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ON NEW CLASSES OF NONNEGATIVE SYMMETRIC TENSORS∗

BILIAN CHEN† , SIMAI HE‡ , ZHENING LI§ , AND SHUZHONG ZHANG¶

Abstract. In this paper we introduce three new classes of nonnegative forms (or equivalently,
symmetric tensors) and their extensions. The newly identified nonnegative symmetric tensors consti-
tute distinctive convex cones in the space of general symmetric tensors (order six or above). For the
special case of quartic forms, they collapse into the set of convex quartic homogeneous polynomial
functions. We discuss the properties and applications of the new classes of nonnegative symmetric
tensors in the context of polynomial and tensor optimization. Numerical experiments for solving
certain polynomial optimization models based on the new classes of nonnegative symmetric tensors
are presented.
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1. Introduction. A classical result originally due to Banach [3] states that if
L(x1,x2, . . . ,xm) is a continuous symmetric m-linear form, then

sup{|L
(
x1,x2, . . . ,xm

)
| | ‖x1‖ ≤ 1, ‖x2‖ ≤ 1, . . . , ‖xm‖ ≤ 1}

= sup{|L(x,x, . . . ,x)| | ‖x‖ ≤ 1}.(1.1)

One is referred to [32] for a recent proof. An extension of the above result can be found
in [8]. Although the result holds for the Banach space (where x resides) in general,
for our purpose in this paper it is useful to consider x to be in an n-dimensional
Euclidean space. In the latter case, L(x,x, . . . ,x) becomes a homogenous polynomial
of n variables and degree m, whose coefficients form nothing but a symmetric tensor in
Rnm

. By symmetry (also known as supersymmetry in some papers in the literature),
we mean that the entries of the tensor are invariant under the permutation of its
indices. In the tensor setting, (1.1) is essentially equivalent to the fact that the best
rank-one approximation of a symmetric tensor can be obtained at a symmetric rank-
one tensor, which was recently rediscovered in [8, 40].

Two natural questions arise in (1.1): (i) Can the absolute-value sign be removed?
(ii) Can the constraint ‖x‖ ≤ 1 be replaced by some more general constraints? The
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answer to these questions would be negative without further conditions. This, in fact,
triggers an interesting question: What kind of m-form L will naturally ensure that

sup{L(x1,x2, . . . ,xm) | x1 ∈ S,x2 ∈ S, . . . ,xm ∈ S}
= sup{L(x,x, . . . ,x) | x ∈ S}?

By taking m = 2 as an example, one quickly finds out that if L(x1,x2) = (x1)TQx2,
then the above holds for all S ⊆ Rn if and only if Q is positive semidefinite. In case
m = 4, as we will later discuss in the paper, the necessary and sufficient condition for
the equivalence is that the quartic form L(x,x,x,x) is convex. Surprisingly, further
investigation into the case m ≥ 6 reveals a new structure of the forms or symmetric
tensors, which will be termed M-quasiconvex in this paper.

The new notion of M-quasiconvexity is not only theoretically interesting, but also
useful for solving practical polynomial and tensor optimization models. For instance,
polynomial optimization with spherical constraint is important and widely studied in
the literature (see, e.g., [11, 8]), and is closely related to the computation of eigen-
values and singular values of tensors proposed by Lim [24] and Qi [35] independently.
In [8], we proposed a new convergent solution method for block optimization models,
known as the maximum block improvement (MBI). It turns out that the MBI method
works well for polynomial optimization with spherical constraint. Essentially, in [8]
homogeneous polynomial optimization over spherical constraint is relaxed to the cor-
responding multilinear form optimization. Two questions arise in this context: (i)
When will the relaxation be exact? (ii) After one finds a stationary solution to the
relaxed problem, how can a solution to the original problem be obtained? The results
in the current paper help to address these issues.

Our analysis relies on the notion of nonnegative polynomials or nonnegative ten-
sors. In fact, there is a known intrinsic connection between the optimization of a
polynomial function and the description of all polynomial functions which are non-
negative over a given domain. This connection was explored earlier by Sturm and
Zhang [39] for the case of quadratic polynomials, and Luo, Sturm, and Zhang [25]
for the case of biquadratic functions. We also refer to [14, 37, 12, 16, 1] and a recent
book [5] for investigating the relationship between nonnegative polynomials and sum-
of-sqaures polynomials. In general, for the nonnegativity of a polynomial function over
a semialgebraic set defined by polynomial functions, there are classical representations
based on sum of squares such as Putinar’s Positivstellensatz [34] and Reznick [38].
These obviously connect to the sum-of-squares approach for general polynomial op-
timization problems; see e.g., [31, 21]. The final interesting connection that will be
established in this study is the link to the convexity of a polynomial function. In fact,
convexity of an even degree form is a stronger notion than mere nonnegativity. For
instance, it is well known that a quartic form L(x,x,x,x) is convex if and only if it is
biquadratically nonnegative, i.e., L(x,x,y,y) ≥ 0, hence nonnegative. In the world
of higher (than 2) degree forms, checking the nonnegativity and convexity are both
difficult tasks. For instance, Ahmadi et al. [1] proved that checking the convexity of a
quartic form is actually strongly NP-hard in general, highlighting a crucial difference
between quadratic forms and quartic forms. Speaking of quartic polynomials, in a
recent study, Jiang, Li, and Zhang [16] discussed six fundamentally important con-
vex cones of quartic forms, including the cone of nonnegative quartic forms, the sum
of squared quartic forms, the convex quartic forms, and the sum of fourth powered
linear forms. The complexity status of these nonnegative tensor cones are discussed
as well.
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In this paper, we extend the study beyond quartic forms. We show that the
world of quartic forms is still special, in that an interesting structure to be termed
M-quasiconvexity in this paper is still hidden under the usual convexity. Applying
the new notion of M-quasiconvexity and its properties, we establish an equivalence
between any constrained homogeneous polynomial optimization and its multilinear
tensor relaxation model. This enables us to apply some block coordinate search
methods to solve the multilinear model, and also suggests a simple way to find a
stationary solution for the original model. A new general scheme to solve certain
classes of polynomial optimization models, named lift, relax, block-optimize, and
compare (LRBC), is proposed. The paper is organized as follows. In section 2,
we introduce the notations for tensors and polynomials, and define new classes of
nonnegative tensors with illustrating examples. Sections 3, 4, and 5 are devoted
to the theoretical study of these classes of tensors, i.e., their equivalent definitions,
relationships and proper containments. As applications of the classes of tensors in
polynomial and tensor optimization, we propose the LRBC scheme and discuss some
practical examples in section 6. Numerical experiments are presented in section 7
to further illustrate the importance of the classes of nonnegative tensors. Finally we
conclude the paper in section 8 by discussing a generalization of the newly introduced
nonnegative tensors.

