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Abstract Approximating high order tensors by low Tucker-rank tensors have applications
in psychometrics, chemometrics, computer vision, biomedical informatics, among others.
Traditionally, solution methods for finding a low Tucker-rank approximation presume that
the size of the core tensor is specified in advance, which may not be a realistic assump-
tion in many applications. In this paper we propose a new computational model where the
configuration and the size of the core become a part of the decisions to be optimized. Our
approach is based on the so-called maximum block improvement method for non-convex
block optimization. Numerical tests on various real data sets from gene expression analysis
and image compression are reported, which show promising performances of the proposed
algorithms.

Keywords Multiway array · Tucker decomposition · Low-rank approximation ·Maximum
block improvement

1 Introduction

The models and solution methods for high order tensor decompositions were initially moti-
vated and developed in psychometrics (see e.g. [37–39]) and chemometrics (see e.g. [2])
in response to the need of analysis for multiway data. Since then, tensor decomposition
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has become an active field of research in mathematics due partly to the intricate algebraic
structures of tensors. In addition, high order (tensor) statistics and independent component
analysis (ICA) have been developed by engineers and statisticians primarily because of their
wide practical applications. There are two major tensor decompositions that can be con-
sidered as higher order extensions of the matrix singular value decomposition (SVD): one
is known as the CANDECOMP/PARAFAC (CP) decomposition, which attempts to present
the tensor as a sum of rank-one tensors, and the other is known as the Tucker decomposi-
tion, which is a higher order generalization of the principal component analysis (PCA). The
Tucker decomposition can be viewed as a generalization of the CP decomposition which
is a Tucker model with equal number of components in each mode. It was first introduced
by Tucker [37] in 1963, and later redefined in Levin [28] and Tucker [38,39]. There are
extensive studies in the literature on the topic of finding the CP decomposition and/or the
Tucker decomposition for tensors; see e.g. [14–16,23,26,27,32,36,41,44]. On the computa-
tional side, the existing popular algorithms are based on the alternating least square (ALS)
method proposed originally by Carroll and Chang [9], andHarshman [18]. However, the ALS
method is not guaranteed to converge to the global optimum or any stationary point, but only
to a solution where the objective function ceases to decrease. If the ALS method converges
under certain non-degeneracy assumption, then it actually has a local linear convergence
rate [40]. Specifically for the Tucker decomposition, Tucker [39] proposed three methods
to find the Tucker decomposition for three-way tensors in 1966, among which the first one
is referred to as the Tucker1 method, and is now better known as the higher order singular
value decomposition (HOSVD); see [14]. Analogous to the ALSmethod developed for com-
puting CP decomposition, researchers also derived similar methods for solving the Tucker
decomposition, e.g., TUCKALS3 [26] and its extension [21], higher order orthogonal iter-
ation (HOOI) method [15] and its improvement [1]. As mentioned earlier, the ALS method
has no convergence guarantee in general. Alternatively, there are methods for the Tucker
decomposition with a convergence guarantee; see e.g., the Newton-Grassmann method [17]
and the differential-geometric Newton method [20]. For more discussions on the Tucker
decomposition and its variants, one is referred to the survey paper by Kolda and Bader [25].

The goal of theTucker decomposition is to decompose a tensor into a core tensormultiplied
by a matrix along each mode. It is related to the best rank-(r1, r2, . . . , rd) approximation of a
d-th order tensor (cf. [15]). Typically, a rank-(r1, r2, . . . , rd) Tucker decomposition (some-
times called the best multilinear rank-(r1, r2, . . . , rd) approximation) means that the size of
the core tensor is r1 × r2 × · · · × rd . Traditionally, the rank-(r1, r2, . . . , rd) (namely the size
of the core) is considered a set of predetermined parameters. This requirement, however, is
restrictive in some applications. For example, the problem of choosing a good number of
clusters for co-clustering of gene expression data comes up in the area of bioinformatics.
In fact, the number of suitable co-clusters is not known in advance (see Zhang et al. [42]).
In the same vein, the problem of determining the approximate ranks of a Tucker model
(cf. [10,11,19,22,35]) is challenging, since the problem is already NP-hard even if the rank-
(r1, r2, . . . , rd) is given in advance. The similar issue of selecting an appropriate rank has
also been considered in the CP decomposition context, e.g. a consistency diagnostic known
as CORCONDIA in [8]. Timmerman and Kiers [35] proposed the so-called DIFFIT proce-
dure based on optimal fit to choose the numbers of components in the Tucker decomposition
of a three-way array. Kiers and Der Kinderen [22] revised the procedure of computing the
DIFFIT of the approximate fit to save computational effort. The DIFFIT procedure, how-
ever, is rather time-consuming, since its key step needs to compute all the fit values of the
Tucker decomposition for all possible combinations (r1, r2, r3) from (1, 1, 1) to a certain
combination such that the fit equals to 100%. Moreover, Mørup and Hanson [31] proposed
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a Bayesian approach called automatic relevance detection (ARD) method for the Tucker
decomposition of multi-way data, where the numbers of components for each mode of the
core tensor should be chosen large enough at the beginning to encompass all potential mod-
els. The ARD method would sequentially remove the excessive components and simplify
the core structure (by shrinking the size of the core) at the computational cost of fitting the
traditional Tucker decomposition. However, once a component is removed, it will not be
brought back again. The authors reported that the ARD method does not always do a good
job in identifying the correct core size; also, the higher the signal to noise ratio (SNR) may
cause the ARD approach to fail completely. Despite all the drawbacks, it is shown in [31]
that the ARD method still outperforms DIFFIT approach in general.

For the problem considered in this paper, we shall resort to a recent block coordinate
descent type searchmethod known asmaximum block improvement (MBI) proposed by Chen
et al. [13], for solving nonlinear optimization with a separable block structure, which suits
well with the tensor decomposition problems. They proved that the sequence produced by the
MBI method converges to a stationary point. This method performs very well numerically.
The MBI method has been applied successfully to the problem of finding the best rank-one
approximation of tensors [13], and in solving problems arising from bioinformatics [42,43]
and the radar systems [3]. Local linear convergence of the MBI method for certain types of
problems were established by Li et al. [29]. Recent treatise on this topic can be found in the
Ph.D. thesis of Chen [12]. In this paper, we study the Tucker decomposition problemwith the
characteristic that the size of its core is unspecified. In particular, we propose a new scheme
to choose some good ranks for the Tucker decomposition, subject to that the summation of
the ranks

∑d
i=1 ri is fixed. We shall demonstrate how the MBI method can be applied to

solve such problems.
The remainder of the paper is organized as follows. In Sect. 2, we introduce the notations

and frequently used tensor operations throughout the paper. Then we apply the MBI method
for solving rank-(r1, r2, . . . , rd) Tucker decomposition in Sect. 3. In Sect. 4, a newmodel for
Tucker decomposition with unspecified core size is proposed and solved based on the MBI
method and the penalty method. A heuristic approach is also developed to compute the new
model in this section. Finally, numerical results on testing the new model and algorithms are
presented in Sect. 5.

