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Abstract
This paper presents a generalization of the spectral norm and the nuclear norm of a 
tensor via arbitrary tensor partitions, a much richer concept than block tensors. We 
show that the spectral p-norm and the nuclear p-norm of a tensor can be lower and 
upper bounded by manipulating the spectral p-norms and the nuclear p-norms of 
subtensors in an arbitrary partition of the tensor for 1 ≤ p ≤ ∞ . Hence, it generalizes 
and answers affirmatively the conjecture proposed by Li (SIAM J Matrix Anal Appl 
37:1440–1452, 2016) for a tensor partition and p = 2 . We study the relations of the 
norms of a tensor, the norms of matrix unfoldings of the tensor, and the bounds via 
the norms of matrix slices of the tensor. Various bounds of the tensor spectral and 
nuclear norms in the literature are implied by our results.

Keywords  Tensor norm bound · Spectral norm · Nuclear norm · Tensor partition · 
Block tensor

Mathematics Subject Classification  15A60 · 15A69 · 90C59 · 68Q17

1  Introduction

The spectral p-norm of a tensor generalizes the spectral p-norm of a matrix. It can 
be defined by the Lp-sphere constrained multilinear form optimization problem:
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where ‖T‖p� denotes the spectral p-norm of a given tensor T =

(
ti1i2…id

)
∈ ℝ

n1×n2×⋯×nd,

is a multilinear form of (x1, x2,… , xd) , and ‖ ⋅ ‖p denotes the Lp-norm of a vector 
for 1 ≤ p ≤ ∞ . When the order of the tensor T  is two, the problem is reduced to the 
spectral p-norm of a matrix, and in particular when p = 2 , to the spectral norm or 
the largest singular value of a matrix. The spectral p-norm of a tensor was proposed 
by Lim [18] in terms of singular values of a tensor, and is closely related to the larg-
est Z-eigenvalue (for the case p = 2 ) of a tensor proposed by Qi [24].

The matrix spectral p-norm is evidently important in many branches of math-
ematics as well as in various practical applications; see e.g., [6, 11]. The complexity 
and approximation methods of the matrix spectral p-norm were studied extensively 
[1, 21, 27], and they have particular applications in robust optimization [27]. When 
p = 1, 2 , the matrix spectral p-norm can be computed easily, and when 2 < p ≤ ∞ , 
computing the matrix spectral p-norm is NP-hard, while it remains unknown for 
the rest of p. The tensor spectral p-norm was studied mainly in approximation algo-
rithms of polynomial optimization [15]. When the order of a tensor is larger than 
two, computing the tensor spectral norm ( p = 2 ) is already NP-hard proved by He 
et  al. [8] (see also [10]), a sharp contrast to the case of matrices. NP-hardness to 
compute the tensor spectral p-norm was also established when 2 < p ≤ ∞ by Hou 
and So [12]. Various approximation bounds of the tensor spectral p-norm were 
established in the literature [7–9, 12, 26]. Nikiforov [23] studied the tensor spec-
tral p-norm using combinatorial methods and proposed several bounds. Li and Zhao 
[17] recently studied a more general tensor spectral p-norm and provided upper 
bounds via norm compression tensors.

The dual norm to the spectral p-norm of a tensor T  , called the nuclear p-norm, is 
defined as ‖T‖p

∗

= max‖X‖p�≤1⟨T,X⟩ . In the case of matrices and p = 2 , it is reduced 
to the nuclear norm of a matrix, which is equal to the sum of all the singular values 
of a matrix. The matrix nuclear norm was used widely as a convex envelope of the 
matrix rank for many rank minimization problems, such as matrix completion [2]. 
Friedland and Lim [4] studied the tensor nuclear p-norm systematically, and showed 
that computing the tensor nuclear norm ( p = 2) is NP-hard when the order of the 
tensor is larger than two. They also proposed simple lower and upper bounds of the 
tensor spectral norm and nuclear norm. The study on the tensor nuclear p-norm has 
been mainly focused on the case p = 2 , such as tensor completion [5, 20, 30]. Derk-
sen [3] discussed the nuclear norm of various tensors based on orthogonality. Nie 
[22] studied symmetric tensor nuclear norms. Extremal properties of the tensor 
spectral norm and nuclear norm were studied in [16].

Most of the methods to tackle the tensor spectral p-norm and nuclear p-norm in 
the literature have been heavily relying on matrix unfoldings, no matter in theory 

‖T‖p� = max
�
T(x

1, x2,… , xd) ∶ ‖xk‖p = 1, xk ∈ ℝ
nk , k = 1, 2,… , d

�
,

(1)T(x
1, x2,… , xd) =

n1∑
i1=1

n2∑
i2=1

⋯

nd∑
id=1

ti1i2…id
x1
i1
x2
i2
… xd

id
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such as approximation methods [15] and in practice such as tensor completion [5]. 
Hu [13] established the relation of the tensor nuclear norm to the nuclear norms 
of its matrix unfoldings. Wang et al. [29] systematically studied the tensor spectral 
p-norm via various matrix unfoldings and tensor unfoldings. Li [14] proposed a 
novel approach to study the tensor spectral norm and nuclear norm via tensor parti-
tions, a concept generalizing block tensors by Ragnarsson and Van Loan [25]. Some 
neat bounds of the tensor spectral norm (respectively, nuclear norm) via the spectral 
norms (respectively, nuclear norms) of subtensors in any regular partition were pro-
posed, and a conjecture [14, Conjecture 3.5] on the bounds in any tensor partition 
was proposed.

In this paper, we systematically study the tensor spectral p-norm and nuclear 
p-norm via the partition approach in [14]. We prove that for the most general parti-
tion called arbitrary partition, the bounds of the tensor spectral p-norm and nuclear 
p-norm via subtensors can be established for any 1 ≤ p ≤ ∞ . It generalizes and 
answers affirmatively the Li’s conjecture, which is the case p = 2 for a tensor parti-
tion. The novelty of the proof lies in establishing an index system to describe sub-
tensors in an arbitrary partition. Based on these, we study the relations of the spec-
tral p-norm of a tensor, the spectral p-norms of matrix unfoldings of the tensor, and 
the bounds via the spectral p-norms of matrix slices of the tensor. The same relation 
is studied for the tensor nuclear p-norm. Various bounds of these tensor norms in the 
literature can be derived from our results.

This paper is organized as follows. We start with the preparation of various nota-
tions, definitions and properties of tensor norms and tensor partitions in Sect.  2. 
In Sect. 3, we present our main result on bounding the tensor spectral p-norm and 
nuclear p-norm via partitioned subtensors. Section 4 is devoted to the discussion and 
theoretical applications, particularly on the relations among the tensor norms, the 
norms of matrix unfoldings, and the norms via matrix slices.