2. Preparations. Throughout this paper we uniformly use nonbold lowercase
letters, boldface lowercase letters, capital letters, and calligraphic letters to denote
scalars, vectors, matrices, and tensors, respectively; e.g., a scalar i, a vector x, a
matrix A, and a tensor F . We use subscripts to denote their components; e.g., xi is
the ith entry of a vector x, Aij is the (i, j)th entry of a matrix A, and Fijk is the
(i, j, k)th entry of a third order tensor F . As previously mentioned, an mth order
tensor F ∈ Rn1×n2×···×nm is symmetric if n1 = n2 = · · · = nm(= n) and every
component Fi1i2...im is invariant under all permutations of {i1, i2, . . . , im}; the set of
such symmetric tensors is denoted by Snm

.
The symbol ◦ denotes the vector outer product. For example, for vectors x ∈

Rn1 ,y ∈ Rn2 , z ∈ Rn3 , the notion x ◦ y ◦ z represents a third order tensor F ∈
Rn1×n2×n3 , where Fijk = xiyjzk for all (i, j, k). The symbol ⊗ represents the matrix
outer product. If tensor F = X ⊗X for some X ∈ Rn×n, then Fijk` = XijXk` for all
(i, j, k, `).

Given any mth order tensor F ∈ Rn1×n2×···×nm , we define F to be its associated
multilinear form, i.e.,

F
(
x1,x2, . . . ,xm

)
:=

∑
1≤i1≤n1,1≤i2≤n2,...,1≤im≤nm

Fi1i2...imx1
i1x

2
i2 . . . x

m
im ,

= 〈F ,x1 ◦ x2 ◦ · · · ◦ xm〉,

where xk ∈ Rnk for k = 1, 2, . . . ,m and 〈·, ·〉 denotes the Frobenius inner product.
Closely related to the multilinear form is a general mth degree homogeneous poly-
nomial f(x) in variable x ∈ Rn, with its associated symmetric tensor F ∈ Snm

. In
fact, symmetric tensors are bijectively related to homogeneous polynomials; see [20].
Denoting F to be the multilinear form associated with the symmetric tensor F , we
then have

f(x) = F (x,x, . . . ,x︸ ︷︷ ︸
m

) =
∑

1≤i1,i2,...,im≤n

Fi1i2...imxi1xi2 . . . xim = 〈F ,x ◦ x ◦ · · · ◦ x︸ ︷︷ ︸
m

〉.
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In this paper we uniformly use the 2-norm for vectors, matrices, and tensors in general,
which is the usual Euclidean norm or the Frobenius norm. For example, the norm of
an mth order tensor F ∈ Rn1×n2×···×nm is defined as

‖F‖ :=
√
〈F ,F〉 =

√ ∑
1≤i1≤n1,1≤i2≤n2,...,1≤im≤nm

Fi1i2...im
2.

2.1. Nonnegativity and co-quadratic nonnegativity. All the discussion in
this paper is focused on nonnegative tensors, which are the following.

Definition 2.1. Suppose F is a multilinear form associated with a 2mth order
symmetric tensor F ∈ Sn2m

. The tensor F (or the form F ) is called nonnegative if

F (x,x, . . . ,x︸ ︷︷ ︸
2m

) ≥ 0 ∀x ∈ Rn.

We emphasize that a symmetric tensor is exactly a symmetric multilinear form;
the former is denoted by a calligraphic letter and the latter is denoted by its cor-
responding capital letter, for easy presentation, whenever appropriate. Therefore,
any terminology related to a form is also related to its tensor representation, e.g., a
nonnegative form is simply a nonnegative tensor.

As a notation, we denote the set of nonnegative symmetric tensors

Sn
2m

+ :=

{
F ∈ Sn

2m

| F (x,x, . . . ,x︸ ︷︷ ︸
2m

) ≥ 0 ∀x ∈ Rn
}
.

Obviously, the degree of a nonnegative form has to be even. It is well known that
checking the nonnegativity of a quadratic form can be done in polynomial time, which
amounts to checking the positive semidefiniteness of its associated symmetric matrix.
However, it is NP-hard to check the nonnegativity of a form whose degree is larger
than 2; see, e.g., [16]. To extend the definition of nonnegativity, let us introduce the
following.

Definition 2.2. Suppose F is a multilinear form associated with a 2mth order
symmetric tensor F ∈ Sn2m

. The tensor F is called co-quadratic nonnegative if

F (x1,x1,x2,x2, . . . ,xm,xm) ≥ 0 ∀x1,x2, . . . ,xm ∈ Rn.

Let us denote the set of co-quadratic nonnegative tensors to be

Sn
2m

2+ := {F ∈ Sn
2m

| F (x1,x1,x2,x2, . . . ,xm,xm) ≥ 0 ∀x1,x2, . . . ,xm ∈ Rn}.

Clearly, a co-quadratic nonnegative tensor is always nonnegative, i.e., Sn2m

2+ ⊆ Sn2m

+ .
In particular, when m = 1, the co-quadratic nonnegativity is equivalent to the non-
negativity of a quadratic form and, when m = 2, the co-quadratic nonnegativity is
equivalent to the convexity of a quartic form (see below).

Proposition 2.3. A co-quadratic nonnegative form is always convex. In partic-
ular, a quartic form is co-quadratic nonnegative if and only if it is convex.