2 Notations

Throughout this paper, we uniformly use non-bold lowercase letters, boldface lowercase
letters, capital letters, and calligraphic letters to denote scalars, vectors, matrices, and tensors,
respectively; e.g.: scalar i , vector y, matrix A, and tensor F . We use the subscripts to denote
the component of a vector, a matrix, or a tensor; e.g.: yi being the i-th entry of the vector
y, Ai j being the (i, j)-th entry of the matrix A, and Fi jk being the (i, j, k)-th entry of the
tensor F . Let us first introduce some important tensor operations frequently appeared in this
paper, which are largely in line with that in [14,25]. For an overview of tensor operations
and properties, we refer to the survey paper [25].

A tensor is a multidimensional array, and the order of a tensor is its dimension, also known
as the ways or the modes of a tensor. In particular, a vector is a tensor of order one, and a
matrix is a tensor of order two. Consider A = (Ai1i2...id ) ∈ R

n1×n2×···×nd , a standard tensor
of order d , where d ≥ 3. A usual way to handle a tensor is to reorder its elements into amatrix;
the process is calledmatricization, also known as unfolding or flattening.A ∈ R

n1×n2×···×nd

has d modes, namely, mode-1, mode-2, . . . , mode-d . Denote the mode-k matricization of
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tensor A to be A(k), then the (i1, i2, . . . , id)-th entry of tensor A is mapped to the (ik, j)-th

entry of matrix A(k) ∈ R
nk×∏

��=k n� , where

j = 1 +
∑

1≤�≤d,��=k

(i� − 1)
∏

1≤t≤�−1,t �=k

nt .

The k-rank of tensor A, denoted by rank k(A), is the column rank of mode-k unfolding
A(k), i.e., rank k(A) = rank (A(k)). A d-th order tensor whose rank k(A) = rk for k =
1, 2, . . . , d , is briefly called a rank-(r1, r2, . . . , rd) tensor.

Analogous to the Frobenius norm of a matrix, the Frobenius norm of tensorA is the usual
2-norm, defined by

‖A‖ :=
√
√
√
√

n1∑

i1=1

n2∑

i2=1

· · ·
nd∑

id=1

Ai1i2...id
2.

In this paperwe uniformly denote the 2-norm for vectors, and the Frobenius norm formatrices
and tensors, all by notation ‖ · ‖. The inner product of two same-sized tensors A,B is
given as

〈A,B〉 =
n1∑

i1=1

n2∑

i2=1

· · ·
nd∑

id=1

Ai1i2...id Bi1i2...id .

Hence, it is clear that 〈A,A〉 = ‖A‖2.
One important tensor operation is the multiplication of a tensor by a matrix. The k-

mode product of tensor A by a matrix U ∈ R
m×nk , denoted by A ×k U , is a ten-

sor in R
n1×n2×···×nk−1×m×nk+1×···×nd , whose (i1, i2, . . . , ik−1, �, ik+1, . . . , id)-th entry is

defined by

(A ×k U )i1i2...ik−1� ik+1...id =
nk∑

ik=1

Ai1i2...ik−1ik ik+1...idU�ik .

The equation can also be written in terms of tensor unfolding as well, i.e.,

Y = A ×k U ⇐⇒ Y(k) = U A(k).

This multiplication in fact changes the dimension of tensor A in mode-k. In particular, if
U is a vector in R

nk , the order of tensor A ×k U is then reduced to d − 1, whose size is
n1 × n2 × · · · × nk−1 × nk+1 × · · · × nd . The k-mode products can also be expressed by the
matrix Kronecker product as follows:

Y = A ×1 U
(1) ×2 U

(2) · · · ×d U
(d)

⇐⇒ Y(k) = U (k)A(k)

(
U (d) ⊗ · · · ⊗U (k+1) ⊗U (k−1) ⊗ · · · ⊗U (1)

)
,

for any k = 1, 2, . . . , d with U (k) ∈ R
mk×nk for k = 1, 2, . . . , d . The proof of this property

can be found in [24].
Throughout this paper we uniformly use a subscript in the parentheses to denote the

matricization of a tensor (e.g. A(1) being mode-1 matricization of tensor A), and use a
superscript in the parentheses to denote the matrix in the mode product of a tensor (e.g.U (1)

in appropriate size showed in mode-1 product of a tensor).
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3 Preliminaries

3.1 Traditional Tucker decomposition

Traditionally, Tucker decomposition attempts to find the best approximation for a large-
sized tensor by a small-sized tensor with pre-specified dimensions (called the core tensor)
multiplied by a matrix on each mode. The problem can be formulated as follows: Given a real
tensor F ∈ R

n1×n2×···×nd , find a core tensor C ∈ R
r1×r2×···×rd with pre-specified integers ri

with 1 ≤ ri ≤ ni for i = 1, 2, . . . , d , that optimizes

(Tmin) min
∥
∥F − C ×1 A(1) ×2 A(2) · · · ×d A(d)

∥
∥

s.t. C ∈ R
r1×r2×···×rd ,

A(i) ∈ R
ni×ri , (A(i))TA(i) = I, i = 1, 2, . . . , d.

Here, matrices A(i)’s are the factor matrices. Without loss of generality, these matrices are
assumed to be columnwise orthogonal. The problem can be considered as a generalization
of the best rank-one approximation problem, namely the case of r1 = r2 = · · · = rd = 1.

For any given matrices A(i)’s, it is easy to optimize the objective function of (Tmin) over
C, which has a close-form solution. Therefore, one easily verifies that (Tmin) is equivalent to
the following maximization model (see the discussion in [1,15,25], e.g., page 487 of [25]):

(Tmax) max
∥
∥F ×1 (A(1))T ×2 (A(2))T · · · ×d (A(d))T

∥
∥

s.t. A(i) ∈ R
ni×ri , (A(i))TA(i) = I, i = 1, 2, . . . , d.

Theworkhorse for solving (Tmax) or (Tmin) has been traditionally the ALSmethod. However,
the convergence of the ALS method is not guaranteed in general.

3.2 The MBI method

Chen et al. [13] proposed the so-called MBI method, a greedy-type search algorithm for
optimization model with general separable structure

(G) max f (x1, x2, . . . , xd)
s.t. xi ∈ Si ⊆ R

ni , i = 1, 2, . . . , d,

where f : Rn1+n2+···+nd → R is a general continuous function. Assuming that for any fixed
d − 1 blocks of variables xi ’s, optimization over one block of variables is easy, the MBI
method is guaranteed to converge to a stationary point under the mild condition that Si is
compact for i = 1, 2, . . . , d . We notice that (Tmax) is a particular instance of (G). Moreover,
by fixing any d − 1 blocks A(i)’s in (Tmax), the optimization subroutine required by the MBI
method can be easily solved by the SVD.