2 � Preparation

Throughout this paper, we uniformly use the lower case letters (e.g., x), the boldface 
lower case letters (e.g., x =

(
xi
)
 ), the capital letters (e.g., X =

(
xij
)
 ), and the cal-

ligraphic letters (e.g., X =

(
xi1i2…id

)
 ) to denote scalars, vectors, matrices, and higher 

order (order three or more) tensors, respectively. Denote ℝn1×n2×⋯×nd to be the space 
of dth order real tensors of dimension n1 × n2 ×⋯ × nd . The same notations apply 
for a vector space and a matrix space when d = 1 and d = 2 , respectively. Denote ℕ 
to be the set of positive integers.

Given a dth order tensor space ℝn1×n2×⋯×nd , we denote �k ∶=
{
1, 2,… , nk

}
 to be 

the index set of mode-k for k = 1, 2,… , d . Trivially, �1 × �
2
×⋯ × �

d becomes the 
index set of the entries of a tensor in the tensor space. The Frobenius inner product 
of two tensors U,V ∈ ℝ

n1×n2×⋯×nd is defined as:

⟨U,V⟩ ∶=
n1�
i1=1

n2�
i2=1

⋯

nd�
id=1

ui1i2…id
vi1i2…id

.
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Its induced Frobenius norm is naturally defined as ‖T‖2 ∶=
√⟨T, T⟩ . When d = 1 , 

the Frobenius norm is reduced to the Euclidean norm of a vector. In a similar vein, 
we may define the Lp-norm of a tensor (also known as the Hölder p-norm) for 
1 ≤ p ≤ ∞ to looking at a tensor as a vector, as follows:

A rank-one tensor, also called a simple tensor, is a tensor that can be written as outer 
products of vectors, i.e., T = x1 ⊗ x2 ⊗⋯⊗ xd where xk ∈ ℝ

nk for k = 1, 2,… , d . 
It can be equivalently represented by the entries as:

Here is a property of the Lp-norm of a rank-one tensor.

Proposition 2.1  If a tensor T ∈ ℝ
n1×n2×⋯×nd is rank-one, say 

T = x1 ⊗ x2 ⊗⋯⊗ xd , then ‖T‖p = ∏d

k=1
‖xd‖p for any 1 ≤ p ≤ ∞.

Proof  According to (2), we have

	�  ◻

2.1 � The spectral p‑norm and nuclear p‑norm

Let us formally define the tensor spectral p-norm and its dual norm.

Definition 2.2  For a given tensor T ∈ ℝ
n1×n2×⋯×nd and 1 ≤ p ≤ ∞ , the spectral 

p-norm of T  , denoted by ‖T‖p� , is defined as

Essentially, ‖T‖p� is the maximal value of the Frobenius inner product between 
T  and a rank-one tensor whose Lp-norm is one, according to Proposition  2.1. 
We remark that 

⟨
T, x1 ⊗ x2 ⊗⋯⊗ xd

⟩
 in  (3) is exactly the multilinear form 

T(x1, x2,… , xd) defined in (1). Hence, as mentioned in Sect. 1, the tensor spectral 
p-norm is more commonly known as the Lp-sphere constrained multilinear form 
optimization problem in the optimization community. When p = 2 , the tensor spec-
tral p-norm is often called the tensor spectral norm, and is also known to be the larg-
est singular value of the tensor [18].

‖T‖p =
�

n1�
i1=1

n2�
i2=1

⋯

nd�
id=1

�ti1i2…id
�p
� 1

p

.

(2)ti1i2…id
=

d∏
k=1

xk
ik

∀

(
i1, i2,… , id

)
∈ �

1
× �

2
×⋯ × �

d.

‖T‖p =
�

n1�
i1=1

n2�
i2=1

⋯

nd�
id=1

������

d�
k=1

xk
ik

������

p� 1

p

=

�
d�

k=1

�
nk�
ik=1

���x
k
ik

���
p

�� 1

p

=

d�
k=1

‖xk‖p.

(3)‖T‖p𝜎 ∶= max
��

T, x1 ⊗ x
2
⊗⋯⊗ x

d
�
∶ ‖xk‖p = 1, k = 1, 2,… , d

�
.
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Definition 2.3  For a given tensor T ∈ ℝ
n1×n2×⋯×nd and 1 ≤ p ≤ ∞ , the nuclear 

p-norm of T  , denoted by ‖T‖p
∗

 , is defined as

The decomposition of T  into a sum of rank-one tensors, such as that in  (4), is 
called a rank-one decomposition of T  . Therefore, the tensor nuclear p-norm is the 
minimum of the sum of the Lp-norms of rank-one tensors in any rank-one decompo-
sition. A rank-one decomposition of T  that attains ‖T‖p

∗

 is called a nuclear p-decom-
position of T  , similar to the nuclear decomposition of a tensor for p = 2 discussed 
in [4]. When p = 2 , the tensor nuclear p-norm is commonly known as the tensor 
nuclear norm. The tensor nuclear norm is the convex envelope of the tensor rank and 
is widely used in tensor completion [30].

We provide some basic facts of the tensor spectral p-norm and nuclear p-norm. 
The proof is essentially based on the Hölder’s inequality.

Proposition 2.4  For any 1 ≤ p, q ≤ ∞ with 1
p
+

1

q
= 1 , we have the followings:

•	 For a scalar t ∈ ℝ , ‖t‖p� = ‖t‖p
∗

= �t�;
•	 For a vector t ∈ ℝ

n , ‖t‖p� = ‖t‖q and ‖t‖p
∗

= ‖t‖p;
•	 For a rank-one tensor T  , ‖T‖p� = ‖T‖q and ‖T‖p

∗

= ‖T‖p.

The tensor nuclear p-norm is the dual norm to the tensor spectral p-norm, and 
vice versa, for any 1 ≤ p ≤ ∞.

Lemma 2.5  For given tensors T  and Z in a same tensor space and 1 ≤ p ≤ ∞ , it 
follows that

and further

Proof  Let Z =

∑r

i=1
𝜆ix

1

i
⊗ x2

i
⊗⋯⊗ xd

i
 with ‖xk

i
‖p = 1 for all k and i with 

‖Z‖p
∗

=

∑r

i=1
��i� , i.e., a nuclear p-decomposition of Z . By Definition 2.2,

which leads to

(4)‖T‖p
∗

∶= min

�
r�

i=1

�𝜆i� ∶ T =

r�
i=1

𝜆ix
1

i
⊗ x

2

i
⊗⋯⊗ x

d
i
, ‖xk

i
‖p = 1 for all k and i, r ∈ ℕ

�
.