Proof. It is straightforward to compute the Hessian matrix of a form F (x,x, . . . ,x︸ ︷︷ ︸
2m

),

which is 2m(2m − 1)F (x,x, . . . ,x︸ ︷︷ ︸
2m−2

, ·, ·). Therefore, the form is convex if and only if
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F (x,x, . . . ,x︸ ︷︷ ︸
2m−2

, ·, ·) is a positive semidefinite matrix for all x ∈ Rn, which is equivalent

to

(2.1) F (x,x, . . . ,x︸ ︷︷ ︸
2m−2

,y,y) ≥ 0 ∀x,y ∈ Rn.

By Definition 2.2, it is obvious that co-quadratic nonnegativity implies (2.1), which
is convexity. In particular, for the case of quartic form (m = 2), co-quadratic non-
negativity is equivalent to convexity.

Therefore, when m = 2, the usual nonnegative quartic form F (x,x,x,x) is not
necessarily convex, while convexity implies nonnegativity. As a result, co-quadratic
nonnegativity is indeed stronger than nonnegativity. When m ≥ 3, co-quadratic non-
negativity is even stronger than convexity. Unfortunately, checking the co-quadratic
nonnegativity for m = 2 is also NP-hard [1]. Jiang, Li, and Zhang [16] presented
a study on different classes of nonnegative quartic forms, for the case when m = 2.
Below we present two examples of co-quadratic nonnegative tensors for general m.

Example 2.4. If a1,a2, . . . ,as ∈ Rn, then the tensor

F =

s∑
i=1

ai ◦ ai ◦ · · · ◦ ai︸ ︷︷ ︸
2m

is co-quadratic nonnegative.

The reason for this is that for all x1,x2, . . . ,xm ∈ Rn,

F (x1,x1,x2,x2, . . . ,xm,xm) =

s∑
i=1

(aT
i x1)2(aT

i x2)2 . . . (aT
i xm)2 ≥ 0.

Example 2.5. The symmetric tensor associated with homogeneous polynomial
(xTx)m is co-quadratic nonnegative. Explicitly, its multilinear form is

(2.2) F (x1,x2, . . . ,x2m) =
1

|Π|
∑

(i1i2...i2m)∈Π

(xT
i1xi2)(xT

i3xi4) . . . (xT
i2m−1

xi2m),

where Π is the set of all permutations of {1, 2, . . . , 2m}.
In fact for m = 1, this symmetric tensor is nothing but an identity matrix, which

is clearly co-quadratic nonnegative. For m = 2, it is easy to verify that

F (x1,x1,x2,x2) =
1

3
(xT

1 x1)(xT
2 x2) +

2

3
(xT

1 x2)2 ≥ 0 ∀x1,x2 ∈ Rn.

For general m ≥ 3, it is not an easy job to directly check the nonnegativity of
F (x1,x1,x2,x2, . . . ,xm,xm) using (2.2). However, this property can be verified
thanks to the so-called Hilbert’s identity (see, e.g., [4, 15]), which states that there
exist vectors b1, b2, . . . , bs ∈ Rn such that

(xTx)m =

s∑
i=1

(bT
i x)2m ∀x ∈ Rn.
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Thus, the symmetric tensor F can be expressed by

F =

s∑
i=1

bi ◦ bi ◦ · · · ◦ bi︸ ︷︷ ︸
2m

,

which is co-quadratic nonnegative as Example 2.4 stipulates.

2.2. M-quasiconvexity and co-quadratic M-quasiconvexity. For a given
set of entry vectors, a tensor form naturally lends to some degree of freedom in
distributing the multiplicities among these entry vectors. To capture the characteristic
of how the distribution of the multiplicities affects the function values, let us introduce
the following notion of M-quasiconvexity. Here the terminology is to be understood as
“quasiconvexity in the multiplicity of its entries”; one should distinguish this notion
from the so-called M-convex functions in the theory of discrete convex functions.

Definition 2.6. Suppose F is a nonnegative form associated with a 2mth order
symmetric tensor F ∈ Sn2m

. The tensor F is called M-quasiconvex if

F (x1, . . . ,x1︸ ︷︷ ︸
λ1

,x2, . . . ,x2︸ ︷︷ ︸
λ2

, . . . ,xs, . . . ,xs︸ ︷︷ ︸
λs

) ≤ max
1≤i≤s

{F (xi,xi, . . . ,xi︸ ︷︷ ︸
2m

)} ∀x1,x2, . . . ,xs ∈ Rn
(2.3)

for any positive integers s and λi (i = 1, 2, . . . , s) with
∑s
i=1 λi = 2m.

It is easy to observe that an M-quasiconvex F is actually equivalent to

(2.4) F (x1,x2, . . . ,x2m) ≤ max
1≤i≤2m

{F (xi,xi, . . . ,xi︸ ︷︷ ︸
2m

)} ∀x1,x2, . . . ,x2m ∈ Rn,

i.e., (2.3) holds for a special case when s = 2m and λi = 1 for i = 1, 2, . . . , 2m. Thus
to verify the M-quasiconvexity, it is convenient to check only (2.4) rather than (2.3)
for all combinations of λi’s. For ease of referencing, let us denote

Mn2m

:=

{
F ∈ Sn

2m

+

∣∣∣∣∣F (x1,x2, . . . ,x2m)

≤ max
1≤i≤2m

{F (xi,xi, . . . ,xi︸ ︷︷ ︸
2m

)} ∀x1,x2, . . . ,x2m ∈ Rn
}
.(2.5)

If (2.3) holds for a special case when s = m and λi = 2 for i = 1, 2, . . . ,m, then
F is called co-quadratic M-quasiconvex to be introduced below.

Definition 2.7. Suppose F is a nonnegative form associated with a 2mth order
symmetric tensor F ∈ Rn2m

. The tensor F is called co-quadratic M-quasiconvex if

(2.6)

F (x1,x1,x2,x2, . . . ,xm,xm) ≤ max
1≤i≤m

{F (xi,xi, . . . ,xi︸ ︷︷ ︸
2m

)} ∀x1,x2, . . . ,xm ∈ Rn.
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We denote the set of co-quadratic M-quasiconvex tensors to be

Mn2m

2 :=

{
F ∈ Sn

2m

+

∣∣∣∣∣F (x1,x1,x2,x2, . . . ,xm,xm)

≤ max
1≤i≤m

{F (xi,xi, . . . ,xi︸ ︷︷ ︸
2m

)} ∀x1,x2, . . . ,xm ∈ Rn
}
.