To be specific, the subproblem of (Tmax) required by the MBI method is

(T i
max) max

∥
∥F ×1 (A(1))T ×2 (A(2))T · · · ×d (A(d))T

∥
∥

s.t. A(i) ∈ R
ni×ri , (A(i))TA(i) = I,

where thematrices A(1), A(2), . . . , A(i−1), A(i+1), . . . , A(d) are given. The objective function
of (T i

max) can be written in the matrix form as follows:
∥
∥
∥(A(i))TF(i)

(
A(d) ⊗ · · · ⊗ A(i+1) ⊗ A(i−1) ⊗ · · · ⊗ A(1)

)∥
∥
∥ .
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Therefore, the optimal solution for (T i
max) is the ri leading left singular vectors of the matrix

F(i)
(
A(d) ⊗ · · · ⊗ A(i+1) ⊗ A(i−1) ⊗ · · · ⊗ A(1)

)
. Let us nowpresent our algorithm for solv-

ing (Tmax).

Algorithm 1 The MBI method for Tucker decomposition

Input Tensor F ∈ R
n1×n2×···×nd and scalars r1, r2, . . . , rd .

Output Core tensor C ∈ R
r1×r2×···×rd and matrices A(i) ∈ R

ni×ri for i = 1, 2, . . . , d.
0 Choose an initial feasible solution (A(1)

0 , A(2)
0 , . . . , A(d)

0 ) and compute initial objec-

tive value v0 :=
∥
∥
∥F ×1 (A(1)

0 )T ×2 (A(2)
0 )T · · · ×d (A(d)

0 )T
∥
∥
∥. Set k := 0.

1 For each i = 1, 2, . . . , d, compute B(i)
k+1 consisting of the ri leading left singu-

lar vectors of F(i)

(
A(d)
k ⊗ · · · ⊗ A(i+1)

k ⊗ A(i−1)
k ⊗ · · · ⊗ A(1)

k

)
, and let wi

k+1 :=
∥
∥
∥F ×1 (A(1)

k )T · · · ×i−1 (A(i−1)
k )T ×i (B(i)

k+1)
T ×i+1 (A(i+1)

k )T · · · ×d (A(d)
k )T

∥
∥
∥ .

2 Let vk+1 := max1≤i≤d wi
k+1 and choose one i∗ = argmax1≤i≤d wi

k+1, and further
denote

A(i)
k+1 :=

{
A(i)
k i ∈ {1, 2, . . . , d}\{i∗},

B(i)
k+1 i = i∗.

3 If |vk+1 − vk | ≤ ε, stop and output the core tensor

C := F ×1 (A(1)
k+1)

T ×2 (A(2)
k+1)

T · · · ×d (A(d)
k+1)

T

and matrices A(i) = A(i)
k+1 for i = 1, 2, . . . , d; otherwise, set k := k + 1 and go to

Step 1.

According to the convergence property of theMBImethod established in [13],Algorithm1
converges to a stationary point for Tucker decomposition. Though computing all possible
improvements in Step 1 may be costly, the efforts get paid off well in terms of the total
number of iterations required. Moreover, a parallel computation scheme is possible, which
is shown to significantly shorten the overall computational time; see [29].

4 Tucker decomposition with unspecified size of the core

In this section, we propose a new model for Tucker decomposition without pre-specifying
the size of the core tensor. The dimension of each mode for the core is no longer a constant.
Rather it is a variable that also needs to be optimized, which is a key ingredient in our model.
Several algorithms are proposed to solve the new model as well.

4.1 The formulation

Given a tensor F ∈ R
n1×n2×···×nd , the goal is to find a small-sized (low rank) core tensor C

and d slimmatrices A(i)’s to expressF , as close as possible.We are interested in determining
the rank of each mode of C as well as the best approximation of F . Let the i-rank of C be
ri for i = 1, 2, . . . , d . Clearly, we have 1 ≤ ri ≤ ni for i = 1, 2, . . . , d . Unlike the general
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Tucker decomposition, ri ’s are now decision variables which need to be determined. Denote
c to be a given constant for the summation of all i-rank variables, i.e.,

∑d
i=1 ri = c, which in

general prevents ri from being too large. The idea behind this constraint is that we would like
to have a Tucker approximation which is overall “low ranked”, but the specific allocation of
the ranks is allowed to be flexible. To determine the allocation for ri ’s in the total number c,
the new model is

(NTmin) min
∥
∥F − C ×1 A(1) ×2 A(2) · · · ×d A(d)

∥
∥

s.t. C ∈ R
r1×r2×···×rd ,

A(i) ∈ R
ni×ri , i = 1, 2, . . . , d,

ri ∈ Z, 1 ≤ ri ≤ ni , i = 1, 2, . . . , d,
∑d

i=1 ri = c.

It is difficult to solve (NTmin) directly, since the first two constraints of (NTmin) combine
the block variables A(i) and i-rank variable ri together. A straightforward method is to
separate these variables, and we introduce d more block variables Y (i) ∈ R

mi×mi where
mi := min{ni , c} for i = 1, 2, . . . , d and

Y (i) = Diag (y(i)), y(i) ∈ {0, 1}mi , and
mi∑

j=1

y(i)
j = ri for i = 1, 2, . . . , d.

By the equivalence between Tucker decomposition models (Tmin) and (Tmax), we may refor-
mulate (NTmin) as follows:

(NTmax) max
∥
∥
∥F ×1

(
A(1)Y (1)

)T ×2
(
A(2)Y (2)

)T · · · ×d
(
A(d)Y (d)

)T
∥
∥
∥

s.t. A(i) ∈ R
ni×mi , (A(i))TA(i) = I, i = 1, 2, . . . , d,

y(i) ∈ {0, 1}mi , i = 1, 2, . . . , d,
∑mi

j=1 y
(i)
j ≥ 1, i = 1, 2, . . . , d,

∑d
i=1

∑mi
j=1 y

(i)
j = c.

Throughout this paper, Y (i) denotes Diag (y(i)). Note that ri in (NTmin) is already replaced

by the number of nonzero entries of y(i) in (NTmax). Let X = F ×1
(
A(1)Y (1)

)T ×2
(
A(2)Y (2)

)T · · · ×d
(
A(d)Y (d)

)T ∈ R
m1×m2×···×md . If feasible block variables Y (i)’s satisfy

Y (i) = Diag (1, 1, . . . , 1
︸ ︷︷ ︸

ri

, 0, 0, . . . , 0
︸ ︷︷ ︸

mi−ri

), i = 1, 2, . . . , d, (1)

then the size of the core tensorX can be reduced to r1×r2×· · ·×rd by deleting the tails of zero
entries in all modes, and the rank of X in each mode is equal to r1, r2, . . . , rd , respectively.
This observation, however, establishes the equivalence between (NTmin) and (NTmax). As
we shall see in the next subsection, we may without loss of generality assume Y (i) to be in the
form of (1). This allows us to construct a core tensor with rank-(r1, r2, . . . , rd) easily, which
is exactly the same size of the core tensor C to be optimized in (NTmin). Besides, we would
like to remark that the third constraint