⟨T,Z⟩ ≤ ‖T‖p�‖Z‖p∗ ,

(5)
‖T‖p� = max‖Z‖p

∗

≤1
⟨T,Z⟩,

‖T‖p
∗

= max‖Z‖p�≤1
⟨T,Z⟩.

⟨T, x1
i
⊗ x

2

i
⊗⋯⊗ x

d
i
⟩ ≤ ‖T‖p𝜎 ∀ i = 1, 2,… , r,

⟨T,Z⟩ =
r�

i=1

𝜆i⟨T, x1i ⊗ x
2

i
⊗⋯⊗ x

d
i
⟩ ≤

r�
i=1

�𝜆i� ⋅ ‖T‖p𝜎 = ‖T‖p𝜎‖Z‖p∗ .
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By choosing ‖Z‖p
∗

≤ 1 , we have

On the other hand, let ‖T‖p𝜎 = ⟨T, y1 ⊗ y2 ⊗⋯⊗ yd⟩ with ‖yk‖p = 1 for all k. By 
Proposition 2.4, we have

which leads to

Therefore, max‖Z‖p
∗

≤1⟨T,Z⟩ = ‖T‖p� and so as to the other dual norm equality. 	�  ◻

We remark that the proof of Lemma 2.5 for p = 2 can be found in [3, 19]. When 
d = 2 , the tensor spectral p-norm and nuclear p-norm are reduced to the matrix 
spectral p-norm and nuclear p-norm, respectively. When d = 1 , a vector, its spectral 
p-norm is the Lq-norm where 1

p
+

1

q
= 1 and its nuclear p-norm is the Lp-norm, as 

mentioned in Proposition 2.4. Two extreme cases of these norms worth mentioning, 
and they are the only known easy cases to compute.

Proposition 2.6  For any tensor T  , it follows that ‖T‖1� = ‖T‖
∞

 and ‖T‖1
∗

= ‖T‖1.

Proof  Let �ts1s2…sd
� = maxik∈�k , k=1,2,…,d �ti1i2…id

� = ‖T‖
∞

 . For any xk ∈ ℝ
nk with 

‖xk‖1 = 1 for k = 1, 2,… , d,

implying that ‖T‖1� ≤ ‖T‖
∞

 . On the other hand, denote ei to be the vector whose ith 
entry is one and others are zeros. Clearly ‖ei‖1 = 1 , and we have

implying that ‖T‖1� ≥ �ts1s2…sd
� = ‖T‖

∞
 . Therefore, ‖T‖1� = ‖T‖

∞
 , and the other 

identity follows since the dual norm of the tensor L1-norm is the tensor L
∞

-norm. �◻

max‖Z‖p
∗

≤1
⟨T,Z⟩ ≤ max‖Z‖p

∗

≤1
‖T‖p�‖Z‖p∗ = ‖T‖p� .

‖y1 ⊗ y
2
⊗⋯⊗ y

d‖p
∗

= ‖y1 ⊗ y
2
⊗⋯⊗ y

d‖p =
d�

k=1

‖yk‖p = 1,

max‖Z‖p
∗

≤1
⟨T,Z⟩ ≥ ⟨T, y1 ⊗ y

2
⊗⋯⊗ y

d⟩ = ‖T‖p𝜎 .

�
T, x1 ⊗ x

2
⊗⋯⊗ x

d
�
=

n1�
i1=1

n2�
i2=1

⋯

nd�
id=1

ti1i2…id
x1
i1
x2
i2
… xd

id

≤

n1�
i1=1

n2�
i2=1

⋯

nd�
id=1

�ts1s2…sd
� ⋅ �x1

i1
x2
i2
… xd

id
�

= �ts1s2…sd
�

n�
k=1

‖xk‖1
= �ts1s2…sd

�,

⟨T, es1 ⊗ e
s2 ⊗⋯⊗ e

sd⟩ = ts1s2…sd
,
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2.2 � Tensor partitions

A matrix can be partitioned into submatrices, the same can be applied to a tensor. 
One important class of tensor partitions, block tensors, was proposed and studied in 
[25, 28]. It is a straightforward generalization of block matrices. Li [14] proposed 
three types of partitions for tensors, namely, modal partitions (an alternative name 
for block tensors), regular partitions, and tensor partitions, with the latter general-
izing the former. Some neat bounds on the tensor spectral norm and nuclear norm 
based on regular partitions were proposed in [14]. The proofs heavily relied on the 
recursive structure in defining regular partitions. Since we are extending the results 
to a more general class of partitions than tensor partitions, we only discuss the defi-
nition of tensor partitions and refer modal partitions and regular partitions to [14].

Before presenting the partition concepts, we first discuss notations to describe 
subtensors of a tensor. It is also an essential step to prove our main bounds to be 
established in Sect. 3. Suppose that Tj is a subtensor of a tensor T ∈ ℝ

n1×n2×⋯×nd . We 
denote the set of its mode-k indices in the original tensor T  to be �k

j
 for k = 1, 2,… , d . 

We then let

Specifically, Tj is a subtensor of T  by keeping only the indices in �k
j
 of mode-k for 

k = 1, 2,… , d . Alternatively, Tj is a subtensor by deleting all the indices in �k∕�k
j
 of 

mode-k for k = 1, 2,… , d from the original tensor T  . The dimension of the subten-
sor Tj is |�1

j
| × |�2

j
| ×⋯ × |�d

j
| . In our analysis, we do not relabel the indices of some 

mode of Tj , say �k
j
 , to {1, 2,… , |�k

j
|} , but keep its original indices in T .

Definition 2.7  [14, Definition 2.4] A partition 
{
T1, T2,… , Tm

}
 is called a tensor 

partition of a tensor T  , if

•	 every Tj (j = 1, 2,… ,m) can be written as T
(
�
1

j
, �2

j
,… , �d

j

)
 where the indices of 

every �k
j
⊂ �

k
(k = 1, 2,… , d) are consecutive,

•	 every pair 
{
Ti, Tj

}
 with i ≠ j has no common entry of T  , and

•	 every entry of T  belongs to one of 
{
T1, T2,… , Tm

}
.

We remark that as a tensor partition, every subtensor Tj must be a whole block 
(not disconnected) from the original tensor T  . The following observation is straight-
forward from Definition 2.7.

Proposition 2.8  If 
{
T1, T2,… , Tm

}
 is a tensor partition of a tensor T  where

then 
{
�
1

j
× �

2

j
×⋯ × �

d
j
∶ j = 1, 2,… ,m

}
 is a partition of �1 × �

2
×⋯ × �

d , the index 
set of T .