Trivially we have Mn2m ⊆Mn2m

2 .
We remark that in Definition 2.6, (2.3) already implies that F is nonnegative.

This is because if we let x1 = −x and xi = x for i = 2, 3, . . . , 2m in (2.4), then

F (−x,x,x, . . . ,x︸ ︷︷ ︸
2m−1

) ≤ F (x,x, . . . ,x︸ ︷︷ ︸
2m

),

implying the nonnegativity of F . However, in Definition 2.7, (2.6) does not imply the
nonnegativity of F , as shown by the following example.

Example 2.8. Let F = −1 ∈ R14

be a 4th order symmetric tensor and its associ-
ated multilinear form F (x, y, z, w) = −xyzw for x, y, z, w ∈ R. We have

F (x, x, y, y) = −x2y2 ≤ max{−x4,−y4} = max{F (x, x, x, x), F (y, y, y, y)},

implying (2.6). However F is clearly not nonnegative.

We also remark that F being nonnegative is important for our discussion. With-
out nonnegativity, the cone consisting of all co-quadratic M-quasiconvex tensors in
Sn2m

is not even convex; see Example 2.9. However, with nonnegativity this cone
is convex as Corollary 3.4 will stipulate. The nonnegativity of F also ensures that
the right-hand sides of (2.3) and (2.6) will always be nonnegative. For consistency of
expression we still keep the requirement of nonnegativity in Definition 2.6 although
it is actually redundant in that case. Throughout this paper, the cone of nonnega-
tive symmetric tensors (or the cone of nonnegative forms) is the ground set for our
discussion.

Example 2.9. Let F1,F2 ∈ R24

be 4th order symmetric tensors, with their as-
sociated multilinear forms being F1(x,y, z,w) = −2x1y1z1w1 and F2(x,y, z,w) =
−2x2y2z2w2. According to Example 2.8, both F1 and F2 satisfy (2.6). However
F (x,y, z,w) = −x1y1z1w1 − x2y2z2w2 with its associated tensor F = 1

2 (F1 + F2)
does not satisfy (2.6), since

F (x,x,y,y) =− x2
1y

2
1 − x2

2y
2
2

>max{−x4
1 − x4

2,−y4
1 − y4

2}
= max{F (x,x,x,x), F (y,y,y,y)},

when x = (1, 2)T and y = (2, 1)T.

To simplify the notation, whenever appropriate we now use superscripts to sim-
plify the form

F (x1, . . . ,x1︸ ︷︷ ︸
λ1

,x2, . . . ,x2︸ ︷︷ ︸
λ2

, . . . ,xs, . . . ,xs︸ ︷︷ ︸
λs

),
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i.e., F (xλ1
1 x

λ2
2 . . .xλs

s ). For example, F (x2y2) denotes F (x,x,y,y), which is equal
to F (x,y,x,y) (or any possible permutation of the positions of the entry vectors due
to the symmetry). With this simplified notation, (2.3) is then

F (xλ1
1 x

λ2
2 . . .xλs

s ) ≤ max
1≤i≤s

{F (x2m
i )}.

In the same spirit, the homogeneous polynomial f(x) associated with the multilinear
form F or the symmetric tensor F can be simply written as F (x2m).

Remark that Definitions 2.1, 2.2, 2.6, and 2.7 are all difficult to check in gen-
eral. However, as we will discuss later, in specific applications it is often possible
to find useful functions that satisfy these conditions. The situation is like verifying
convexity in general might be difficult according to its definition; however, there are
sufficient verifiable conditions assuring the property (e.g., a quadratic form with pos-
itive semidefinite Hessian). Finally, we conclude this section by pointing out that
Definitions 2.1, 2.2, 2.6, and 2.7 are actually identical in the matrix setting, i.e., when
m = 1 we have Sn2

+ = Sn2

2+ = Mn2

= Mn2

2 .

Proposition 2.10. If x,y ∈ Rn and symmetric matrix Q ∈ Rn×n is positive
semidefinite, then the bilinear form F (x,y) = xTQy is M-quasiconvex. Conversely,
if xTQy is M-quasiconvex, then Q is positive semidefinite.

Proof. For all x,y ∈ Rn, Q being positive semidefinite implies (x−y)TQ(x−y) ≥
0, which is 2xTQy ≤ xTQx+ yTQy. This further leads to

xTQy ≤ max{xTQx,yTQy},

implying that F is M-quasiconvex. Conversely, M-quasiconvexity of F implies that

F (−x,x) ≤ max{F (−x,−x), F (x,x)} = F (x,x).

Therefore xTQx = F (x,x) ≥ 0, implying that Q is positive semidefinite.

3. Equivalent definitions. In this section we present a curious fact that the
newly introduced M-quasiconvexity is actually equivalent to some of the seemingly
more restrictive definitions.

Lemma 3.1. Suppose F is a nonnegative form associated with a 2mth order sym-
metric tensor F ∈ Sn2m

. The following three statements are equivalent:

F (x1x2 . . .x2m) ≤ max
1≤i≤2m

{F (x2m
i )} ∀x1,x2, . . . ,x2m ∈ Rn,(3.1)

F (x1x2 . . .x2m) ≤ 1

2m

2m∑
i=1

F (x2m
i ) ∀x1,x2, . . . ,x2m ∈ Rn,(3.2)

F (x1x2 . . .x2m) ≤

(
2m∏
i=1

F (x2m
i )

) 1
2m

∀x1,x2, . . . ,x2m ∈ Rn.(3.3)

