Re (�T(xdxd)) = |�| ⋅ |T(xdxd)| . We 

have

(14)argmax
T(∙ x

d−1
xd)=𝜆x, ‖x‖=1, 𝜆∈ℂ

�𝜆� = argmin
‖x‖=1, 𝜆∈ℂ

‖T − 𝜆 x⊗d ⊗ x
⊗d‖.

‖T − 𝜆 x⊗d ⊗ x
⊗d‖2 = ‖T‖2 + �𝜆�2 − 2Re (𝜆T(x

d
xd)).

min
�∈ℂ

�
‖T‖2 + ���2 − 2��� ⋅ �T(xdxd)�

�
= ‖T‖2 − �T(xdxd)�2,
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held if and only if |�| = |T(xdxd)| . This further implies that � = T(x
d
xd) is an opti-

mal solution of the right hand side of (14). Therefore, we arrive at

By comparing to the left hand side of (14), it suffices to show that

It is obvious that T(∙ xd−1xd) = �x implies T(xdxd) = � by pre-multiplying x on both 
sides. It remains to prove that an optimal solution of the right hand side of (15) satis-
fies T(∙ xd−1xd) = �x , i.e., x is an eigenvector of T .

The right hand side of (15) is equivalent to max‖x‖2=1 �T(xdxd)�2 . Let T = U + �V 
where U,V ∈ ℂ

n2d

cps
 as in Proposition 2.4. This problem is further equivalent to

Since both U(xdxd) and V(ydyd) are real, the Lagrangian function is

This provides (part of) the first-order optimality condition:

By that x = y in the constraints of (16), the above equations lead to

which implies that

Therefore, x is a an eigenvector of T  . 	�  ◻

Since CPS tensors are PS tensors, for a best rank-one PS tensor 𝜆 x⊗d ⊗ x
⊗d 

approximation in  (14), � must be an eigenvalue. As all the eigenvalues of CPS 

argmin
‖x‖=1,𝜆∈ℂ

‖T − 𝜆 x⊗d ⊗ x
⊗d‖ = argmax

‖x‖=1, T(xdxd)=𝜆
�T(xdxd)� = argmax

‖x‖=1, T(xdxd)=𝜆
�𝜆�.

(15)argmax
T(∙ x

d−1
xd)=�x, ‖x‖=1, �∈ℂ

��� = argmax
‖x‖=1, T(xdxd)=�

���.

(16)max
‖x−y‖2=0, ‖x‖2=1, �y‖2=1

�
U(x

d
xd)

�2

+
�
V(y

d
yd)

�2

.

f (x, y, �1, �2, �3)

=
�
U(x

d
x
d)
�2

+
�
V(y

d
y
d)
�2

+ �1‖x − y‖2 + �2(1 − ‖x‖2) + �3(1 − ‖y‖2).

�L

�x
= 2d U(x

d
xd)U(∙ x

d−1
xd) + �1(x − y) − �2x = 0,

�L

�y
= 2d V(y

d
yd)V(∙ y

d−1
yd) − �1(x − y) − �3y = 0.

U(∙ x
d−1

xd) =
�2x

2d U(x
d
xd)

,

V(∙ x
d−1

xd) =
�3x

2d V(x
d
xd)

,

T(∙ x
d−1

xd) = U(∙ x
d−1

xd) + �V(∙ x
d−1

xd) =

(
�2

2d U(x
d
xd)

+
��3

2d V(x
d
xd)

)
x.
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tensors are real, 𝜆 x⊗d ⊗ x
⊗d becomes a best rank-one CPS tensor approximation. 

Therefore, Theorem 4.2 immediately implies a similar result for CPS tensors.

Corollary 4.3  For a CPS tensor T ∈ ℂ
n2d

cps
 , � ∈ ℝ is a largest (in terms of the absolute 

value) eigenvalue in an eigenpair (�, x) of T  if and only if 𝜆 x⊗d ⊗ x
⊗d is a best 

rank-one CPS tensor approximation of T  , i.e.,

For CPS tensors, one may consider different rank-one approximation problems. 
The following result is interesting, which echoes the inequivalence on ranks dis-
cussed earlier in Theorem 3.5.

Theorem 4.4  If T ∈ ℂ
n2d

cps
 is a CPS tensor with d ≥ 2 , then the best rank-one CPS ten-

sor approximation of T  is equivalent to the best rank-one PS tensor approximation 
of T  , but is not equivalent to the best rank-one complex tensor approximation of T  , 
i.e.,

Moreover, there exists a CPS tensor T  such that

In fact, the equality in (17) is a consequence of Theorem 4.2 and Corollary 4.3. 
The inequality in (17) is obvious since ℂn2d

cps
⊆ ℂ

n2d and rank CPS(X) = 1 implies that 
rank (X) = 1 , and its strictness can be validated by the following example.

Example 4.5  Let T ∈ ℂ
24

cps
 where T1122 = T2211 = 1 and other entries are zeros. For 

any z ∈ ℂ
2 with ‖z‖ = 1 , one has

implying that

However,

This shows that minrank CPS(X)=1,X∈ℂ
24

cps
‖T − X‖ > minrank (X)=1,X∈ℂ24 ‖T − X‖.

argmax
T(∙ x

d−1
xd)=𝜆x, ‖x‖=1, 𝜆∈ℝ

�𝜆� = argmin
‖x‖=1, 𝜆∈ℝ

‖T − 𝜆 x⊗d ⊗ x
⊗d‖.

(17)

min
rank CPS(X)=1,X∈ℂ

n2d

cps

‖T − X‖ = min
rank PS(X)=1,X∈ℂ

n2d

ps

‖T − X‖ ≥ min
rank (X)=1,X∈ℂn2d

‖T − X‖.

min
rank CPS(X)=1,X∈ℂ

n2d

cps

‖T − X‖ > min
rank (X)=1,X∈ℂn2d

‖T − X‖.

|T(z2z2)| = |z12z22 + z2
2
z1

2| ≤ 2|z1|2|z2|2 ≤ 1

2
(|z1|2 + |z2|2)2 = 1

2
,

‖T − 𝜆z⊗2 ⊗ z
⊗2‖2 = ‖T‖2 − 2𝜆T(z

2
z2) + 𝜆2 ≥ ‖T‖2 − �T(z2z2)�2 ≥ 2 −

1

4
=

7

4
.