∑mi
j=1 y

(i)
j ≥ 1 for i = 1, 2, . . . , d in (NTmax) is

actually redundant. The reason is that if
∑mi

j=1 y
(i)
j = 0 for some i , then clearly the objective

is zero, which can never be optimal. However, we still keep it in (NTmax) for consistency
purpose in implementing the algorithms discussed in the following subsections.
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4.2 The penalty method

Let us focus on the model for Tucker decomposition with unspecified size of the core in the
maximization form (NTmax). Recall that the separable structure of (G) is required to imple-
ment theMBImethod. Therefore, wemove the nonseparable constraint

∑d
i=1

∑mi
j=1 y

(i)
j = c

to the objective function, i.e., the following penalty function

p
(
λ, A(1), A(2), . . . , A(d), Y (1), Y (2), . . . , Y (d)

)

:=
∥
∥
∥
∥F×1

(
A(1)Y (1)

)T×2

(
A(2)Y (2)

)T×3 . . .×d

(
A(d)Y (d)

)T
∥
∥
∥
∥

2

− λ

⎛

⎝
d∑

i=1

mi∑

j=1

y(i)
j − c

⎞

⎠

2

,

where λ > 0 is a penalty parameter. The penalty model for (NTmax) is then

(PT ) max p
(
λ, A(1), A(2), . . . , A(d), Y (1), Y (2), . . . , Y (d)

)

s.t. A(i) ∈ R
ni×mi , (A(i))TA(i) = I, i = 1, 2, . . . , d,

y(i) ∈ {0, 1}mi , i = 1, 2, . . . , d,
∑mi

j=1 y
(i)
j ≥ 1, i = 1, 2, . . . , d.

We are ready to apply the MBI method to solve (PT ) since the block constraints are
now separable. Before presenting the formal algorithm, let us first discuss the subproblems
in implementing the MBI method, which have to be solved globally as a requirement to
guarantee convergence. Without loss of generality, we wish to optimize (A(1), Y (1)) while
all other block variables (A(i), Y (i)) for i = 2, 3, . . . , d are fixed, i.e.,

(PT 1) max
∥
∥
∥
(
A(1)Y (1)

)T
W (1)

∥
∥
∥
2 − λ

(∑m1
j=1 y

(1)
j + c̄1

)2

s.t. A(1) ∈ R
n1×m1 , (A(1))TA(1) = I,

y(1) ∈ {0, 1}m1 ,
∑m1

j=1 y
(1)
j ≥ 1,

where W (1) := F(1)
(
A(d)Y (d) ⊗ · · · ⊗ A(2)Y (2)

)
and c̄1 := ∑d

i=2
∑mi

j=1 y
(i)
j − c.

This subproblem indeed can be solved easily. First, as the optimization of A(1) is irrelevant
to the penalty term, the optimal A(1) is the m1 leading left singular vectors of matrix W (1)

by applying SVD. Next, we search for the optimal Y (1) for given optimal A(1). Denote v j to
be the j-th row vector of matrix (A(1))TW (1) for j = 1, 2, . . . ,m1, and we have

∥
∥
∥
∥

(
A(1)Y (1)

)T
W (1)

∥
∥
∥
∥

2

=
m1∑

j=1

y(1)
j ‖v j‖2.

Therefore, the optimization of Y (1) is then the following problem:

max −λ
(∑m1

j=1 y
(1)
j

)2 + ∑m1
j=1(‖v j‖2 − 2λc̄1)y

(1)
j − λ(c̄1)2

s.t. y(1) ∈ {0, 1}m1 ,
∑m1

j=1 y
(1)
j ≥ 1.

Although the above model appears to be combinatorial, it is solvable in polynomial-time.
This is because all the possible values for

∑m1
j=1 y

(1)
j are {1, 2, . . . ,m1}, and for any fixed

∑m1
j=1 y

(1)
j , the optimal allocation for y(1) can be assigned greedily as the objective function

is now linear. Thus we only need to try m1 different values for
∑m1

j=1 y
(1)
j and pick the best

solution.
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In the above discussion, we know that the optimal Y (1) automatically satisfies the forma-
tion (1). This is because A(1) is them1 leading left singular vectors of matrixW (1), leading to
the non-increasing order for ‖v j‖’s. Therefore we can update A(1) and Y (1) simultaneously in
solving the subproblem of theMBI method for given penalty parameter λ. To summarize, the
whole procedure for solving (NTmax) using the MBI method and penalty function method
(cf. [5,34]) is as follows.

Algorithm 2 The MBI method for the penalty model

Input Tensor F ∈ R
n1×n2×···×nd and integer c ≥ d.

Output Core tensor C ∈ R
m1×m2×···×md and matrices A(i) ∈ R

ni×mi for i = 1, 2, . . . , d.
0 Choose proper penalty parameters λ0 > 0, σ > 1 and an initial feasible solu-

tion (A(1)
0 , A(2)

0 , . . . , A(d)
0 , Y (1)

0 , Y (2)
0 , . . . , Y (d)

0 ), and compute initial objective value

v0 := p
(
λ0, A

(1)
0 , A(2)

0 , . . . , A(d)
0 , Y (1)

0 , Y (2)
0 , . . . , Y (d)

0

)
. Set k := 0, � := 0 and

λ := λ0.

1 For each i = 1, 2, . . . , d, solve (PT i ) and get its optimal solution
(
B(i)
k+1, Z

(i)
k+1

)

with optimal value wi
k+1, where (PT i ) is defined similar as (PT 1) by replacing

block 1 by block i .
2 Let vk+1 := max1≤i≤d wi

k+1 and choose one i∗ = argmax1≤i≤d wi
k+1, and further

denote

(
A(i)
k+1, Y

(i)
k+1

)
:=

⎧
⎨

⎩

(
A(i)
k , Y (i)

k

)
i ∈ {1, 2, . . . , d}\{i∗},

(
B(i)
k+1, Z

(i)
k+1

)
i = i∗.

3 If |vk+1 − vk | ≤ ε, go to Step 4; otherwise, set k := k + 1 and go to Step 1.

4 If λ
(∑d

i=1
∑mi

j=1(y
(i)
k+1) j − c

)2 ≤ ε0, stop and output the core tensor

C := F ×1

(
A(1)
k+1Y

(1)
k+1

)T ×2

(
A(2)
k+1Y

(2)
k+1

)T ×3 · · · ×d

(
A(d)
k+1Y

(d)
k+1

)T

and matrices A(i) = A(i)
k+1Y

(i)
k+1 for i = 1, 2, . . . , d; otherwise, set � := � + 1,

λ := λ0σ
� and k := 0, and go to Step 1.

We remark that when Algorithm 2 stops, we can shrink the size of the core tensor to
r1 × r2 × · · · × rd by deleting the tails of zero entries in all modes, where ri is the number
of nonzero entries of y(i). As an MBI method, Algorithm 2 is guaranteed to converge to a
stationary point of (PT ), as claimed in [13].