Proof. Since F (x2m
i ) ≥ 0 for all xi ∈ Rn, it follows immediately by the mean

inequalities that (3.3)⇒(3.2)⇒(3.1). It remains to prove that (3.1)⇒(3.3).
For any a1, a2, . . . , a2m ∈ R and x1,x2, . . . ,x2m ∈ Rn, by the multilinearity of F ,

it follows from (3.1) that
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a1a2 . . . a2mF (x1x2 . . .x2m) = F (a1x1, a2x2, . . . , a2mx2m)

≤ max
1≤i≤2m

{F
(
(aixi)

2m
)
}

= max
1≤i≤2m

{a2m
i F (x2m

i )}.(3.4)

If F (x2m
i )> 0 for all i = 1, 2, . . . , 2m, then we choose ai> 0 such that

a2m
i F (x2m

i ) = 1 for all i = 1, 2, . . . , 2m. In that case, (3.4) leads to(
2m∏
i=1

(
F (x2m

i )
)− 1

2m

)
F (x1x2 . . .x2m) ≤ 1,

which implies (3.3).
Otherwise, there exists some 1 ≤ i ≤ 2m satisfying F (x2m

i ) = 0. Without loss of
generality we assume F (x2m

1 ) = 0. Letting a2 = a3 = · · · = a2m = 1 in (3.4) leads to

a1F (x1x2 . . .x2m) ≤ max

{
max

2≤i≤2m
{F (x2m

i )}, a2m
1 F (x2m

1 )

}
= max

2≤i≤2m
{F (x2m

i )}

for all a1 ∈ R. The above clearly implies that F (x1x2 . . .x2m) = 0. Therefore (3.3)
is satisfied as both sides are now zeros.

In fact, the above equivalence indicates that any generalized mean with exponent
p ∈ (0,+∞] of F (x2m

1 ), F (x2m
2 ), . . . , F (x2m

2m) on the right-hand side can serve as the
definition for M-quasiconvexity. Specifically, a symmetric tensor F is M-quasiconvex
if and only if

F (x1x2 . . .x2m) ≤

(
1

2m

2m∑
i=1

(
F (x2m

i )
)p) 1

p

∀x1,x2, . . . ,x2m ∈ Rn

for any fixed p ∈ (0,+∞]. By Lemma 3.1, we may equivalently write

Mn2m

=

{
F ∈ Sn

2m

+

∣∣∣∣∣F (x1x2 . . .x2m) ≤ 1

2m

2m∑
i=1

F (x2m
i ) ∀x1,x2, . . . ,x2m ∈ Rn

}
.

This formulation essentially implies the convexity of the set Mn2m

, which does not
follow straightforwardly from its original definition (2.5). Therefore we have the
following.

Corollary 3.2. The set of all M-quasiconvex tensors (i.e., Mn2m

) is a closed
convex cone.

Similarly we have the following equivalent definitions for co-quadratic
M-quasiconvex tensors, whose proof is similar and is omitted here.

Lemma 3.3. Suppose F is a nonnegative form associated with a 2mth order sym-
metric tensor F ∈ Sn2m

. The following three statements are equivalent:

F (x2
1x

2
2 . . .x

2
m) ≤ max

1≤i≤m
{F (x2m

i )} ∀x1,x2, . . . ,xm ∈ Rn,

F (x2
1x

2
2 . . .x

2
m) ≤ 1

m

m∑
i=1

F (x2m
i ) ∀x1,x2, . . . ,xm ∈ Rn,(3.5)

F (x2
1x

2
2 . . .x

2
m) ≤

(
m∏
i=1

F (x2m
i )

) 1
m

∀x1,x2, . . . ,xm ∈ Rn.
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We also have

Mn2m

2 =

{
F ∈ Sn

2m

+

∣∣∣∣∣F (x2
1x

2
2 . . .x

2
m) ≤ 1

m

m∑
i=1

F (x2m
i ) ∀x1,x2, . . . ,xm ∈ Rn

}
,

and consequently we have the following.

Corollary 3.4. The set of all co-quadratic M-quasiconvex tensors (i.e., Mn2m

2 )
is a closed convex cone.

4. The relationships. As mentioned at the end of section 2, when the degree
of the form is 2, then M-quasiconvex tensors, co-quadratic M-quasiconvex tensors
and co-quadratic nonnegative tensors are all the same, i.e., Mn2

= Mn2

2 = Sn2

2+. In
this section we establish the relationship for general degree 2m. Before presenting the
main results, let us first study an important property for the co-quadratic nonnegative
tensors.

Lemma 4.1. If F is a co-quadratic nonnegative form associated with a 2mth order
symmetric tensor F ∈ Sn2m

, then

(4.1) F (y2m) + F (z2m) ≥ F (y2m−2z2) + F (y2z2m−2) ∀y, z ∈ Rn.

Proof. The proof is based on induction on m. Obviously (4.1) holds when m = 1.
For the case m = 2, due to the co-quadratic nonnegativity of F , we have

F (y + z,y + z,y − z,y − z) ≥ 0 ∀y, z ∈ Rn,

that is,

F (y4) + F (z4) ≥ 2F (y2z2) ∀y, z ∈ Rn,

which implies that (4.1) holds when m = 2.
Suppose that (4.1) holds for tensors of order no more than 2m. For the sake

of induction, we next consider tensors of order 2(m + 1), and we wish to show the
following inequality,

(4.2) F (y2m+2) + F (z2m+2) ≥ F (y2mz2) + F (y2z2m) ∀y, z ∈ Rn.

For any fixed x ∈ Rn and k = 1, 2, . . . ,m, we define the following multilinear form

Gx2k(y1y2 . . .y2m+2−2k) := F (x2ky1y2 . . .y2m+2−2k).

By the co-quadratic nonnegativity of F , Gx2k is a co-quadratic nonnegative form
associated with a (2m+2−2k)th order symmetric tensor. Therefore, by the induction
assumption, we have for k = 1, 2, . . . ,m,

Gx2k(y2m+2−2k) +Gx2k(z2m+2−2k) ≥ Gx2k(y2m−2kz2) +Gx2k(y2z2m−2k),

i.e.,

F (x2ky2m+2−2k) + F (x2kz2m+2−2k) ≥ F (x2ky2m−2kz2) + F (x2ky2z2m−2k).