‖T − e1 ⊗ e1 ⊗ e2 ⊗ e2‖2 = 1.
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We remark that the equivalence between best rank-one CPS tensor approxima-
tions and best rank-one complex tensor approximations actually holds for Hermitian 
matrices ( d = 1 ), i.e.,

when A ∈ ℂ
n2 is Hermitian. This is because of the trivial fact ℂn2 = ℂ

n2

ps
 and the 

equality in (17).

4.2 � Rank‑one equivalence via matricization

Matricization, also known as matrix flattening or matrix unfolding, of a tensor is a 
widely used tool to study high-order tensors. When a tensor is rank-one, it is obvi-
ous that any matricization of the tensor is rank-one, while the reverse is not true 
in general. The rank-one equivalence via general matricization has been studied for 
real tensors [43]. For an even-order symmetric tensor T ∈ ℂ

n2d

s
 , it is known that if 

its square matricization (unfolding T  as an nd × nd matrix) is rank-one, then the 
original tensor T  must be rank-one; see e.g., [25, 35]. In the real field, this rank-
one equivalence suggests some convex optimization methods to compute the largest 
eigenvalue or best rank-one approximations of a symmetric tensor. In practice, the 
methods are very likely to find global optimal solutions [25, 35]. Inspired by these 
results, let us look into the rank-one equivalence for CPS tensors.

For a CPS tensor, one hopes that its square matricization being rank-one implies 
the original tensor being rank-one. Unfortunately, this may not hold true if a CPS 
tensor is not unfolded in a right way. The following example shows that the standard 
square matricization of a non-rank-one CPS tensor turns to a rank-one Hermitian 
matrix.

Example 4.6  Let T = A⊗ A ∈ ℂ
24 where A =

(
1 1 + �

1 + � 2

)
∈ ℂ

22 . Explicitly, T  

can be written as

which can be straightforwardly verified as a CPS tensor. However, rank (T) ≥ 2 but 
the standard square matricization of T  is a rank-one Hermitian matrix.

Proof  By the construction of T  via the outer product of two matrices, it is obvious 
that its standard square matricization is (1, 1 + �, 1 + �, 2)H(1, 1 + �, 1 + �, 2) , which is 
a rank-one Hermitian matrix.

min
rank CPS(X)=1,X∈ℂ

n2

cps

‖A − X‖ = min
rank PS(X)=1,X∈ℂ

n2

ps

‖A − X‖ = min
rank (X)=1,X∈ℂn2

‖A − X‖

T(e1e1 ∙ ∙) T(e1e2 ∙ ∙)

T(e2e1 ∙ ∙) T(e2e2 ∙ ∙)
=

(
1 1 + �

1 + � 2

) (
1 − � 2

2 2 − 2�

)

(
1 − � 2

2 2 − 2�

) (
2 2 + 2�

2 + 2� 4

) ,
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On the other hand, suppose that rank (T) = 1 . This implies that rank CPS(T) = 1 
and so we may let T = x⊗ x⊗ x⊗ x for some x ∈ ℂ

2 . By comparing some entries, 
one has

Clearly |x1|2 = 1 and |x2|2 = 2 , and this leads to

a contradiction. Therefore, rank (T) ≥ 2 . 	�  ◻

The role of symmetry is important in nonlinear elasticity and material sciences 
[20, 38]. The following example of elasticity tensors points out a structural differ-
ence for the rank-one equivalence via matricization.

Example 4.7  (Itin and Hehl [21]). Elasticity tensors are three-dimensional fourth-
order real positive definite tensors with certain symmetry. Specifically, A ∈ ℝ

34 is 
an elasticity tensor if

It is straightforward to check that an elasticity tensor is always CPS. After applying 
the standard square matricization, deleting identical rows and columns, and swap-
ping some rows and columns, A can be one-to-one represented by a 6 × 6 real sym-
metric matrix, known as Voigt’s notation:

whose degree of freedome is 21. These independent entries are called elasticities. 
If the Voigt’s matrix, or equivalently the standard square matricization, is rank-one, 
then this positive definite matrix can be written as xxT with x ∈ ℝ

6 , whose degree 
of freedom is 6. However, if the elasticity tensor A is rank-one, then A can be writ-
ten as y⊗ y⊗ y⊗ y with y ∈ ℂ

3 since A is CPS and positive definite, and further 
it can be easily shown that y ∈ ℝ

3 , whose degree of freedom is then 3. Therefore, 
the standard square matricization of an elasticity tensor is rank-one cannot guarantee 
that the original elasticity tensor is rank-one.

We notice that square matricization is unique for symmetric tensors, but not 
for CPS tensors. Examples  4.6 and 4.7 motivate us to consider other ways of 

|x1|4 = T1111 = 1, |x2|4 = T2222 = 4,

x1
2
x1x2 = T1112 = 1 + �, x2x1x2x2 = T2122 = 2 − 2�.

2 − 2� = x2x1x2x2 = 2 x1x2 = 2 x1
2
x1x2 = 2 + 2�,

Aijk� = Ajik� = Aij�k = Ak�ij ∀ 1 ≤ i, j, k,� ≤ 3,

A(x4) > 0 ∀ x ∈ ℝ
3, x ≠ �.

(18)

⎛⎜⎜⎜⎜⎜⎜⎝

A1111 A1122 A1133 A1123 A1131 A1112

A2222 A2233 A2223 A2231 A2212

A3333 A3323 A3331 A3312

A2323 A2331 A2312

A3131 A3112

A1212

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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matricization, with a hope to establish certain rank-one equivalence. To this end, it is 
necessary to introduce tensor transpose, extending the concept of matrix transpose.