4.3 A heuristic method

To further save the computational efforts, in this subsection we present a heuristic approach
to solve Tucker decomposition model with unspecified size of the core, i.e., (NTmax). We
know that if each i-rank (i = 1, 2, . . . , d) of the core tensor C is given, then the problem
becomes the traditional Tucker decomposition discussed in Sect. 3, which can be solved
by the MBI method (Algorithm 1). From the discussion in Sect. 4, we notice that the key
issue of the model is to allocate the constant number c to each i-rank of the core tensor.
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Therefore, the optimal value of (Tmax) can be considered as a function of (r1, r2, . . . , rd),
denoted by g(r1, r2, . . . , rd). Our heuristic approach tries to find a distribution of the constant
c, by adapting the idea of the MBI method. Specifically, we may start with lower i-ranks,
e.g. r01 = r02 = · · · = r0d = 1, and compute Tucker decomposition using Algorithm 1;
then we increase one of the i-ranks (1 ≤ i ≤ d) by one, by choosing i as the best Tucker
decomposition among d possible increment of the i-rank, i.e.,

(rk+1
1 , rk+1

2 , . . . , rk+1
d ) = arg max

1≤i≤d
g(rk1 , rk2 , . . . , rki−1, r

k
i + 1, rki+1, . . . , r

k
d ).

This procedure is continued until
∑d

i=1 r
k
i = c for some k (= c − d).

If the function g(r1, r2, . . . , rd) for Tucker decomposition can be globally solved for any
given (r1, r2, . . . , rd) (though it is NP-hard in general), then the above approach is a dynamic
program and the optimality of (NTmax) is guaranteed when the method stops. Though in
general Algorithm 1 can only find the stationary solution of g(r1, r2, . . . , rd), this heuristic
approach is in fact very effective; see the numerical tests in Sect. 5. Apart from the rank
increasing approach, rank decreasing strategy can be the other alternative, i.e., starting from
large number ri ’s and decreasing them until

∑d
i=1 ri = c. We conclude this subsection by

presenting the heuristic algorithm for the rank decreasing approach below, which is actually
very easy to implement.

Algorithm 3 The rank decreasing method

Input Tensor F ∈ R
n1×n2×···×nd and integer c ≥ d.

Output Core tensor C ∈ R
r1×r2×···×rd and matrices A(i) ∈ R

ni×ri for i = 1, 2, . . . , d.
0 Choose initial ranks (r1, r2, . . . , rd) with

∑d
i=1 ri > c.

1 Apply Algorithm 1 to solve (Tmax) with input (r1, r2, . . . , rd), and output matrices
A(i) for i = 1, 2, . . . , d.

2 For each i = 1, 2, . . . , d, let B(i) ∈ R
ni×(ri−1) be the matrix by deleting the ri -th

column of A(i), and compute

i∗ := argmax1≤i≤d

∥
∥
∥F ×1 (A(1))T · · · ×i−1 (A(i−1))T ×i (B(i))T

×i+1(A(i+1))T · · · ×d (A(d))T
∥
∥
∥.

Update ri∗ := ri∗ − 1 and A(i∗) := B(i∗). Repeat if necessary until
∑d

i=1 ri = c.
3 Apply Algorithm 1 to solve (Tmax) with input (r1, r2, . . . , rd), and output the core

tensor C and matrices A(i) for i = 1, 2, . . . , d.

5 Numerical experiments

In this section, we apply the algorithms proposed in the previous sections to solve Tucker
decomposition without specification of the core size. Four different types of data are tested
to demonstrate the effectiveness and efficiency of our algorithms. All the numerical com-
putations are conducted in an Intel Xeon CPU 3.40GHz computer with 8GB RAM. The
supporting software is MATLAB 7.12.0 (R2011a) as a platform. We use MATLAB Tensor
Toolbox Version 2.5 [4] whenever tensor operations are called, and also apply its embedded
algorithm (the ALSmethod) to solve Tucker decomposition with given rank-(r1, r2, . . . , rd).
The termination precision for the ALS method is set to be 10−4.
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In implementing Algorithm 2, the penalty increment parameter is set to be σ := 2. The
startingmatrices A(i)

0 ’s are randomly generated and thenmade to be orthonormal. The starting

diagonal matrices Y (i)
0 ’s are all set to be

Y (i)
0 := Diag (1, 0, 0, . . . , 0

︸ ︷︷ ︸
mi−1

) for i = 1, 2, . . . , d.

The termination precision for Algorithm 2 is also set to be 10−4.
For Algorithm 3, the initial ranks are set to be ri := min(ni , c) for i = 1, 2, . . . , d . When

applying Algorithm 1 in Step 1, the starting matrices A(i)
0 ’s for solving (Tmax) are randomly

generated, and the termination precision is set to be 10−2. While applying Algorithm 1 in
Step 3, the starting matrices A(i)

0 ’s for solving (Tmax) are obtained from Step 2, and the
termination precision is set to be 10−4.

For the given data tensor F in the following tests, and the rank-(r1, r2, . . . , rd) approxi-
mation tensor F̂ computed by the algorithms, the relative square error of the approximation
is normally defined as ‖F − F̂‖/‖F‖. To measure how close it is to the original tensor F ,
the term fit is defined as

fit := 1 − ‖F − F̂‖
‖F‖ .

The larger the fit, the better the performance.

5.1 Noisy tensor decomposition

First we present some preliminary test results on two synthetic data sets. We use Tensor
Toolbox to randomly generated a noise-free tensorY ∈ R

50×50×30 with rank-(4, 4, 2), where
entries of the core tensor follow standard normal distributions and entries of the orthogonal
factor matrices follow uniform distributions. A noise tensorN ∈ R

50×50×30 in the same size
is randomly generated, whose entries follow standard normal distributions. The noisy tensor
Z to be tested is then constructed as follows:

Z = Y + η
‖Y‖
‖N‖N ,

where η is the noise parameter, more formally, the perturbed ratio. Our task is to find the real
i-ranks of the core tensor from the corrupted tensor Z.

In this set of tests, the initial penalty parameter forAlgorithm 2 is set to be λ0 = 0.005‖Z‖,
and summation of the ranks is set to be c = 10. Results of this experiment are summarized
in Fig. 1, representing the fit and the computational time of Algorithms 2 and 3 for different
perturbed ratios. For comparison, we also call the ALS method for solving the traditional
Tucker decomposition with given (r1, r2, r3), which are randomly generated satisfying r1 +
r2 + r3 = 10. Also, 10 random rank samples are generated for the ALS method, and its
maximum fit, average fit and minimum fit are presented in the left of Fig. 1, corresponding
to three pentagon dots from the top to the bottom in each line segment, respectively. The
computational time for the ALS method is then the summation of these 10 rank samples.
We observe that Algorithms 2 and 3 can easily and quickly find the exact i-ranks (4, 4, 2)
of the core tensor for different perturbed ratios, and can still approximate the original tensor
Y accurately even for large noise. Figure 1 shows that Algorithms 2 and 3 outperform the
ALS method significantly, both in fit and in computational time, implying the importance of
selecting the core with a right configuration.
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Fig. 1 Approximating a noisy tensor of size 50 × 50 × 30 with original rank-(4,4,2)

Fig. 2 Approximating a noisy tensor of size 100 × 100 × 50 with original rank-(5,5,4)

Figure 2 shows another synthetic experiment whose data is generated similarly as that in
Fig. 1. In this set of data, Y ∈ R

100×100×50 is a rank-(5, 5, 4) tensor. The summation of the
ranks in testingAlgorithms 2 and 3 are set as c = 14. Figure 2 again shows that our algorithms
perform quite well in anti-interference and are far superior to the ALS method, which again
illustrates that selecting a suitable core size is necessary. Furthermore, both Algorithms 2
and 3 can find the exact i-ranks (5, 5, 4) of the core tensor for various perturbed ratios.