Summing over k = 1, 2, . . . ,m in the above inequality, and letting x = y and x = z,
respectively, we have
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m∑
k=1

(
F (y2m+2) + F (y2kz2m+2−2k)

)
≥

m∑
k=1

(
F (y2mz2) + F (y2k+2z2m−2k)

)
,

m∑
k=1

(
F (y2m+2−2kz2k) + F (z2m+2)

)
≥

m∑
k=1

(
F (y2m−2kz2k+2) + F (y2z2m)

)
.

Adding up these two inequalities and canceling out the same terms on both sides
leads to

(m− 1)
(
F (y2m+2) + F (z2m+2)

)
≥ (m− 1)

(
F (y2mz2) + F (y2z2m)

)
,

which establishes the inductive step (4.2).

Our first main result says that co-quadratic nonnegativity implies co-quadratic
M-quasiconvexity.

Theorem 4.2. If F is a co-quadratic nonnegative form associated with an even
order symmetric tensor F ∈ Sn2m

, then it is also co-quadratic M-quasiconvex, i.e.,

F (y2
1y

2
2 . . .y

2
m) ≥ 0 ∀yi ∈ Rn =⇒ F (x2

1x
2
2 . . .x

2
m) ≤ max

1≤i≤m
{F (x2m

i )} ∀xi ∈ Rn.

In other words, we have Sn2m

2+ ⊆Mn2m

2 .

Proof. We prove the co-quadratic M-quasiconvexity using (3.5), i.e.,

m∑
i=1

F (x2m
i ) ≥ mF (x2

1x
2
2 . . .x

2
m) ∀x1,x2, . . . ,xm ∈ Rn,

by induction on m. It is trivially true when m = 1. If it holds for the case m, then
for the case m+ 1, we need to show that

(4.3)

m+1∑
i=1

F (x2m+2
i ) ≥ (m+ 1)F (x2

1x
2
2 . . .x

2
mx

2
m+1) ∀x1,x2, . . . ,xm,xm+1 ∈ Rn.

According to Lemma 4.1 we have

F (x2m+2
i ) + F (x2m+2

j ) ≥ F (x2
ix

2m
j ) + F (x2m

i x2
j ) ∀ 1 ≤ i, j ≤ m+ 1.

Summing over all i < j further leads to∑
1≤i<j≤m+1

(F (x2m+2
i ) + F (x2m+2

j )) ≥
∑

1≤i<j≤m+1

(F (x2
ix

2m
j ) + F (x2m

i x2
j )),

which implies that

m

m+1∑
i=1

F (x2m+2
i ) ≥

m+1∑
i=1

∑
j 6=i

F (x2
ix

2m
j ) ≥

m+1∑
i=1

mF

x2
i

∏
j 6=i

x2
j

 = m(m+ 1)F

m+1∏
j=1

x2
j

,
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where in the second inequality, the induction assumption on m is applied, since for
any xi ∈ Rn, the multilinear form Gxi

satisfies

Gxi(y
2
1y

2
2 . . .y

2
m) := F (x2

iy
2
1y

2
2 . . .y

2
m) ≥ 0 ∀y1,y2, . . . ,ym ∈ Rn,

and is therefore co-quadratic nonnegative. This completes the induction step (4.3),
which concludes the whole proof.

As co-quadratic M-quasiconvexity is more general than M-quasiconvexity, here
we provide a stronger statement.

Theorem 4.3. If F is a co-quadratic nonnegative form associated with a 2mth
order symmetric tensor F ∈ Sn2m

, then it is also M-quasiconvex, i.e.,

F (y2
1y

2
2 . . .y

2
m) ≥ 0 ∀yi ∈ Rn =⇒ F (x1x2 . . .x2m) ≤ max

1≤i≤2m
{F (x2m

i )} ∀xi ∈ Rn.

In other words, Sn2m

2+ ⊆Mn2m

.

Proof. Let ξ1, ξ2, . . . , ξm be Bernoulli random variables, each taking values 1 and
−1 with equal probability, satisfying

∏m
i=1 ξi=−1. For any x1,x2, . . . ,x2m ∈ Rn, since

F is co-quadratic nonnegative, we observe that

0 ≤ E
[
F
(
(x1 + ξ1x2)2(x3 + ξ2x4)2 . . . (x2m−1 + ξmx2m)2

)]
=

2∑
i1=1

4∑
i2=3

· · ·
2m∑

im=2m−1

F (x2
i1x

2
i2 . . .x

2
im)− 2mF (x1x2 . . .x2m).(4.4)

This is because the function F is multilinear, and the expectation of the coefficient
for any term other than those in the right-hand side of (4.4) is zero.

Since F is co-quadratic nonnegative, by Theorem 4.2 it is co-quadratic
M-quasiconvex, and we have

F (x2
i1x

2
i2 . . .x

2
im) ≤ max

{
F (x2m

i1 ), F (x2m
i2 ), . . . , F (x2m

im )
}
≤ max

1≤i≤2m
{F (x2m

i )}

for all i1 ∈ {1, 2}, i2 ∈ {3, 4}, . . . , im ∈ {2m− 1, 2m}. Therefore (4.4) further leads to

2mF (x1x2 . . .x2m) ≤
2∑

i1=1

4∑
i2=3

· · ·
2m∑

im=2m−1

F (x2
i1x

2
i2 . . .x

2
im) ≤ 2m max

1≤i≤2m
{F (x2m

i )},

proving that F is M-quasiconvex.

To summarize, we provide the following result, which is an immediate consequence
of Theorem 4.3 and Definitions 2.6 and 2.7.

Corollary 4.4. A co-quadratic nonnegative tensor is also M-quasiconvex, and
an M-quasiconvex tensor is also co-quadratic M-quasiconvex, i.e.,

Sn
2m

2+ ⊆Mn2m

⊆Mn2m

2 .