Definition 4.8  Given a tensor T ∈ ℂ
nd and a permutation � = (�1,… ,�d)

∈ Π(1,… , d) , the �-transpose of T  , denoted by T� ∈ ℂ
nd , satisfies

In a plain language, mode 1 of T� originates from mode �1 of T  , mode 2 of T� 
originates from mode �2 of T  , and so on. As a matter of fact, for a matrix A ∈ ℂ

n2 
and � = (2, 1) , A� = AT . For a PS tensor T ∈ ℂ

n2d

ps
 and � = (d + 1,… , 2d, 1,… , d) , 

TH = T� .
Given any integers 1 ≤ i1,… , id ≤ n , let us denote

to be the decimal of the tuple i1 … id in the base-n numeral system. We now discuss 
matricization and vectorization.

Definition 4.9  Given a tensor T ∈ ℂ
nd , the vectorization of T  , denoted by v(T) , is an 

nd-dimensional vector satisfying

Given an even-order tensor T ∈ ℂ
n2d , the standard square matricization (or simply 

matricization) of T  , denoted by M(T) , is an nd × nd matrix satisfying

Definition 4.10  Given an even-order tensor T ∈ ℂ
n2d and a permutation 

� ∈ Π(1,… , 2d) , the �-matricization of T  , denoted by M�(T) , satisfies

in other words, M�(T) = M(T�).

Obviously the standard square matricization is a �-matricization when 
� = (1, 2,… , 2d) . Vectorization, �-matricization and �-transpose are all one-to-one. 
They are different ways of representation for tensor data. The following property on 
ranks are straightforward.

Proposition 4.11  Given a tensor T ∈ ℂ
n2d and any � ∈ Π(1,… , 2d) , it fol-

lows that rank (T) = rank (T�) and rank (M�(T)) ≤ rank (T) , in particular, 
rank (T) = 1 ⟹ rank (M�(T)) = 1.

Ti1…id
= (T�)i�1…i�d

∀ 1 ≤ i1,… , id ≤ n.

n(i1 … id) ∶=

d∑
k=1

(ik − 1)nd−k + 1

v(T)n(i1…id)
= Ti1…id

∀ 1 ≤ i1,… , id ≤ n.

M(T)n(i1…id) n(id+1…i2d)
= Ti1…i2d

∀ 1 ≤ i1,… , i2d ≤ n.

M�(T)n(i�1…i�d
) n(i�d+1

…i�2d
) = Ti1…i2d

∀ 1 ≤ i1,… , i2d ≤ n,



	 T. Fu et al.

1 3

   46   Page 24 of 37

As mentioned earlier, the �-matricization of a symmetric tensor is unique for any 
permutation � , since T� = T  if T  is symmetric. However, CPS tensors only possess 
partial symmetry as well as certain conjugate property. Therefore, conditions of � 
are necessary to guarantee the rank-one equivalence, as well as for the �-matriciza-
tion being Hermitian.

Proposition 4.12  If T ∈ ℂ
n2d

cps
 and a permutation � ∈ Π(1,… , 2d) satisfies

then M�(T) is a CPS (Hermitian) matrix.

Proof  Since any CPS tensor can be written as a sum of rank-one CPS ten-
sors (Theorem  3.2), we only need to show the case T  is rank-one. Suppose that 
T = a1 ⊗…⊗ a2d , where a1 = … = ad = x and ad+1 = … = a2d = x , and so 
T𝜋 = a𝜋1 ⊗…⊗ a𝜋2d.

For any 1 ≤ k ≤ d , as exactly one of {�k,�d+k} belongs to {1,… , d} and the other 
belongs to {d + 1,… , 2d} , we have a�k = a�d+k . Therefore,

proving that M�(T) = M(T�) is a Hermitian matrix. 	�  ◻

We remark that the condition of � in (19) is in fact necessary for M�(T) to be a 
Hermitian matrix for a general CPS tensor T  . Essentially, if mode k of T� origi-
nates from modes {1,… , d} of T  , then mode d + k of T� must originate from modes 
{d + 1,… , 2d} of T  , and vise versa.

Theorem 4.13  If T ∈ ℂ
n2d

ps
 and � ∈ Π(1,… , 2d) satisfies

then rank (M�(T)) = 1 ⟹ rank (T) = 1.

Proof  Let M𝜋(T) = x⊗ y where x and y are nd-dimensional vectors, and further let 
x = v(X) and y = v(Y) where X,Y ∈ ℂ

nd . Since

one has T𝜋 = X⊗ Y . To prove rank (T) = 1 , it suffices to show that 
rank (X) = rank (Y) = 1.

(19)||{�k,�d+k} ∩ {1,… , d}|| = 1 ∀ 1 ≤ k ≤ d,

M(T𝜋)H =
(
v(a𝜋1 ⊗…⊗ a𝜋d )⊗ v(a𝜋d+1 ⊗…⊗ a𝜋2d )

)H

= v(a𝜋d+1 ⊗…⊗ a𝜋2d )⊗ v(a𝜋1 ⊗…⊗ a𝜋d )

= v(a𝜋d+1 ⊗…⊗ a𝜋2d )⊗ v(a𝜋1 ⊗…⊗ a𝜋d )

= v(a𝜋1 ⊗…⊗ a𝜋d )⊗ v(a𝜋d+1 ⊗…⊗ a𝜋2d )

= M(T𝜋),

(20)
⌊
d

2

⌋
≤ ||{�1,… ,�d} ∩ {1,… , d}|| ≤

⌈
d

2

⌉
,

M(T𝜋) = M𝜋(T) = x⊗ y = v(X)⊗ v(Y),
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Modes 1,… , d of T� are originated from modes �1,… ,�d of T  , respectively. 
By (20), there are almost half (either ⌊d∕2⌋ or ⌈d∕2⌉ ) from modes {1,… , d} of T  and 
the remaining half from modes {d + 1,… , 2d} of T  . This is also true for the modes 
of X  . To provide a clearer presentation, we may construct a permutation � such that, 
the first half of the modes of X� are from modes {1,… , d} of T  and the remaining 
half are from modes {d + 1,… , 2d} of T  . Explicitly, � ∈ Π(1,… , d) needs to satisfy