Tj = T

(
�
1

j
, �2

j
,… , �d

j

)
where �k

j
⊂ �

k for k = 1, 2,… , d.

Tj = T

(
�
1

j
, �2

j
,… , �d

j

)
∀ j = 1, 2,… ,m,
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In a similar way, we denote x(𝕀k
j
) ∈ ℝ

|𝕀k
j
| to be the vector by keeping only the 

entries of x with indices in �k
j
 , or the vector by deleting the entries of x whose indices 

are not in �k
j
 . Again, in our analysis, we do not relabel these indices to {1, 2,… , |�k

j
|}.

We remark that Proposition 2.8 indeed implies a more general partition concept 
than the tensor partition in Definition 2.7. We may further drop the requirement of 
the indices of �k

j
 to be consecutive for Tj . In this case, Tj may consist several discon-

nected pieces by viewing from the original tensor T  but can be put together to form 
a tensor by deleting empty entries from T  (see Example 2.10). Although one can 
relabel some mode-k indices (similar operations to swapping rows or columns in a 
matrix) to make one of Tj ’s to be a tensor with consecutive indices in every mode, it 
may break other Tj ’s into disconnected pieces. Hence, one can define a more general 
partition concept that allows disconnections.

Definition 2.9  A partition 
{
T1, T2,… , Tm

}
 where

and �k
j
⊂ �

k for k = 1, 2,… , d and j = 1, 2,… ,m is called an arbitrary partition of a 
tensor T ∈ ℝ

n1×n2×⋯×nd if 
{
�
1

j
× �

2

j
×⋯ × �

d
j
∶ j = 1, 2,… ,m

}
 is a partition of 

�
1
× �

2
×⋯ × �

d.

Arbitrary partitions is the most general case of partitioning a tensor. The follow-
ing example indicates the key difference between a tensor partition and an arbitrary 
partition for a matrix. Obviously, arbitrary partitions can be far more complicated 
than tensor partitions for higher order tensors.

Example 2.10  Let M ∈ ℝ
4×6 be a matrix shown as 4 × 6 blocks in Fig. 1.

•	 For (a), {A,B,C,D,E,F} is a tensor partition (a special arbitrary partition) of M 
with A,B,C,D ∈ ℝ

2×2 and E,F ∈ ℝ
1×4.

•	 For (b), {U,V ,W,X, Y , Z} is an arbitrary partition (but not a tensor partition) of 

M with U,V ,W ∈ ℝ
2×2 and X, Y , Z ∈ ℝ

1×4 . Here V =

(
V1

V2

)
 , W =

(
W1

W2

)
 , and 

Y = (Y1, Y2) are disconnected in M.

Tj = T

(
�
1

j
, �2

j
,… , �d

j

)
∀ j = 1, 2,… ,m

A

D

C

F

B

E

M

U

Y1 Y2

W1

W2Z

V1

V2

X

(a) A tensor partition of (b) An arbitrary partition of M

Fig. 1   Tensor partition and arbitrary partition of a second order tensor (matrix)
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In particular, there is no way for a tensor partition of a 4 × 6 matrix consisting of 
exactly three 2 × 2 matrices and three 1 × 4 matrices. However, an arbitrary partition 
can make it, such as the partition in the right subfigure of Fig. 1.

Finally in this section, we remark that some Tj (either connected or disconnected) 
in an arbitrary partition of a tensor may not have the same order of the original ten-
sor T  . If some �k

j
 contains only one index, this causes the disappearance of mode-k 

and reduces the order of Tj by one. However, we still treat this Tj as a dth order ten-
sor by keeping the dimension of mode-k to be one. For instance, we can always treat 
a scalar as a one-dimensional vector, or a one-by-one matrix.

3 � Bounds of the tensor norms

With the establishment of the index system to describe subtensors in an arbitrary 
partition, we are now in a better position to present and prove the main results in this 
paper, bounding the spectral p-norm and the nuclear p-norm of a tensor via the spec-
tral p-norms and the nuclear p-norms of subtensors in an arbitrary partition.

Theorem  3.1  If 
{
T1, T2,… , Tm

}
 is an arbitrary partition of a tensor T  and 

1 ≤ p, q ≤ ∞ with 1
p
+

1

q
= 1 , then

Proof  For an arbitrary partition 
{
T1, T2,… , Tm

}
 of T  , let Tj = T

(
�
1

j
, �2

j
,… , �d

j

)
 , 

where �k
j
⊂ �

k for k = 1, 2,… , d and j = 1, 2,… ,m . The whole proof is divided into 
four steps, each one showing one bound in (6) and (7). 

(1)	 The lower bound of ‖T‖p� in (6).
	 For any given Tj , we let yk ∈ ℝ

|𝕀k
j
| with ‖yk‖p = 1 for k = 1, 2,… , d be an optimal 

solution of max
��

Tj, x
1 ⊗ x2 ⊗⋯⊗ xd

�
∶ ‖xk‖p = 1, k = 1, 2,… , d

�
 , i.e., 

Instead of being {1, 2,… , |�k
j
|} , the indices of yk are kept as that of �k

j
 for 

k = 1, 2,… , d . For every k, we define xk ∈ ℝ
nk where 

Clearly we have ‖xk‖p = ‖yk‖p = 1 . Therefore, 

(6)

���
�‖T1‖p� , ‖T2‖p� ,… , ‖Tm‖p�

����∞ ≤ ‖T‖p� ≤ ���
�‖T1‖p� , ‖T2‖p� ,… , ‖Tm‖p�

����q,

(7)

���
�‖T1‖p

∗

, ‖T2‖p
∗

,… , ‖Tm‖p
∗

����p ≤ ‖T‖p
∗

≤
���
�‖T1‖p

∗

, ‖T2‖p
∗

,… , ‖Tm‖p
∗

����1.

‖Tj‖p𝜎 =
�
Tj, y

1
⊗ y

2
⊗⋯⊗ y

d
�
.

xk
i
=

{
yk
i

i ∈ �
k
j
,

0 i ∈ �
k
∕�

k
j
.
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proving that max1≤j≤m ‖Tj‖p� ≤ ‖T‖p�.
(2)	 The upper bound of ‖T‖p� in (6).
	 Let xk ∈ ℝ

nk with ‖xk‖p = 1 for k = 1, 2,… , d be an optimal solution of (3), i.e., 

First, we observe that 

It is obvious that (8) holds trivially if one of x1(�1
j
), x2(�2

j
),… , xd(�d

j
) is a zero 

vector. Otherwise, we get 

proving that (8) holds in general. Since 
{
T1, T2,… , Tm

}
 is an arbitrary partition 

of T  , 
{
�
1

j
× �

2

j
×⋯ × �

d
j
∶ j = 1, 2,… ,m

}
 is a partition of 

{
�
1
× �

2
×⋯ × �

d
}
 . 