A natural question arises regarding the membership queries of these new cones
of nonnegative tensors. As we shall see in the next section, Theorem 5.1 tells us
that it is NP-hard to check the M-quasiconvexity or co-quadratic M-quasiconvexity
for a quartic form. For higher orders, we believe these classes of nonnegative tensors
are NP-hard to verify. However, there is a tractable sufficient condition for these
nonnegative tensors.
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Theorem 4.5. Let F ∈ Sn2m

and rewrite it as an nm × nm symmetric ma-
trix M(F) by combining its m modes into one mode (the row of M(F)) and the
other m modes into the other mode (the column of M(F)). If M(F) is positive
semidefinite, then F is co-quadratic nonnegative (hence M-quasiconvex or co-quadratic
M-quasiconvex).

Proof. Since F is symmetric, it is easy to verify that

F (x1,x1,x2,x2, . . . ,xm,xm)

= F (x1,x2, . . . ,xm,x1,x2, . . . ,xm)

= 〈F ,x1 ◦ x2 ◦ · · · ◦ xm ◦ x1 ◦ x2 ◦ · · · ◦ xm〉
= (vec (x1 ◦ x2 ◦ · · · ◦ xm))TM(F) vec (x1 ◦ x2 ◦ · · · ◦ xm)

≥ 0,

where the last inequality is due to positive semidefiniteness of M(F). Therefore F is
co-quadratic nonnegative.

Notice that verifying the positive semidefiniteness ofM(F) can be done easily, and
runs in polynomial time. In the literature, such a symmetric tensor F is known as a
matrix positive semidefinite tensor, proposed in [16] to study the cones of nonnegative
quartic forms. A matrix positive semidefinite tensor is essentially equivalent to a
positive semidefinite moment matrix (see, e.g., [22]). We also remark that although
it is in general hard to check the M-quasiconvexity or co-quadratic M-quasiconvexity,
it is essentially checking the nonnegativity of a (multivariate) polynomial function,
which can be done in principle by resorting to some general purpose software tools
such as GloptiPoly 3 [13] subject to the problem size (see Example 5.2).

5. Proper containments. The analysis in the previous section triggers the
question about the further relationships among the sets Sn2m

2+ , Mn2m

, and Mn2m

2 . Our
first result in this section generalizes the case m = 1, which shows that these three
sets are indeed the same even when m = 2, i.e., Sn4

2+ = Mn4

= Mn4

2 .

Theorem 5.1. If F is a nonnegative form associated with a 4th order symmetric
tensor F ∈ Sn4

, then the following three statements are equivalent:
1. F is co-quadratic nonnegative, i.e., F (x2

1x
2
2) ≥ 0 ∀x1,x2 ∈ Rn.

2. F is M-quasiconvex, i.e., F (x1x2x3x4) ≤ max1≤i≤4{F (x4
i )} ∀x1,x2,x3,x4

∈ Rn.
3. F is co-quadratic M-quasiconvex, i.e., F (x2

1x
2
2) ≤ max1≤i≤2{F (x4

i )} ∀x1,x2

∈ Rn.

Proof. According to Corollary 4.4, we only need to show that co-quadratic
M-quasiconvexity implies co-quadratic nonnegativity for a quartic form F , i.e., state-
ment 3 implies statement 1 in Theorem 5.1. Indeed, by the equivalent property in
Lemma 3.3, F is co-quadratic M-quasiconvex is equivalent to

F (x2y2) ≤ 1

2

(
F (x4) + F (y4)

)
∀x,y ∈ Rn.

It leads to

F
(
(x− y)2(x+ y)2

)
= F (x4) + F (y4)− 2F (x2y2) ≥ 0 ∀x,y ∈ Rn.

Therefore F is co-quadratic nonnegative, completing the proof.
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As checking the convexity of a quartic form is in general NP-hard [1], Theorem 5.1
implies that checking the M-quasiconvexity or co-quadratic M-quasiconvexity for a
quartic form is also NP-hard. Apart from the sufficient condition in Theorem 4.5, a
weaker tractable sufficient condition known as the sos-convexity (cf. [12]) can also be
useful for the quartic case, since sos-convexity implies the usual convexity. In general,
the task of investigating the relationships among Sn2m

2+ , Mn2m

, and Mn2m

2 for m ≥ 3,
however, becomes more complicated. Our second result asserts that at least two of
these three cones are distinct when m ≥ 3.

Example 5.2. Let G(x6) := 3x6
1 + 3x6

2 + 15x4
1x

2
2 be a bivariate homogeneous poly-

nomial associated with a 6th order symmetric tensor G ∈ S26

, i.e., G111111 = G222222 =
3, G111122 = G111212 = · · · = 1, and all the rest of the entries are zeros. We have

1. G is nonnegative;
2. G is not co-quadratic nonnegative;
3. G(x2y4) ≥ 0 ∀x,y ∈ Rn;
4. G(x2y4) ≤ max{G(x6), G(y6)} ∀x,y ∈ Rn;
5. G(x2y2z2) ≤ max{G(x6), G(y6), G(z6)} ∀x,y, z ∈ Rn (G is co-quadratic

M-quasiconvex).

Toward proving these statements, we first notice that G(x6) = 3x6
1 + 3x6

2 +
15x4

1x
2
2 ≥ 0 for all x ∈ R2, implying that G is nonnegative. Next by letting

x = (15, 1)T, y = (−3,−13)T, and z = (−5, 10)T we have G(x2y2z2) = −367575,
implying that G is not co-quadratic nonnegative.

For the third statement, we notice that for x,y ∈ R2

G(x2y4) = 3x2
1y

4
1 + 3x2

2y
4
2 + x2

2y
4
1 + 6x2

1y
2
1y

2
2 + 8x1x2y

3
1y2

=

(
x1

x2

)T
[

3y4
1 + 6y2

1y
2
2 4y3

1y2

4y3
1y2 y4

1 + 3y4
2

](
x1

x2

)
.

Denote Q =
[ 3y41+6y21y

2
2 4y31y2

4y31y2 y41+3y42

]
. By noticing that Q11 ≥ 0, Q22 ≥ 0 and

det(Q) = 3y8
1 + 9y4

1y
4
2 + 18y2

1y
6
2 − 10y6

1y
2
2 =

(3y4
1 − 5y2

1y
2
2)2

3
+

2y4
1y

4
2

3
+ 18y2

1y
6
2 ≥ 0,

we have that Q is positive semidefinite for any y ∈ R2, proving the third statement.
This is in fact equivalent to that G(x6) is a convex function.