As T  is symmetric to modes {1,… , d} and to modes {d + 1,… , 2d} , respectively, 
the order of �k ’s in  (21) does not matter. Observing that rank (X) = rank (X�) and 
M(X𝜏 ⊗ Y) is rank-one, we may without loss of generality assume that the first ⌈d∕2⌉ 
modes of X  are from modes {1,… , d} of T  and the remaining ⌊d∕2⌋ from modes 
{d + 1,… , 2d} of T  , and for the same reason assume that the first ⌊d∕2⌋ modes of Y 
are from modes {1,… , d} of T  and the remaining ⌈d∕2⌉ from modes {d + 1,… , 2d} 
of T  . In a nutshell, we can assume without loss of generality that

This implies that X⊗ Y = T𝜋 is symmetric to modes

and symmetric to modes

We proceed to prove that under the condition of X⊗ Y being symmetric to modes �1
d
 

and symmetric to modes �2
d
 , rank (X) = rank (Y) = 1 holds, by induction on d.

When d = 1 , both X  and Y are obviously rank-one as they are vectors. Suppose 
that the claim holds for d − 1 . For general d, as X⊗ Y is symmetric to modes �1

d
 and 

symmetric to modes �2
d
 , we can swap all but the first modes of X  with some modes of 

Y . In particularly, modes 
{
2,… ,

⌈
d

2

⌉}
 of X  are swapped with modes {

1,… ,
⌈
d

2

⌉
− 1

}
 of Y , respectively, and modes 

{⌈
d

2

⌉
+ 1,… , d

}
 of X  are swapped 

with modes 
{⌈

d

2

⌉
+ 1,… , d

}
 of Y , respectively. Consequently, one has for any 

1 ≤ i1,… , i2d ≤ n,

Pick any nonzero entry of Y , say Yk1…kd
≠ 0 . Let (id+1,… , i2d) = (k1,… , kd) in (22) 

and we have

By defining a ∈ ℂ
n and U ∈ ℂ

nd−1 where

(21)
{
�1,… , �|{�1,…,�d}∩{1,…,d}|

}
=
{
1 ≤ k ≤ d ∶ 1 ≤ �k ≤ d

}
.

� =
(
1,… ,

⌈
d

2

⌉
, d + 1,… , d +

⌊
d

2

⌋
,
⌈
d

2

⌉
+ 1,… , d, d +

⌊
d

2

⌋
+ 1,… , 2d

)
.

�
1
d
∶=

{
1,… ,

⌈
d

2

⌉
, d + 1,… , d +

⌊
d

2

⌋}

�
2
d
∶=

{⌈
d

2

⌉
+ 1,… , d, d +

⌊
d

2

⌋
+ 1,… , 2d

}
.

(22)Xi1…id
Yid+1…i2d

= Xi1id+1…id+⌈d∕2⌉−1id+⌈d∕2⌉+1…i2d
Yi2…i⌈d∕2⌉id+⌈d∕2⌉i⌈d∕2⌉+1…id

.

Xi1…id
Yk1…kd

= Xi1k1…k⌈d∕2⌉−1k⌈d∕2⌉+1…kd
Yi2…i⌈d∕2⌉k⌈d∕2⌉i⌈d∕2⌉+1…id

.
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we obtain that X = a⊗ U . Similarly to (22), one may swap all but the last modes of 
Y to some modes of X  and obtain Y = V⊗ b where V ∈ ℂ

nd−1 and b ∈ ℂ
n . Since

is symmetric with respect to modes �1
d
 and symmetric with respect to modes �2

d
 , 

U⊗ V is symmetric to modes 
�
1,… , ⌈ d

2
⌉ − 1, d,… , d + ⌊ d

2
⌋ − 1

�
 and symmetric 

to modes 
�
⌈ d

2
⌉,… , d − 1, d + ⌊ d

2
⌋,… , 2d − 2

�
 . As a result, V⊗ U is symmetric 

with respect to modes 
�
1,… , ⌊ d

2
⌋, d,… , d + ⌈ d

2
⌉ − 2

�
 and symmetric with respect 

to modes 
�
⌊ d

2
⌋ + 1,… , d − 1, d + ⌈ d

2
⌉ − 1,… , 2d − 2

�
.

If d is odd, by noticing that ⌈ d

2
⌉ − 1 = ⌈ d−1

2
⌉ and ⌊ d

2
⌋ = ⌊ d−1

2
⌋ , we have that U⊗ V 

is symmetric to modes �1
d−1

 and symmetric to modes �2
d−1

 . By induction, we obtain 
rank (U) = rank (V) = 1 , proving that rank (X) = rank (Y) = 1.

If d is even, again by noticing that ⌊ d

2
⌋ = ⌈ d−1

2
⌉ and ⌈ d

2
⌉ = ⌊ d−1

2
⌋ + 1 , we have that 

V⊗ U is symmetric to the modes �1
d−1

 and symmetric to the modes �2
d−1

 . By induc-
tion, we obtain rank (V) = rank (U) = 1 , and so rank (X) = rank (Y) = 1 . 	�  ◻

In fact, the condition of � in (20) is also a necessary condition for the rank-one 
equivalence in Theorem 4.13 for a general CPS tensor. The proof, or an explanation 
of a counter example, involves heavy notations and we leave it to interested readers. 
The key step leading to Theorem 4.13 is the identity (22), which is a consequence 
of modes swapping due to some partial symmetry. This is doable because, among 
modes {1,… , d} of T  , they are (almost) equally allocated to the modes of X  (the 
first half of the modes of T� ) and to modes of Y (the last half of the modes of T� ), 
and the same holds for modes {d + 1,… , 2d} of T  . If the number of modes of X  
that originate from modes {1,… , d} of T  differs the number of modes of Y that 
originate from modes {1,… , d} of T  for more than one (such as Example 4.6 with 
� = (1, 2, 3, 4) ), then (22) cannot be obtained. This makes some modes binding, i.e., 
not separable to the outer product of a vector and a tensor in a lower order.