Therefore, 

‖Tj‖p𝜎 =
�
Tj, y

1
⊗ y

2
⊗⋯⊗ y

d
�
=

�
T, x1 ⊗ x

2
⊗⋯⊗ x

d
�
≤ ‖T‖p𝜎 ,

‖T‖p𝜎 =
�
T, x1 ⊗ x

2
⊗⋯⊗ x

d
�
.

(8)
�
Tj, x

1
(�
1

j
)⊗ x

2
(�
2

j
)⊗⋯⊗ x

d
(�
d
j
)

�
≤ ‖Tj‖p𝜎

d�
k=1

‖xk(�k
j
)‖p.

‖Tj‖p𝜎 ≥
�
Tj,

x1(�1
j
)

‖x1(�1
j
)‖p

⊗

x2(�2
j
)

‖x2(�2
j
)‖p

⊗⋯⊗

xd(�d
j
)

‖xd(�d
j
)‖p

�

=

1∏d

k=1
‖xk(�k

j
)‖p

�
Tj, x

1
(�
1

j
)⊗ x

2
(�
2

j
)⊗⋯⊗ x

d
(�
d
j
)

�
,

‖T‖p𝜎 =
�
T, x1 ⊗ x

2
⊗⋯⊗ x

d
�

=

�
T
�
�
1, �2,… , �d

�
,
�
x
1
⊗ x

2
⊗⋯⊗ x

d
��
�
1, �2,… , �d

��

=

m�
j=1

�
T

�
�
1

j
, �2

j
,… , �d

j

�
,
�
x
1
⊗ x2 ⊗⋯⊗ xd

��
�
1

j
, �2

j
,… , �d

j

��

=

m�
j=1

�
Tj, x

1
(�
1

j
)⊗ x

2
(�
2

j
)⊗⋯⊗ x

d
(�
d
j
)

�

≤

m�
j=1

�
‖Tj‖p𝜎

d�
k=1

‖xk(�k
j
)‖p

�

≤

�
m�
j=1

‖Tj‖p𝜎 q
� 1

q
�

m�
j=1

�
d�

k=1

‖xk(�k
j
)‖p

�p� 1

p

=
���
�‖T1‖p𝜎 , ‖T2‖p𝜎 ,… , ‖Tm‖p𝜎

����q,



619

1 3

On the tensor spectral p‑norm and its dual norm via partitions﻿	

where the first inequality is due to (8), the second inequality follows from the 
Hölder’s inequality, and the last equality holds due to Proposition 2.1 and 

(3)	 The lower bound of ‖T‖p
∗

 in (7).
	 For any X ∈ ℝ

n1×n2×⋯×nd , let Xj = X

(
�
1

j
, �2

j
,… , �d

j

)
 for j = 1, 2,… ,m , i.e., {

X1,X2,… ,Xm

}
 is an arbitrary partition of X  . By the upper bound of (6) proved 

in (2), we have 

Therefore, according to the dual property in Lemma 2.5, we have 

For j = 1, 2,… ,m , let yj = ‖Xj‖p� ≥ 0 and further let Zj =
Xj

yj
 if yj > 0 or 

Zj = O if yj = 0 . Clearly ‖Zj‖p� ≤ 1 and we have 

Therefore, (9) further leads to 

m�
j=1

�
d�

k=1

‖xk(�k
j
)‖p

�p

=

m�
j=1

���x
1
(�
1

j
)⊗ x2(�2

j
)⊗⋯⊗ xd(�d

j
)
���p

p

=

m�
j=1

����
�
x
1
⊗ x

2
⊗⋯⊗ x

d
��

�
1

j
, �2

j
,… , �d

j

�����p
p

=
���
�
x
1
⊗ x

2
⊗⋯⊗ x

d
��
�
1, �2,… , �d

����p
p

=
���x

1
⊗ x

2
⊗⋯⊗ x

d���p
p

=

�
d�

k=1

‖xk‖p
�p

= 1.

m�
j=1

‖Xj‖p� q ≤ 1 ⟹ ‖X‖p� ≤ 1.

(9)‖T‖p
∗

= max‖X‖p�≤1
⟨T,X⟩ = max‖X‖p�≤1

m�
j=1

⟨Tj,Xj⟩ ≥ max∑m

j=1
‖Xj‖p� q

≤1

m�
j=1

⟨Tj,Xj⟩.

m�
j=1

‖Xj‖p� q ≤ 1 ⟺

m�
j=1

yj
q
≤ 1, yj ≥ 0, ‖Zj‖p� ≤ 1, j = 1, 2,… ,m.
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where the second equality is due to the nonnegativity of yj and 
max‖Zj‖p�≤1⟨Tj,Zj⟩ for any 1 ≤ j ≤ m , the third equality is due to the dual norm 
property, and the last equality is due to the tightness of the Hölder’s inequality.

(4)	 The upper bound of ‖T‖p
∗

 in (7).
	   For every j = 1, 2,… ,m , let T�

j
∈ ℝ

n1×n2×⋯×nd where 

By applying a similar approach as we prove (1), it is not difficult to get 
‖T�

j
‖p

∗

= ‖Tj‖p
∗

 for any 1 ≤ j ≤ m . Since 
{
�
1

j
× �

2

j
×⋯ × �

d
j
∶ j = 1, 2,… ,m

}
 is 

a partition of 
{
�
1
× �

2
×⋯ × �

d
}
 , we have T =

∑m

j=1
T
�

j
 . Therefore, by the trian-

gle inequality, we have 

proving the last bound.
	�

◻

Theorem 3.1 generalizes and answers affirmatively the conjecture in [14], which 
is for p = 2 and a tensor partition (a special case of arbitrary partition):

Conjecture 3.2  [14, Conjecture 3.5] If 
{
T1, T2,… , Tm

}
 is a tensor partition of a 

tensor T  , then

Theorem 3.1 also provides an alternative proof of a more special case which 
is for p = 2 and a regular partition (a special case of tensor partition) in [14, 

‖T‖p
∗

≥ max∑m

j=1
yj

q≤1, yj≥0, ‖Zj‖p�≤1, j=1,2,…,m

m�
j=1

⟨Tj, yjZj⟩

= max∑m

j=1
yj

q≤1, yj≥0, j=1,2,…,m

�
max‖Zj‖p�≤1, j=1,2,…,m

m�
j=1

yj⟨Tj,Zj⟩
�

= max∑m

j=1
yj

q≤1, yj≥0, j=1,2,…,m

�
m�
j=1

yj max‖Zj‖p�≤1
⟨Tj,Zj⟩

�

= max∑m

j=1
yj

q≤1, yj≥0, j=1,2,…,m

m�
j=1

yj‖Tj‖p
∗

=
���
�‖T1‖p

∗

, ‖T2‖p
∗

,… , ‖Tm‖p
∗

����p,

(
t�
j

)
i1i2…id

=

{
ti1i2…id

(
i1, i2,… , id

)
∈ �

1

j
× �

2

j
×⋯ × �

d
j
,

0
(
i1, i2,… , id

)
∉ �

1

j
× �

2

j
×⋯ × �

d
j
.