5.2 Amino acid fluorescence data

This data set was originally generated and measured by Claus Andersson and was later pub-
lished and tested by Bro [6,7]. It consists of five laboratory-made samples. Each sample
contains different amounts of tyrosine, tryptophan and phenylalanine dissolved in phosphate
buffered water. The size of the array A to be decomposed is 5 × 201 × 61, which cor-
responds to samples, emission wavelength (250–450nm) and excitation wavelength (240–
300nm), respectively. This array is actually a rank-(5, 201, 61) tensor. Ideally the array
should be describable with three PARAFAC components, where its fit is equal to 97.44%
obtained by Tensor Toolbox. This data can also be approximated well in the sense of Tucker
decomposition. In implementing Algorithm 2, the initial penalty parameter is set to be
λ0 = 0.01‖A‖.
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Fig. 3 Approximating the amino acid fluorescence data with original rank-(5, 201, 61) for different c =
r1 + r2 + r3

Fig. 4 The ALS method on the
amino acid fluorescence data for
c = 9

The numerical results for the three methods (ALS, Algorithms 2 and 3) are presented
in Fig. 3. The maximum fit and the average fit by running the ALS method 10 times with
randomly generated rank-(r1, r2, r3) satisfying r1 + r2 + r3 = c are plotted on the left
part of Fig. 3, corresponding to the two endpoints of each line segment. The CPU time for
ALS is the summation of these 10 random samples. Algorithms 2 and 3 perform better than
the ALS method. In particular for Algorithm 2, it can get a convincing fit even for lower
c. Furthermore, Algorithm 2 decomposes this data set as good as PARAFAC does without
knowing the exact i-ranks, e.g. the fit reaches 97.55% when c = 9 which finds rank-(3, 3, 3)
when it stops.

To further justify the importance of Tucker decompositionwith unspecified size of the core
as well as Algorithm 2, here we investigate the ALS method with all possible pre-specified
i-ranks to test this data set. For given summation of i-ranks c = 9, there are a total of 25
possible combinations of (r1, r2, r3), and their corresponding fits are listed in Fig. 4. It shows
that the Tucker decomposition of rank-(3, 3, 3) outperforms all other combinations, which
is exactly the i-ranks found by Algorithm 2.
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Table 1 Approximating the gene expression data with original rank-(54, 6, 9)

c Algorithm 2 Algorithm 3 ALS

(r1, r2, r3) CPU Fit (%) (r1, r2, r3) CPU Fit (%) Fit-2 (%) Fit-3 (%) Fit (%)

3 (1, 1, 1) 0.45 85.85 (1, 1, 1) 1.62 85.96 85.85 85.85 85.85

5 (2, 1, 2) 7.04 86.66 (2, 1, 2) 2.89 87.73 86.75 86.77 86.01

10 (4, 2, 4) 6.16 89.79 (1, 3, 6) 2.33 93.89 89.82 85.96 86.61

15 (7, 3, 5) 9.21 91.96 (5, 6, 4) 1.62 91.44 91.97 90.99 89.15

20 (10, 4, 6) 5.97 93.59 (5, 6, 9) 1.55 91.44 93.60 91.44 92.71

5.3 Gene expression data

We further test one real three-way tensor F ∈ R
2395×6×9, which is from 3D Arabidopsis

gene expression data.1 The i-ranks of the data tensor are (54, 6, 9). Essentially this is a set of
gene expression data with 2,395 genes, measured at 6 time points and 9 different conditions.

We again apply the three methods to test this data set. The initial penalty parameter for
Algorithm 2 is set to be λ0 = 0.01‖F‖. Results of our experiments are summarized in
Table 1. For the fit in the last three columns by the ALS method, fit-2 and fit-3 denote the
fit by using the ALS method with the ranks obtained from Algorithms 2 and 3, respectively,
while the fit in the last column is the average fit by running the ALS method 10 times with
randomly generated ranks satisfying r1 + r2 + r3 = c. The following conclusions can be
drawn from this set of experiments:

– Excellent performances of Algorithms 2 and 3 are validated.
– Computing the i-rank information is important, as the ranks produced by Algorithms 2

and 3 are better than the randomly generated ranks for the ALS method in terms of the
fit.

– With the combination of the ALS method, Algorithm 2 works better than Algorithm 3
in terms of the fit, while its CPU time is longer than that of Algorithm 3.

5.4 Tensor compression of image data

In this part, we focus on the experiments of the models and algorithms for the image data.
Here two sets of faces are experimented, with each in one subsection.

5.4.1 The ORL database of faces

The first set of images is from the ORL database of faces [33] in AT&T Laboratories Cam-
bridge. In this database, there are 10 different images for each of the 40 distinct subjects,
and the size of each image is 92× 112 pixels. Here, we draw one single distinct subject, and
then construct a tensor T ∈ R

92×112×10, whose i-ranks are (92, 112, 10). When applying
Algorithm 2, the initial penalty parameter is set as λ0 = 0.005‖T ‖.

Figure 5 displays the images compressed and recovered by the threemethodswhen c = 50
and 70 respectively. The detailed numerical values for the two cases are listed inTable 2. Some
standard abbreviations from image science are adopted, namely, CP for compression, CR for
compression ratio, and RMSE for root mean squared error. For the ALSmethod, its CPU time

1 We thank Professor Xiuzhen Huang of Arkansas State University for providing us this set of data.
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Fig. 5 Recovered images for the ORL database of faces [rows from the top to the bottom: 1. Original, 2.
Algorithm 3, 3. ALS (the best), 4. ALS (the worst), 5. Algorithm 2]

Table 2 Tensor compression for the ORL database of faces with original rank-(92, 112, 10)

c Methods (r1, r2, r3) CR CP (%) RMSE Fit (%) CPU

50 Algorithm 3 (25, 22, 3) 62.4 98.4 143.98 83.99 0.71

ALS (best) (16, 25, 9) 28.6 96.5 75.25 87.64 1.15

(worst) (43, 6, 1) 399.4 99.8 556.85 75.52

Algorithm 2 (21, 19, 10) 25.8 96.1 67.89 88.26 5.80

70 Algorithm 3 (35, 31, 4) 23.7 95.8 72.92 86.85 1.36

ALS (best) (34, 29, 7) 14.9 93.3 45.78 89.59 1.20

(worst) (11, 58, 1) 161.5 99.4 345.26 76.10

Algorithm 2 (30, 30, 10) 11.4 91.3 34.13 91.14 12.35

is computed by the summation of 10 random generated i-ranks satisfying r1 + r2 + r3 = c,
and its best and worst compressions in terms of fit are reported for comparison.