Combing Propositions 4.11 and 4.12, Theorem 4.13, and the discussion regarding 
the necessities, we arrive at the following result.

Theorem 4.14  Both M�(T) is Hermitian and rank (M�(T)) = 1 ⟺ rank (T) = 1 hold 
for any CPS tensor T ∈ ℂ

n2d

cps
 if and only if � ∈ Π(1,… , 2d) satisfies both  (19) 

and (20).

In practice, such as the discussion in modelling (Section 4.3) and the numerical 
experiments (Section 5), we may focus on a particular permutation satisfying (19) 
and (20). The most straightforward one is

ai1 ∶=
Xi1k1…k⌈d∕2⌉−1k⌈d∕2⌉+1…kd

Yk1…kd

and Ui2…id
∶= Yi2…i⌈d∕2⌉k⌈d∕2⌉i⌈d∕2⌉+1…id

,

X⊗ Y = a⊗ U⊗ V⊗ b
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In particular, � = (1, 3, 4, 2) for fourth-order tensors ( d = 2 ), � = (1, 2, 4, 5, 6, 3) 
for sixth-order tensors ( d = 3 ), and � = (1, 2, 5, 6, 7, 8, 3, 4) for eighth-order tensors 
( d = 4).

Before concluding this part, let us look at elasticity tensors (Example 4.7) again 
with Theorem 4.14 at hand. Since every elasticity tensor is CPS, Theorem 4.14 leads 
to the following interesting result from the rank-one equivalence.

Proposition 4.15  Let A ∈ ℝ
n4 be a real CPS tensor (including the case of elasticity 

tensor where n = 3 and A is positive definite), i.e.,

and let � = (1, 3, 4, 2) . If rank (M�(A)) = 1 , then A is a rank-one symmetric tensor.

Proof  Since A is CPS and � satisfies the condition of Theorem 4.14, we have that 
rank (A�) = 1 and M(A�) is a Hermitian matrix, and hence a real symmetric matrix. 
Therefore, we may let

This leads to A = a⊗ b⊗ b⊗ a . Since A is CPS, it is symmetric to the first two 
modes. This implies that a⊗ b is a symmetric matrix, say a⊗ b = x⊗ x . We then 
also have

implying that A = x⊗ x⊗ x⊗ x , a rank-one symmetric tensor. 	�  ◻

4.3 � Computing best rank‑one approximations

As an immediate application of the rank-one matricization equivalence, we now dis-
cuss how it can be used to compute best rank-one approximations of CPS tensors. 
Specifically, we consider the problem

As mentioned in Corollary 4.3,

Since T(xdxd) is a real-valued function, the maximum of |T(xdxd)| is obtained either 
at T(xdxd) or at (−T)(xdxd) for a given T  . Therefore, the above problem is essentially

(23)
� =

(
1,… ,

⌈
d

2

⌉
, d + 1,… , d +

⌊
d

2

⌋
, d +

⌊
d

2

⌋
+ 1,… , 2d,

⌈
d

2

⌉
+ 1,… , d

)
.

Aijk� = Ajik� = Aij�k = Ak�ij ∀ 1 ≤ i, j, k,� ≤ n,

A𝜋 = a⊗ b⊗ a⊗ b a, b ∈ ℂ
n.

b⊗ a = (a⊗ b)T = (x⊗ x)T = x⊗ x,

(24)min‖x‖=1,𝜆∈ℝ ‖T − 𝜆 x⊗d ⊗ x
⊗d‖.

min‖x‖=1,𝜆∈ℝ ‖T − 𝜆 x⊗d ⊗ x
⊗d‖ ⟺ max

T(∙ x
d−1

xd)=𝜆x, ‖x‖=1, 𝜆∈ℝ
�𝜆� ⟺ max‖x‖=1 �T(x

d
xd)�.
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i.e., finding the largest eigenvalue of the CPS tensor T .
The model (25) is NP-hard when the order of T  is larger than two, even in the 

real field [16, 18]. Let us reformulate the tensor based optimization model to a 
matrix optimization model.

Theorem 4.16  If T ∈ ℂ
n2d

cps
 and � satisfies (19) and (20), then (25) is equivalent to

where M�(ℂ
n2d

cps
) ∶=

{
M�(X) ∶ X ∈ ℂ

n2d

cps

}
.

Proof  The equivalence between  (26) and  (25) can be established via 
X = M𝜋(x

⊗d
⊗ x⊗d) , where X and x are feasible solutions of  (26) and  (25), 

respectively.
Given an optimal solution z of  (25), by Propositions  4.11 and 4.12, 

Z = M𝜋(z
⊗d

⊗ z⊗d) is a rank-one Hermitian matrix, and so Z = y⊗ y where y is an 
nd-dimensional vector. Moreover,

This shows that Z is a feasible solution of (26), whose objective value is

On the other hand, given an optimal solution Z of  (26), let Z ∈ ℂ
n2d

cps
 such that 

Z = M�(Z) . As Z is a rank-one Hermitian matrix, Z = 𝛼y⊗ y for some � ∈ ℝ and 
‖y‖ = 1 . Further by tr (Z) = 1 and  (27), we observe that � = 1 and so Z = y⊗ y . 
Moreover, by Theorem 4.13, Z is a rank-one CPS tensor, i.e., Z = 𝜆 z

⊗d
⊗ z⊗d for 

some � ∈ ℝ and ‖z‖ = 1 . Noticing that

it is easy to see that � = 1 , resulting Z = M𝜋(z
⊗d

⊗ z⊗d) . Therefore, z is a feasible 
solution of (25), whose objective value is

	�  ◻

We remark that both tr (X) = 1 and X ∈ M�(ℂ
n2d

cps
) in the model  (26) are linear 

equality constraints. In particular, X ∈ M�(ℂ
n2d

cps
) contains O(nd) equalities, which are 

the requirements of partial symmetry and conjugate property for CPS tensors. As an 
example, when n = d = 2 and let � = (1, 3, 4, 2) as in  (23), X ∈ M�(ℂ

24

cps
) can be 

explicitly written as

(25)max‖x‖=1 T(x
d
xd),

(26)max
�
⟨M�(T),X⟩ ∶ tr (X) = 1, rank (X) = 1, X ∈ M�(ℂ

n2d

cps
), XH = X

�
,

(27)tr (Z) = ⟨I, y⊗ y⟩ = ‖y‖2 = ‖Z‖ = ‖z⊗d
⊗ z⊗d‖ = ‖z‖2d = 1.