‖T‖p
∗

=

������

m�
j=1

T
�

j

������p
∗

≤

m�
j=1

‖T�
j
‖p

∗

=

m�
j=1

‖Tj‖p
∗

,

���
�‖T1‖2� , ‖T2‖2� ,… , ‖Tm‖2�

����∞ ≤ ‖T‖2� ≤ ���
�‖T1‖2� , ‖T2‖2� ,… , ‖Tm‖2�

����2,���
�‖T1‖2

∗

, ‖T2‖2
∗

,… , ‖Tm‖2
∗

����2 ≤ ‖T‖2
∗

≤
���
�‖T1‖2

∗

, ‖T2‖2
∗

,… , ‖Tm‖2
∗

����1.
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Theorem 3.1], whose proof is based on mathematical induction and heavily relies 
on the recursive structure in the definition of a regular partition. The novelty of 
the proof of Theorem  3.1 lies in establishing an index system to describe arbi-
trary partitions. It also provides a clearer picture relating the subtensors to the 
original tensor.

4 � Discussions and theoretical applications

The general bounds on the tensor spectral p-norm and nuclear p-norm in The-
orem  3.1 provide more insights on dealing with particular tensor instances in 
practice. Unlike the traditional matrix unfolding technique in which one needs 
to unfold a tensor in a fixed way, the flexibility on arbitrary partitions of a tensor 
provides more tools to estimate tensor norms of given tensor data in applications. 
In particular, it is useful for some tensors comprised of pieces with known spec-
tral or nuclear p-norms. Let us look into its theoretical applications and see how 
these bounds connect to other tensor norm bounds in the literature.

We first check the tightness of the bounds in Theorem 3.1. Given the flexibility 
of arbitrary partitions, it is impossible to provide a general necessary and suffi-
cient condition for these bounds to be tight. A trial sufficient condition for all the 
bounds in Theorem 3.1 to be tight is that all but one of Tj ’s are zero tensors. The 
other obvious case is for p = 1 and q = ∞ , under which Theorem 3.1 is reduced to

These identities can also be verified by Proposition  2.6 where ‖T‖1� = ‖T‖
∞

 and 
‖T‖1

∗

= ‖T‖1.
One interesting case is for rank-one tensors, which was already observed in 

[14] for p = 2 and a regular partition.

Proposition 4.1  If 
{
T1, T2,… , Tm

}
 is an arbitrary partition of a rank-one tensor 

T  , then

Proof  Let T =

(
ti1i2…id

)
∈ ℝ

n1×n2×⋯×nd and Tj = T

(
�
1

j
, �2

j
,… , �d

j

)
 where �k

j
∈ �

k for all 

k and all j. Observe that 
{
ti1i2…id

∈ ℝ
1×1×⋯×1

∶

(
i1, i2,… , id

)
∈ 𝕀

1

j
× 𝕀

2

j
×⋯ × 𝕀

d
j

}
 is 

an arbitrary partition of Tj for every j. Noticing that any scalar x ∈ ℝ has 
‖x‖p� = ‖x‖p

∗

= �x� , by applying the upper bound of  (6) for T  and every 
Tj (1 ≤ j ≤ m) , one has

‖T‖1� = ���
�‖T1‖1� , ‖T2‖1� ,… , ‖Tm‖1�

����∞,
‖T‖1

∗

=
���
�‖T1‖1

∗

, ‖T2‖1
∗

,… , ‖Tm‖1
∗

����1.

(10)
����
�
‖T1‖p� , ‖T2‖p� ,… , ‖T

m
‖
p�

�����q = ‖T‖
p�

= ‖T‖
q
∗

=

����
�
‖T1‖q

∗

, ‖T2‖q
∗

,… , ‖T
m
‖
q
∗

�����q.
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and by applying the lower bound of (7) one also has

On the other hand, as T  is rank-one, one has ‖T‖p� = ‖T‖q = ‖T‖q
∗

 according to 
Proposition 2.4. By combining it with (11) and (12), we are lead to the final iden-
tity (10). 	�  ◻

As we see from the above discussion, both the upper and lower bounds in Theo-
rem  3.1 can be obtained for various cases. In general, the more subtensors in an 
arbitrary partition, the larger gap between the lower and upper bounds for a generic 
tensor. In particular, if a partition has m subtensors, the largest possible gap between 
the lower and upper bounds can be m

1

q when all subtensors have the same spectral 
p-norm or nuclear p-norm. In an extreme though trivial case where there is only one 
subtensor in the partition (the original tensor itself), all the bounds become naturally 
tight. However, due to the curse of dimensionality and the NP-hardness to compute 
these norms, the larger the subtensors, the more difficulty and inaccuracy in estimat-
ing these norms.

We now discuss the main bounds in some special cases to relate 
existing bounds in the literature. By applying the finest partition 
T =

{
ti1i2…id

∈ ℝ
1×1×⋯×1

∶

(
i1, i2,… , id

)
∈ 𝕀

1
× 𝕀

2
×⋯ × 𝕀

d
}
 to Theorem  3.1, we 

obtain the following bounds among tensor norms.

Proposition 4.2  For any tensor T  and 1 ≤ p, q ≤ ∞ with 1
p
+

1

q
= 1,

The second inequality of  (13), ‖T‖p� ≤ ‖T‖q , is exactly the one in [23, The-
orem  20], and hence it provides an alternatively proof of the upper bound of the 
tensor spectral p-norm. When p = 2,  (13) also implies the bounds proposed in [4, 
Lemma 9.1]:

(11)‖T‖p� ≤
���
�‖T

1
‖p� , ‖T2

‖p� ,… , ‖Tm‖p�
����q ≤

�
n1�
i1=1

n2�
i2=1

⋯

nd�
id=1

‖ti1i2…id
‖p� q

� 1

q

= ‖T‖q,

(12)‖T‖q =
�

n1�
i1=1

n2�
i2=1

⋯

nd�
id=1

‖ti1i2…id
‖q

∗

q

� 1

q

≤
���
�‖T

1
‖q

∗

, ‖T
2
‖q

∗

,… , ‖Tm‖q
∗

����q ≤ ‖T‖q
∗

.