Observation from Fig. 5 indicates that only the compressed images by the ALS method
(the best one) and Algorithm 2 keep all the facial expressions. However Algorithm 2 indeed
outperforms the ALS method (the best one) in terms of fit and RMSE as shown in Table 2.
It is worth mentioning that most of computational effort of Algorithm 2 is to find a suitable
combination of ranks (r1, r2, r3), while this issue for the ALS method is pre-specified. This
computational effort in selecting better initial ranks is worthwhile, as we noticed that the
ALS method for a large c may be worse than Algorithm 2 for a smaller c, e.g. the 4th row in
the right of Fig. 5 is not clearer than the 2rd row in the left of Fig. 5, which is also confirmed
by Table 2.

Figure 6 presents the performance of Algorithm 2 for varying c. Clearly, the larger c is,
the larger the fit, and the lower the RMSE. This figure also suggests a guideline for choosing
a suitable c depending on the quality of the compressed images required by the user.
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Fig. 6 Performance of Algorithm 2 for the ORL database of faces

Fig. 7 Recovered images for the JAFFE database when c = 80 [rows from the top to the bottom: 1. Original,
2. Algorithm 3, 3. ALS (the best), 4. ALS (the worst), 5. Algorithm 2]

5.4.2 The Japanese female facial expression (JAFFE) database

The other tests are on the facial database [30] from the Psychology Department in Kyushu
University, which contains 213 images of 7 different emotional facial expressions (sadness,
happiness, surprise, anger, disgust, fear and neutral) posed by 10 Japanese female models.
Each image has 256× 256 pixels. Here we draw 7 different facial expressions of one female
model and construct a tensor T of size 256 × 256 × 7, whose i-ranks are (256, 256, 7). A
similar set of tests as in Sect. 5.4.1 are conducted. The results are presented in Figs. 7 and 8,
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Fig. 8 Recovered images for the JAFFE database when c = 110 [rows from the top to the bottom: 1. Original,
2. Algorithm 3, 3. ALS (the best), 4. ALS (the worst), 5. Algorithm 2]

Fig. 9 Performance of Algorithm 2 for the JAFFE database

9, and Table 3 which again confirm the observation from the results for the ORL database
of faces. In particular, by comparing the best two set of images (the best ALS method and
Algorithm 2) in Figs. 7 and 8, Algorithm 2 is clearly better in details, e.g. the eyebrows.

5.5 Comparisons with the DIFFIT and the ARD methods

In our final set of tests, we compare our approaches with those methods that are capable of
choosing the rank of the core tensor in the Tucker decomposition, in particular, the DIFFIT

123



828 J Glob Optim (2015) 62:811–832

Table 3 Tensor compression for the JAFFE database with original rank-(256, 256, 7)

c Methods (r1, r2, r3) CR CP (%) RMSE Fit (%) CPU

80 Algorithm 3 (40, 39, 1) 294.1 99.7 480.15 80.11 2.50

ALS (best) (39, 38, 3) 103.2 99.0 183.30 87.18 2.81

(worst) (75, 2, 3) 1.0e+03 99.9 1350.50 69.95

Algorithm 2 (39, 34, 7) 49.4 98.0 75.17 92.40 35.67

110 Algorithm 3 (53, 55, 2) 78.7 98.7 185.49 85.14 9.00

ALS (best) (54, 52, 4) 40.8 97.6 94.95 89.44 2.50

(worst) (1, 105, 4) 1.1e+03 99.9 1958.61 57.89

Algorithm 2 (53, 50, 7) 24.7 96.0 43.35 93.81 169.27

Table 4 Analysis of the DIFFIT
approach for amino acid
fluorescence data

c (r1, r2, r3) ExpVar (%) DIF (%) DIFFIT Fit (%)

3 (1, 1, 1) 64.3900 64.3900 3.2278 40.33

5 (2, 2, 1) 84.3384 19.9484 8.1922 60.43

6 (2, 2, 2) 86.7735 2.4351 0.4657 63.63

7 (3, 2, 2) 92.0022 5.2287 0.7746 71.72

8 (3, 3, 2) 98.7522 6.7500 5.6819 88.83

9 (3, 3, 3) 99.9402 1.1880 103.8363 97.55

10 (4, 3, 3) 99.9516 0.0114 1.2007 97.80

11 (4, 4, 3) 99.9611 0.0095 1.7685 98.03

12 (4, 4, 4) 99.9665 0.0054 0.9857 98.17

13 (4, 5, 4) 99.9720 0.0055 0.9466 98.33

14 (5, 5, 4) 99.9778 0.0058 1.4935 98.51

15 (5, 5, 5) 99.9816 0.0039 – 98.64

procedure [35]2 and the ARD method [31].3 They are both useful tools in analyzing the data
with a low-rank structure. The parameters in the ARD algorithm are set as default. We use
two data sets in previous subsections for comparison, the amino acid fluorescence data in
Sect. 5.2 and the noisy tensor of size 50 × 50 × 30 with original rank-(4,4,2) in Sect. 5.1.
Numerical results of the DIFFIT approach are listed in Tables 4 and 5, and that of the ARD
method are listed in Tables 6 and 7.

Table 4 presents the results to estimate the core size of Tucker model based on the DIFFIT
procedure. Its stopping criterion is based on the explained variance, i.e.,

ExpVar = 1 − ‖F − F̂‖2
‖F‖2 .

ExpVar is similar to the definition of fit in previous numerical experiments, which is also
computed in the last column of Table 4 for reference. In implementing DIFFIT, one needs to
increase the value c one by one until the algorithm finds the best combination of (r1, r2, r3)
with r1 + r2 + r3 = c and its corresponding ExpVar = 100%, which is time-consuming.
For comparison with our method, we only evaluate all combinations up to rank-(5, 5, 5)

2 We thank Professor Marieke Timmerman for providing us some basic codes of the DIFFIT approach.
3 A Matlab implementation of the ARD method is available at http://www.erpwavelab.org.
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Table 5 Comparisonwith DIFFIT approach for the noisy tensor of size 50×50×30with original rank-(4,4,2)