⟨M𝜋(T), Z⟩ = ⟨M𝜋(T),M𝜋(z
⊗d

⊗ z⊗d)⟩ = ⟨T, z⊗d
⊗ z⊗d⟩ = T(z

d
zd).

y⊗ y = Z = M𝜋(Z) = M𝜋(𝜆 z
⊗d

⊗ z⊗d) and ‖y‖ = ‖z‖ = 1,

T(z
d
zd) = ⟨T, z⊗d

⊗ z⊗d⟩ = ⟨M𝜋(T),M𝜋(z
⊗d

⊗ z⊗d)⟩ = ⟨M𝜋(T), Z⟩.
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In fact, XH = X is included in the constraints X ∈ M�(ℂ
n2d

cps
) , but we leave it in (26) 

to emphasize that the decision variable sits in the space of Hermitian matrices.
The problem  (26) remains hard because of the rank-one constraint. However, 

it broadens ways by resorting to various matrix optimization tools, particularly in 
convex optimization. We now propose two convex relaxation methods. First, in 
the proof of Theorem 4.16, we observe that X is a rank-one Hermitian matrix with 
tr (X) = 1 actually implies that X is positive semidefinite. By dropping the rank-one 
constraint, (26) is relaxed to a semidefinite program (SDP):

where X ⪰ O denotes that X is Hermtian positive semidefinite. The convex optimi-
zation model (28) can be easily solved by some SDP solvers in CVX [14]. Alterna-
tively, one may resort to first order methods such as the alternating direction method 
of multipliers (ADMM).

The second relaxation method is to add a penalty of the nuclear norm of the deci-
sion matrix in the objective function [25]. By dropping the rank-one constraint, this 
leads to the following convex optimization model

where 𝜌 > 0 is a penalty parameter and ‖X‖∗ denotes the nuclear norm of X, a con-
vex surrogate for rank (X) . To see why (29) is a convex relaxation of (26), we notice 
that ‖X‖∗ is a convex function, and so the objective of  (29) is concave. Moreover, 
an optimal solution of (26), say X, is rank-one and tr (X) = 1 imply that X is positive 
semidefinite. Thus, ‖X‖∗ = tr (X) = 1 , which implies that the term −�‖X‖∗ added to 
the objective function is actually a constant.

Our observations in several numerical examples show that the solution obtained 
by the two convex relaxation models  (28) and  (29) are often rank-one (see Sec-
tion 5). Once a rank-one solution X is obtained, one may resort X = M𝜋(x

⊗d
⊗ x⊗d) 

to find a solution x for (25), as stipulated in the proof of Theorem 4.16. This x pro-
vides a solution to the best rank-one approximation problem (24). We remark that 
the convex relaxation methods can also be used to find good approximate solutions 
to the best rank-r approximation problem, i.e.,

in a successive (greedy) manner.

X14 = X22 = X33 = X41, X12 = X31, X24 = X43, and X
H = X.

(28)max
�
⟨M�(T),X⟩ ∶ tr (X) = 1, X ∈ M�(ℂ

n2d

cps
), X ⪰ O

�
,

(29)max
�
⟨M�(T),X⟩ − �‖X‖∗ ∶ tr (X) = 1, X ∈ M�(ℂ

n2d

cps
), XH = X

�
,

min‖xj‖=1,𝜆j∈ℝ, j=1,…,r

������
T −

r�
j=1

𝜆jxj
⊗d ⊗ xj

⊗d

������
,
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5 � Numerical experiments

In this section, we conduct numerical experiments to test the methods proposed in 
Section 4.3 to compute best rank-one approximations of CPS tensors. This is also to 
justify applicability of the rank-one equivalence in Theorem 4.13 or Theorem 4.14. 
Both the nuclear norm penalty model (29) and the SDP relaxation method (28) are 
applied to solve three types of instances. Interestingly, both methods are able to 
return rank-one solutions for almost all the test instances, and thus guarantee the 
optimality of the original problem (25). In case a rank-one solution fails to obtain, 
one can slightly perturb the original tensor to lead a success (see Example 5.2). All 
the numerical experiments are conducted using an Intel Core i5-4200M 2.5GHz 
computer with 4GB of RAM. The supporting software is MATLAB R2015a. To 
solve the convex optimization problems, CVX 2.1 [14] and the ADMM approach in 
[25] are called.

5.1 � Quartic minimization from radar wave form design

In radar system, one always regulates the interference power produced by unwanted 
returns through controlling the range-Doppler response [2]. It is important to design 
a suitable radar waveform minimizing the disturbance power at the output of the 
matched filter. This can be written as

where Jr ∈ ℝ
n2 is the shifted matrix for r = 0, 1,… , n − 1 , ⊙ denotes the Hadamard 

product, p(v) = (1, e�2�v,… , e�2(n−1)�v)T , and �(r, k) =
∑n0

k=1
�r,rk1Δk

(j)
�2
k

�Δk� with �r,rk 
being the Kronecker delta and 1Δk

(j) being an indicator function for the index set Δk 
of discrete frequencies. Interested readers are referred to [2] for more details of the 
ambiguity function and radar waveform design.