(13)‖T‖
∞
≤ ‖T‖p� ≤ ‖T‖q ≤ ‖T‖q

∗

≤ ‖T‖1.

1�∏d

k=1
nk

‖T‖2 ≤ ‖T‖2� ≤ ‖T‖2 ≤ ‖T‖2
∗

≤

���� d�
k=1

nk ‖T‖2.
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Next, we apply partitions to vector fibers of T  to Theorem 3.1, say mode-d fibers, 
i.e.,

The bounds tighten that of (13) to the followings:

Proposition 4.3  For any tensor T  and 1 ≤ p, q ≤ ∞ with 1
p
+

1

q
= 1,

The first inequality of  (14) is exactly the one in [23, Proposition 22]. When 
p = 2 and suppose that nd = max1≤k≤d nk , the first inequality of (14) also implies 
the bound in [29, Corollary 4.9]:

This is because the largest gap between the lowest and highest bounds in  (14) is �∏d−1

k=1
nk.

Let us now apply partitions to matrix slices and discuss their connections to 
matrix unfoldings. Matrix unfoldings of a tensor have been one of the main tools 
to study tensor computation and optimization problems, mainly due to the fact 
that most tensor problems are NP-hard [10] while the corresponding matrix prob-
lems are much easier. One important example is that for the tensor spectral norm 
and nuclear norm, both are NP-hard when the order of the tensor d ≥ 3 , while 
they can be computed in polynomial time for a matrix ( d = 2 ). In practice, the 
tensor nuclear norm is widely used in tensor completion [5, 20] as a convex enve-
lope of the tensor rank. In some literature, even the tensor nuclear norm is defined 
by the average nuclear norms of its matrix unfoldings, as this definition, albeit is 
different to the original definition, can be computed in polynomial time.

When p = 2 , for the tensor spectral norm, the relations of a tensor and its 
matrix unfoldings have been studied widely, while that for the tensor nuclear 
norm was only addressed by Hu [13] and soon again by Friedland and Lim [4]. 
Wang et al. [29] studied comprehensively on the spectral p-norm based on vari-
ous matrix unfoldings as well as tensor unfoldings. One obvious way to apply 
Theorem 3.1 is to partition a tensor into matrix slices. To make a clearer pres-
entation, we mainly discuss third order tensors, which can be easily generalized 
to higher orders. Let T ∈ ℝ

n1×n2×n3 . Denote Mat1(T) ∈ ℝ
n1×n2n3 , Mat2(T) ∈ ℝ

n2×n1n3 , 
and Mat3(T) ∈ ℝ

n3×n1n2 to be the mode-1, mode-2, and mode-3 unfolding matrix 
of T  , respectively. For k = 1, 2, 3 , denote Tk

i
 to be the ith mode-k matrix slice for 

i = 1, 2,… , nk ; see the following example.

T =

{
ti1i2…id−1

∈ ℝ
nd
∶

(
i1, i2,… , id−1

)
∈ 𝕀

1
× 𝕀

2
×⋯ × 𝕀

d−1
}
.

(14)

max
ik∈�

k , k=1,2,…,d−1
‖ti1i2…id−1

‖q ≤‖T‖p� ≤ ‖T‖q ≤ ‖T‖q
∗

≤

�
ik∈�

k , k=1,2,…,d−1

‖ti1i2…id−1
‖q.

‖T‖2 ≤
����d−1�

k=1

nk‖T‖2� .
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Example 4.4  Let T =

(
tij�

)
∈ ℝ

2×3×4 where i ∈ {1, 2} , j ∈ {1, 2, 3} and 
� ∈ {1, 2, 3, 4} , and we have

Let us first generalize the relations of the norms of a tensor and the norms of its 
matrix unfoldings, from the tensor spectral norm to the tensor spectral p-norm, and 
from the tensor nuclear norm [13] to the tensor nuclear p-norm.

Lemma 4.5  If T ∈ ℝ
n1×n2×n3 and 1 ≤ p ≤ ∞ , then for any � = 1, 2, 3,

Proof  We prove the case for � = 1 as the other two cases are similar. Let xk ∈ ℝ
nk 

with ‖xk‖p = 1 for k = 1, 2, 3 , such that ‖T‖p𝜎 = ⟨T, x1 ⊗ x2 ⊗ x3⟩ . By Proposi-
tion 2.1, ‖x2 ⊗ x3‖p = 1 , and so ‖vec�x2 ⊗ x3

�‖p = 1 , where vec(⋅) turns a tensor or 
a matrix to a vector. Therefore,

For the nuclear p-norm, let T =

∑r

i=1
𝜆iy

1

i
⊗ y2

i
⊗ y3

i
 with ‖yk

i
‖p = 1 for all k and all i, 

such that ‖T‖p
∗

=

∑r

i=1
��i� . It is not difficulty to see that

and vec
(
y2
i
⊗ y3

i

)
∈ ℝ

n2n3 with ‖vec�y2
i
⊗ y3

i

�‖p = 1 for all i. Therefore,

Mat1(T) =

�
t111 t112 t113 t114 t121 t122 t123 t124 t131 t132 t133 t134

t211 t212 t213 t214 t221 t222 t223 t224 t231 t232 t233 t234

�
,

Mat2(T) =

⎛⎜⎜⎜⎝

t111 t112 t113 t114 t211 t212 t213 t214

t121 t122 t123 t124 t221 t222 t223 t224

t131 t132 t133 t134 t231 t232 t233 t234

⎞⎟⎟⎟⎠
,

Mat3(T) =

⎛⎜⎜⎜⎜⎝

t111 t121 t131 t211 t221 t231

t112 t122 t132 t212 t222 t232

t113 t123 t133 t213 t223 t233

t114 t124 t134 t214 t224 t234

⎞
⎟⎟⎟⎟⎠
,

T
1

1
=

⎛
⎜⎜⎜⎝

t111 t112 t113 t114

t121 t122 t123 t124

t131 t132 t133 t134

⎞
⎟⎟⎟⎠
,

T
1

2
=

⎛⎜⎜⎜⎝

t211 t212 t213 t214

t221 t222 t223 t224

t231 t232 t233 t234

⎞⎟⎟⎟⎠
.

‖T‖p� ≤ ‖Mat
�(
T)‖p� ,

‖T‖p
∗

≥ ‖Mat
�(
T)‖p

∗

.

‖T‖p𝜎 = ⟨T, x1 ⊗ x
2
⊗ x

3⟩ = ⟨Mat1(T), x
1
⊗ vec

�
x
2
⊗ x

3
�⟩ ≤ ‖Mat1(T)‖p𝜎 .