η DIFFIT Algorithm 2

(n1, n2, n3) ExpVar (%) (r1, r2, r3) DIFFIT Fit (%) CPU Fit (%) CPU

0.01 (4, 4, 4) 99.99 (4, 4, 2) 5.79 × 105 99.00 0.53 99.92 0.09

(5, 5, 5) 99.99 (4, 4, 2) 5.79 × 105 99.00 1.01

(10,10, 6) 99.99 (4, 4, 2) 5.79 × 105 99.00 19.22

0.1 (4, 4, 4) 99.02 (4, 4, 2) 5.79 × 103 90.08 0.35 99.20 0.13

(5, 5, 5) 99.02 (4, 4, 2) 5.80 × 103 90.08 0.92

(10,10, 6) 99.05 (4, 4, 2) 5.80 × 103 90.08 18.60

0.2 (4, 4, 4) 96.19 (4, 4, 2) 1.45 × 103 80.46 0.39 98.40 0.14

(5, 5, 5) 96.21 (4, 4, 2) 1.45 × 103 80.46 1.20

(10,10, 6) 96.31 (4, 4, 2) 1.45 × 103 80.46 20.10

Table 6 Analysis of the ARD method for amino acid fluorescence data

(n1, n2, n3) (r1, r2, r3) Sparse ARD Tucker Ridge ARD Tucker

No. Val. (105) Fit (%) CPU No. Val. (105) Fit (%) CPU

(4,4, 4) (3, 3, 3) 5 −2.9527 97.31 10.06 4 −2.9842 97.33 10.81

(4, 3, 3) 5 −2.9576 97.62 10.14 6 −2.9883 97.69 8.86

(5, 5, 5) (3, 3, 3) 2 −2.8883 97.30 7.31 2 −2.9563 97.27 9.38

(4, 3, 3) 5 −2.8937 97.52 11.63 6 −2.9526 97.46 11.13

(5, 3, 3) 3 −2.8945 97.56 8.75 2 −2.9485 97.40 11.19

(10,10, 10) (3, 3, 3) 4 −2.5547 97.36 9.23 2 −2.7860 97.49 12.20

(4, 3, 3) 3 −2.5570 97.49 8.97 6 −2.7782 97.51 13.27

(5, 3, 3) 2 −2.5619 97.52 9.79 1 −2.7816 97.58 13.07

(6, 3, 3) 0 – – – 1 −2.7888 97.72 14.06

(7, 3, 3) 1 −2.5663 97.62 10.64 0 – – –

Tucker decomposition. The best combinations of (r1, r2, r3) satisfying r1 + r2 + r3 = c are
listed in each row of Table 4. The DIFFIT procedure correctly identifies rank-(3, 3, 3), and
its corresponding fit is 97.55% and the total CPU time is 0.79 seconds. As shown in the tests
in Sect. 5.2, Algorithm 2 could quickly find rank-(3, 3, 3) provided that c = 9.

Table 5 presents the results on synthetic data tensors for both the DIFFIT approach and
Algorithm 2. For each different perturbed ratio η in the noisy tensor, we evaluate all the
combinations of the models up to the rank-(n1, n2, n3) Tucker decomposition in the DIFFIT
procedure. Three different trials on (n1, n2, n3)’s are tested for DIFFIT, with its correspond-
ing ExpVar value listed when the DIFFIT approach stops. For different sets of (n1, n2, n3),
DIFFIT always finds the best size of the core tensor, which is (4, 4, 2). However, the cor-
responding fit values are worse than that of Algorithm 2. In order to run Algorithm 2, we
need to provide the predefined information on c = 10 to find the best rank and its Tucker
approximation. The numerical results show that DIFFIT naturally finds the best size of the
core tensor from all the possible combinations, while our method needs a predefined sum of
the dimensions for the core tensor.
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Table 7 Comparison with sparse ARD Tucker analysis for the noisy tensor of size 50×50×30 with original
rank-(4,4,2)

η Sparse ARD Tucker Algorithm 2

(n1, n2, n3) (r1, r2, r3) No. Val. (105) Fit (%) CPU c (r1, r2, r3) Fit (%) CPU

0 (4,4, 2) (4, 4, 2) 10 3.27 99.76 4.98 10 (4, 4, 2) 100.00 0.07

(5, 5, 5) (4, 4, 2) 4 3.32 99.78 6.71 15 (4, 4, 7) 100.00 0.09

(10,10, 10) (4, 5, 4) 1 3.48 99.72 10.94 30 (24,4, 2) 100.00 0.55

0.1 (4, 4, 2) (4, 4, 2) 10 3.26 99.16 5.45 10 (4, 4, 2) 99.20 0.06

(5, 5, 5) (4, 4, 2) 2 3.31 99.17 6.96 15 (9, 4, 2) 99.05 0.09

(10,10, 10) (4, 4, 4) 1 3.48 98.97 11.63 30 (24,4, 2) 99.05 0.79

0.2 (4, 4, 2) (4, 4, 2) 10 3.23 98.39 6.09 10 (4, 4, 2) 98.40 0.09

(5, 5, 5) (4, 4, 2) 5 3.28 98.39 8.62 15 (4, 9, 2) 98.13 0.13

(10,10,10) (4, 5, 3) 1 3.47 99.09 12.49 30 (24,4, 2) 98.10 1.04

Table 6 presents the analysis of amino acid fluorescence data based on the ARD method.
Two types of priors for the parameters in ARD are used, one is the Laplacian priors, which
is referred to sparse ARD Tucker analysis in Table 6, and the other is the Gaussian priors,
which corresponds to ridge ARD Tucker analysis. In the test, we choose three different
initial sizes (n1, n2, n3) of the core tensor, and run the two analyzing approaches 10 times,
respectively. All the estimated core sizes (r1, r2, r3) are reported, together with the number
of times (denoted by No.) that the algorithm reaches a specific (r1, r2, r3) among all the 10
runs and the likelihood (denoted by Val.) of the best estimated (r1, r2, r3)when the algorithm
stops. The best model is given by the one with the largest ‘Val.’ indicated in bold face. Results
in Table 6 indicate that the sparse ARD method performs better than the ridge ARD method
in identifying the correct core size (3, 3, 3). The fit value of the estimated rank-(3, 3, 3)
model is a little bit less than 97.55% of Algorithm 2. Moreover, the ARD method is quite
time-consuming compared to Algorithm 2.

For the noisy tensor data, similar test results for the sparse ARD method are presented
in Table 7. Here we only report the best estimated rank-(r1, r2, r3) by running the sparse
ARD method 10 times. As shown in Table 7, when the size (n1, n2, n3) increases, the sparse
ARD method becomes increasingly harder to identify the correct core size. For comparison
purpose, we use c = n1+n2+n3 to test Algorithm 2. In particular when c = 10, Algorithm 2
can find the correct core size quickly. This also showed in Fig. 1, even though the perturbed
ratio η is large. Algorithm 2 is able to find rank-(4, 4, 2) quickly once c = 10 is given.

6 Conclusion

In this paper we study the problem of finding a proper Tucker approximation for a general
tensor without a pre-specified size of the core tensor, which addresses an important practical
issue for real applications. The size of the core tensor is assumed in almost all the existing
methods for tensor Tucker decomposition. The approach that we propose is based on the
so-called MBI method. Our numerical experiments on a variety of instances taken from real
applications suggest that the proposed methods perform robustly and effectively.
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