To account for the finite energy transmitted by the radar it is assumed that 
‖s‖2 = 1 and a similarity constraint, ‖s − s0‖2 ≤ � , needs to be enforced to obtain 
phase-only modulated waveforms, where s0 is a known code sharing some nice 
properties. Noticing that ‖s‖ = 1 and s0 is known, this similarity constraint can be 
realized by penalizing the quantity −|sHs0| in the objective function �(s) . Therefore, 
the following quartic minimization problem is arrived (see [24] for a detail discus-
sion on the modelling):

with a penalty parameter 𝜌 > 0 . The objective function of  (30) is a real-val-
ued quartic conjugate form, i.e., there is a fourth-order CPS tensor T  such that 
T(s

2
s2) = �(s) − ��sHs0�2‖s‖2 . This shows that (30) is an instance of (25), which is 

equivalent to (26).

𝜙(s) =

n−1∑
r=0

m∑
j=1

𝜌(r, k)
|||s

HJr(s⊙ p(xj))
|||
2

,

(30)min‖s‖=1
�
�(s) − ��sHs0�2‖s‖2

�
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We use the data considered in [2] to construct �(s) and let � = 30 in  (30). To 
obtain phase-only modulated waveforms, a known code s0 (see e.g., [15]) with 
|(s0)i| = 1 for i = 1,… , n is chosen and further normalized such that ‖s0‖ = 1 . The 
problem is solved by the nuclear norm penalty model  (29) and the SDP relaxa-
tion method (28), respectively. In the experiment, we randomly generate s0 for 100 
instances and record the percentage of instances that the corresponding method out-
puts rank-one solutions in Table 1. The convex relaxation models are solved by the 
ADMM algorithm in [25], whose average CPU time (in seconds) is also reported. 
Observed in Table 1, both convex relaxation methods always obtain rank-one solu-
tions, leading to optimal solutions of (30). In terms of the speed, nuclear norm pen-
alty method runs generally faster than SDP relaxations.

5.2 � Determine elasticity tensors

Elasticity tensors (see Example 4.7) are three-dimensional fourth-order real positive 
definite tensors with certain symmetry. For a given tensor A ∈ ℝ

34 , this symmetry 
can be easily identified as a symmetry matrix in Voigt’s notation (18). Therefore, A 
in such a form is an elasticity tensor if and only if

Let T = −A and d = 2 in (25), i.e., max‖x‖=1 −A(x
2
x2) . If we solve this problem and 

obtain a real optimal solution, then its optimal value can verify (31). That is, A is 
an elasticity tensor if and only if the optimal value is negative. In the following, we 
implement this idea to determine the elasticity of given tensors in the literature.

The first instance is taken from [38, Example 8.1], where

and others are zeros in (18). Both the nuclear norm penalty model (29) and the SDP 
relaxation method  (28) output a rank-one matrix which yields an optimal solution 
(−0.7184,−0.6956, 0) for max‖x‖=1 −A(x

2
x2) . The corresponding optimal value is 

−3.2420 and this validates the given tensor A is an elasticity tensor.
In our second example, we consider the most general type of an anisotropic 

medium that allows propagation of purely polarized waves in an arbitrary direction 
[21, Proposition 17]. Its Voigt’s matrix has the following form:

(31)A(x4) > 0 ∀ x ∈ ℝ
3, x ≠ �.

A1111 = 13, A1122 = −4, A1112 = −2, A2222 = 12, A2212 = −1, A1212 = 2,

Table 1   Efficiency for the radar 
wave form design

n Nuclear norm penalty (29) SDP relaxation (28)

rank-one CPU rank-one CPU

5 100 % 0.371 100 % 0.693
10 100 % 4.552 100 % 11.261
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We randomly generate the data (�, �1, �2, �3, �4, �5, �6) from i.i.d. standard normal 
distributions and solve the problem by models  (28) and  (29), respectively. For all 
the random instances, both (28) and (29) return a real-valued optimal solution with 
a positive optimal values, which implies that the generated tensor instance is not an 
elasticity tensor. For example, in one instance we have

The optimal solution obtained by (28) and (29) is (0.6978, 0.2104, 0.0918) and the 
optimal value is 4.4558.

In order to see if an elasticity tensor can be obtained in the form of  (32), we 
increase its diagonal terms. For example, if we increase � by 5 and keep all the � ’s 
unchanged in the previous instance, then both  (28) and  (29) return a real optimal 
solution (0.0005, 0.9862, 0.0133) with its optimal value being −2.2327 . Therefore, 
the modified tensor instance is an elasticity tensor.

5.3 � Randomly generated CPS tensors

The data from  (30) has its own structure. In this part, we test the two relaxation 
methods extensively using randomly generated CPS tensors. The aim is to check the 
chance of getting rank-one solutions and hence generating optimal solutions for the 
largest eigenvalue problem  (25), under the tractability of solving the two convex 
relaxation models. These CPS tensors are generated as follows. First, we randomly 
generate two real tensors U,V ∈ ℝ

n4 whose entries follow i.i.d. standard normal dis-
tributions, independently. We then let W = U + �V to define a complex tensor in ℂn4 . 
To make it being PS, we further let X ∈ ℂ

n4

ps
 where

Finally, to make it being CPS, we let T =
1

2
(X + XH) ∈ ℂ

n4

cps
.

For various n ≤ 15 , 100 random CPS tensor instances are generated. We then 
solve the two convex relaxation models (29) and (28) using the ADMM algorithm, 
and record the percentage of instances that produce rank-one solutions. The results 
are shown in Table 2 together with the average CPU time (in seconds). It shows that 
both the nuclear norm penalty method and the SDP relaxation model (28) are able to 
generate rank-one solutions for most randomly generated instances, and thus find the 
largest eigenvalue of CPS tensors. Opposite to the data of radar wave form design, 

(32)

⎛
⎜⎜⎜⎜⎜⎜⎝

� �∕3 + 2�1 �∕3 + 2�2 2�3 0 0

� �∕3 + 2�4 0 2�5 0

� 0 0 2�6
�∕3 − �4 − �6 − �5

�∕3 − �2 − �3
�∕3 − �1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

� = 0.3919, �1 = −1.2507, �2 = −0.9480, �3 = −0.7411,

�4 = −0.5078, �5 = −0.3206, �6 = 0.0125.