Mat1(T) =

r∑
i=1

𝜆iy
1

i
⊗ vec

(
y
2

i
⊗ y

3

i

)
,
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	�  ◻

Our main result in this section discusses the relations of the norms of a tensor, the 
norms of matrix unfoldings of the tensor, and the norms obtained by partitions to 
matrix slices of the tensor, as follows.

Theorem  4.6  Let T ∈ ℝ
n1×n2×n3 and 1 ≤ p, q ≤ ∞ with 1

p
+

1

q
= 1 . For k = 1, 2, 3 , 

denote

It follows that for any k = 1, 2, 3 and any � ≠ k,

Proof  A key observation is that for k ≠ � , 
{
Tk
1
, Tk

2
,… , Tk

nk

}
 or {(

Tk
1

)T
,
(
Tk
2

)T
,… ,

(
Tk
nk

)T
}

 must be an arbitrary partition of the matrix Mat
�(
T) 

(see Example 4.4). By applying Theorem 3.1, the last inequality of (15) and the last 
inequality of (16) hold, and so as to the first inequality of (15) and the first inequal-
ity of (16). The fourth inequality of (15) and the fourth inequality of (16) hold by 
Lemma  4.5. The third inequality of  (15) and the third inequality of  (16) hold by 
Theorem 3.1. Finally, the second inequality of (15) holds by the largest gap between 
the Lq-norm and the L

∞
-norm of an nk-dimensional vector, and the second inequality 

of  (16) holds by the largest gap between the Lp-norm and the L1-norm of an nk
-dimensional vector. 	�  ◻

When p = 2, (16) provides tighter lower or upper bounds than that in [13, Theo-
rem 4.4] and [4, Theorem 9.4]:

In general, by Theorem 4.6, both ‖‖‖tkp�
‖‖‖q obtained from partitions to matrix slices and 

‖Mat
�(
T)‖p� obtained from matrix unfoldings, provide a bound with a factor nk

1

q for 
‖T‖p� . The same factor nk

1

q for ‖T‖p
∗

 by both ‖‖‖tkp∗
‖‖‖p from partitions to matrix slices 

‖Mat1(T)‖p
∗

≤

r�
i=1

��i� = ‖T‖p
∗

.

tk
p�

=

�
‖Tk

1
‖p� , ‖Tk

2
‖p� ,… , ‖Tk

nk
‖p�

�
∈ ℝ

nk .

t
k
p
∗

=

�
‖Tk

1
‖p

∗

, ‖Tk
2
‖p

∗

,… , ‖Tk
nk
‖p

∗

�
∈ ℝ

nk .

(15)

nk
−

1

q ‖Mat
�(
T)‖p� ≤ nk

−
1

q
���t

k
p�

���q ≤
���t

k
p�

���∞ ≤ ‖T‖p� ≤ ‖Mat
�(
T)‖p� ≤ ���t

k
p�

���q,

(16)nk

1

q ‖Mat
�(
T)‖p

∗

≥ nk

1

q
���t

k
p
∗

���p ≥
���t

k
p
∗

���1 ≥ ‖T‖p
∗

≥ ‖Mat
�(
T)‖p

∗

≥
���t

k
p
∗

���p.

nk
−

1

2 ‖Mat
�(
T)‖2� ≤ ‖T‖2� ≤ ‖Mat

�(
T)‖2� ,

nk
1

2 ‖Mat
�(
T)‖2

∗

≥ ‖T‖2
∗

≥ ‖Mat
�(
T)‖2

∗

.
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and ‖Mat
�(
T)‖p

∗

 from matrix unfoldings. For the flexibility of nk ’s in Theorem 4.6, 
one may choose the tightest bound to be min1≤k≤3 nk

1

q . Finally, by choosing one 
bound from the best matrix unfolding and the other from the best partition to matrix 
slices would give the tightest bound of both the tensor spectral p-norm and the ten-
sor nuclear p-norm.

It is not difficult to extend Theorem  4.6 to fourth or higher order tensors. 
Again, the bounds in terms of nk’s, the dimensions of a tensor, are similarly 
obtained from matrix unfoldings and from partitions to matrix slices, and can be 
tighter by combining the two. We only list the following result to extend Theo-
rem 4.6 to a general order, whose proof is left to interested readers.

Theorem 4.7  Let T ∈ ℝ
n1×n2×⋯×nd and 1 ≤ p, q ≤ ∞ with 1

p
+

1

q
= 1 . Let 

{
�1, �2

}
 be 

a partition of the set {1, 2,… , d} , and pick any i ∈ �1 and j ∈ �2 . Denote Mat(T) to 
be the matrix unfolding of T  by combining modes of �1 into the row index and modes 
of �2 into the column index, i.e., a 

�∏
k∈�1

nk

�
×

�∏
k∈�2

nk

�
 matrix. Consider the set 

of matrix slices of T  obtained by fixing all the mode-k indices except modes i and j, 
i.e., a set of 

∏
1≤k≤d, k≠i,j nk number of ni × nj matrices. Further, denote 

tp�
∈ ℝ

∏
1≤k≤d, k≠i,j nk to be the vector whose entries are the spectral p-norms of this set 

of matrix slices and tp
∗

∈ ℝ

∏
1≤k≤d, k≠i,j nk to be the vector whose entries are the nuclear 

p-norm of this set of matrix slices. It follows that

We remark that Theorem  4.7 indicates any matrix unfolding, not necessarily 
having ni rows and 

∏
1≤k≤d, k≠i nk columns such as third order tensors. In this sense 

for p = 2 , it extends the result in [13, Theorem 5.2]. Finally, we remark that one 
can even use the tensor unfolding technique [29] to derive more sophisticated 
bounds, but we do not pursue here as it involves heavy notations on the partition 
lattice of modes. The key point leading to all of these is the following fact: For 
any tensor unfolding of a tensor, there exists a partition of the original tensor, 
such that it is also a partition of the tensor unfolding.
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‖Mat(T)‖p�
�

1≤k≤d, k≠i,j

nk
−

1

q ≤
���tp�

���q
�

1≤k≤d, k≠i,j

nk
−

1

q ≤
���tp�

���∞ ≤ ‖T‖p� ≤ ‖Mat(T)‖p� ≤ ���tp�
���q,

‖Mat(T)‖p
∗

�
1≤k≤d, k≠i,j

nk

1

q ≥
���tp∗

���p
�

1≤k≤d, k≠i,j

nk

1

q ≥
���tp∗

���1 ≥ ‖T‖p
∗

≥ ‖Mat(T)‖p
∗

≥
���tp∗

���p.
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