Xijk� =
1

4

(
Wijk� +Wjik� +Wij�k +Wji�k

)
∀ 1 ≤ i, j, k,� ≤ n.
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SDP relaxation outperforms nuclear norm penalty method, both in speed and in the 
chance of optimality when the dimension of the problem increases.

5.4 � Computing largest US‑eigenvalues

Motivated by the geometric measure of quantum entanglement, Ni et al. [33] intro-
duced the notion of unitary symmetric eigenvalue (US-eigenvalue) and unitary sym-
metric eigenvector (US-eigenvector). The geometric measure of entanglement has 
various applications such as entanglement witnesses and quantum computation. The 
US-eigenvalues and US-eigenvectors reflect some specific states of the composite 
quantum system to certain extent. Specifically, � ∈ ℂ is a US-eigenvalue associated 
with a US-eigenvector x ∈ ℂ

n of a symmetric tensor Z ∈ ℂ
nd if

It is known that US-eigenvalues must be real. Jiang et. al. [24] showed that � ∈ ℝ is 
a US-eigenvalue of a symmetric tensor Z ∈ ℂ

nd if and only if �2 is a C-eigenvalue of 
the CPS tensor Z⊗ Z ∈ ℂ

n2d and their eigenvectors are closely related. Therefore, 
we may resort the model (25) to find the largest US-eigenvalue with its correspond-
ing eigenvectors for a symmetric tensor Z , i.e., to solve

In these tests, we look into the two examples in [33]. We first transfer the largest US-
eigenvalue problem to (33), and then use the SDP relaxation model (28). The hope 
is to find rank-one solutions and hence to obtain the largest US-eigenvalue with its 
corresponding eigenvectors.

Example 5.1  ([33, Table 1]). Let a symmetric tensor Z ∈ ℂ
23

s
 have entries Z111 = 2 , 

Z112 = Z121 = Z211 = 1 , Z122 = Z212 = Z221 = −1 , Z222 = 1 , and others being 
zeros.

Z(∙ xd−1) = � x, Z(∙x
d−1

) = � x, and ‖x‖ = 1.

(33)max‖x‖=1(Z⊗ Z)(x
d
xd).

Table 2   Efficiency for largest 
eigenvalue of random CPS 
tensors

n Nuclear norm penalty (29) SDP relaxation (28)

rank-one CPU rank-one CPU

4 100 % 0.231 100 % 0.083
6 100 % 1.434 100 % 0.473
8 100 % 5.570 100 % 1.824
9 100 % 11.414 100 % 3.519
10 100 % 19.339 100 % 5.740
12 99 % 56.299 99 % 16.050
15 45 % 206.879 82 % 90.184
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By applying the SDP relaxation method to  (33) and solving it using CVX, we 
directly generate a rank-one solution. In other words, we obtain a C-eigenpair (�2, x) 
with � ∈ ℝ of the CPS tensor Z⊗ Z , i.e.,

However, Z(x3) may not be real. This can be easily done by rotating x . In particu-
lar, by letting z = e−��∕3x where � = arg(Z(x3)) , one has Z(z3) = e−��Z(x3) ∈ ℝ . 
This implies that (�, z) is the corresponding US-eigenpair of Z . In this example, it 
recovers the largest US-eigenvalue 2.3547 with its corresponding US-eigenvector 
(0.9726, 0.2326)T.

Example 5.2  ([33, Table 2]). Let a symmetric tensor Z ∈ ℂ
23

s
 have entries Z111 = 2 , 

Z112 = Z121 = Z211 = −1 , Z122 = Z212 = Z221 = −2 , Z222 = 1 , and others being 
zeros.

We again consider the SDP relaxation method and resort to CVX for solutions. 
Unfortunately, it fails to give us a rank-one solution. Motivated by the high fre-
quency of rank-one solutions obtained when solving randomly generated tensors as 
shown in Table 2, we now add a tiny random perturbation E ∈ ℂ

23

s
 with ‖E‖ = 10−4 

to the original tensor Z . The hope is to generate a rank-one solution via SDP relax-
ation while keeping the original US-eigenpair almost unchanged since E is small 
enough. Furthermore, the largest US-eigenvalue may have more than one US-eigen-
vectors, i.e., (33) admits multiple global optimal solutions. In our experiments, we 
observe that adding tiny perturbations not only obtains a rank-one solution, but also 
helps to generate different rank-one solutions under different perturbations. Using 
this approach, we successfully obtain the largest US-eigenvalue 3.1623 and its four 
US-eigenvectors:

which are consistent with the results in [33]. In fact, our convex relaxation approach 
is able to certify that the obtained eigenvalue is globally the largest as long as the 
solution to (28) is rank-one. This certificate, however, cannot be seen from the solu-
tions obtained in [33]. Therefore, our experiment on Example  5.2 helps to verify 
that the largest one among all the eigenvalues obtained in [33, Table 2] is actually 
the largest eigenvalue of Z.

To conclude the numerical results, the convex relaxation methods proposed in 
Section 4.3 and established based on the rank-one equivalence, are capable to find 
optimal solutions for best rank-one approximations or the largest eigenvalue of CPS 
tensors. At least they are able to generate rank-one solutions (hence optimality) for 
the three types of instances discussed above. In case a rank-one solution fails to be 
obtained, one may slightly perturb the original tensor, and the chance to obtain rank-
one solutions may increase. This is one of the research topics to look into further.

𝜆2 = (Z⊗ Z)(x
3
x3) = ⟨Z⊗ Z, x

⊗3
⊗ x⊗3⟩ = �Z(x3)�2.

(0.6987 + 0.1088 �,−0.1088 + 0.6987 �)T, (0.6987 − 0.1088 �,−0.1088 − 0.6987 �)T,

(−0.2551 + 0.6595 �, 0.6595 + 0.2551 �)T, (−0.2551 − 0.6595 �, 0.6595 − 0.2551 �)T,
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