For the fourth statement, by Lemma 3.3 it suffices to show

3G(x2y4) ≤ G(x6) + 2G(y6) ∀x,y ∈ R2.

Direct computation shows that

g1(x,y) := G(x6) + 2G(y6)− 3G(x2y4)

= x6
1 + x6

2 + 5x4
1x

2
2 + 2y6

1 + 2y6
2 + 10y4

1y
2
2

− (3x2
1y

4
1 + 3x2

2y
4
2 + x2

2y
4
1 + 6x2

1y
2
1y

2
2 + 8x1x2y

3
1y2).

Establishing g1(x,y) ≥ 0 is not very easy. Instead, we shall prove this inequality by
numerical optimization: we call GloptiPoly 3 [13] to solve the unconstrained polyno-
mial optimization problem

min
x,y∈R2

g1(x,y).
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When the relaxation order is set to be 3, the global optimality is guaranteed for this
problem, whose optimal value is zero with the optimal solution being x = y = (0, 0)T.
The fourth statement is thus verified.

For the last statement of Example 5.2, a similar method for the fourth statement
is applied. By Lemma 3.3 we need to show that

3G(x2y2z2) ≤ G(x6) +G(y6) +G(z6) ∀x,y, z ∈ R2,

which is

x6
1 + x6

2 + 5x4
1x

2
2 + y6

1 + y6
2 + 5y4

1y
2
2 + z6

1 + z6
2 + 5z4

1z
2
2 − (3x2

1y
2
1z

2
1 + 3x2

2y
2
2z

2
2

+ x2
1y

2
1z

2
2 + x2

1y
2
2z

2
1 + x2

2y
2
1z

2
1 + 4x1x2y1y2z

2
1 + 4x1x2y

2
1z1z2 + 4x2

1y1y2z1z2)

=: g2(x,y, z) ≥ 0.

Applying Gloptipoly 3 to solve the problem

min
x,y,z∈R2

g2(x,y, z),

and setting the relaxation order to be 4, the global optimality is also certified. The
optimal value for this problem is zero, with the optimal solution being x = y = z =
(0, 0)T. This proves the last statement, i.e., G is co-quadratic M-quasiconvex.

Example 5.2 clearly differentiates the co-quadratic nonnegativity and the
co-quadratic M-quasiconvexity for sixth order symmetric tensors, which is not the
case for quadratic and quartic tensors.

Theorem 5.3. For m ≥ 3 and n ≥ 2, it holds that Sn2m

2+ ( Mn2m

2 .

One may certainly wonder about the status of Mn2m

in the chain of containing
relationship Sn2m

2+ ⊆Mn2m ⊆Mn2m

2 . We are, however, unable to completely settle this
issue at this point, though we can be sure that at least one of the containments is
proper as Theorem 5.3 shows. Besides, it is currently computationally impossible to
verify whether G in Example 5.2 is M-quasiconvex or not, whose answer should tell
which proper containment in this chain is true or not. However, we believe that all
these containing relationships are proper when m ≥ 3, which leads to the following
conjecture.

Conjecture 5.4. For m ≥ 3 and n ≥ 2, it holds that Sn2m

2+ ( Mn2m ( Mn2m

2 .

6. Applications. Polynomial and tensor optimization is a rapidly expanding
field. While its applications mushroomed in recent years, new solution methods
remain relatively rare. In this section we aim to demonstrate a new scheme for
polynomial optimization based on the notion of M-quasiconvexity. To begin, let
us consider the following general constrained homogeneous polynomial optimization
model

max f(x) = F (x,x, . . . ,x︸ ︷︷ ︸
2m

)

s.t. x ∈ S,

where the constraint set S ⊆ Rn is compact. Essentially, the model is to find the
largest eigenvalue of a symmetric tensor F over S. Based on the relationships among
Sn2m

2+ , Mn2m

, and Mn2m

2 discussed in previous sections, we have the following result.
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Theorem 6.1. If F ∈ Sn2m

is M-quasiconvex, then for any S ⊆ Rn

(L) max
x∈S

F (x,x, . . . ,x︸ ︷︷ ︸
2m

) = max
x1,x2,...,xm ∈S

F (x1,x1,x2,x2, . . . ,xm,xm) (M)

= max
x1,x2,...,x2m ∈S

F (x1,x2, . . . ,x2m). (R)

Proof. Denote the optimal value of problems (L), (M), and (R) to be v(L), v(M),
and v(R), respectively. As (R) is a relaxation of (M) and (M) is a relaxation of (L),
we have that v(L) ≤ v(M) ≤ v(R). It suffices to show v(L) ≥ v(R).

In fact, since F ∈ Sn2m

is M-quasiconvex, i.e.,

F (x1,x2, . . . ,x2m) ≤ max
1≤i≤2m

{
F (xi,xi, . . . ,xi︸ ︷︷ ︸

2m

)
}
∀x1,x2, . . . ,x2m ∈ S.

Therefore v(R) ≤ v(L). This proves the theorem.

Theorem 6.1 establishes equivalence between homogeneous polynomial optimiza-
tion and its multilinear form or multiquadratic form relaxation model over any con-
straint set, given that F is an M-quasiconvex tensor. Hence, as stated in section 4
of [8], Theorem 6.1 suggests an alternative way to deal with a homogeneous polyno-
mial optimization model, say (L). The general scheme, which consists of four main
steps: lift, relax, block-optimize, and compare, named LRBC, is described as follows.

Algorithm 6.2 (LRBC).
1. Make sure the objective form is M-quasiconvex. Otherwise, lift it to an

M-quasiconvex form if necessary, while keeping it equivalent to the original
model (L).

2. Relax the model (L) to an equivalent multilinear form optimization model (R),
or a multiquadratic form optimization model (M).

3. Apply any block optimization method (e.g., block coordinate descent (BCD),
or maximum block improvement (MBI)) to solve the equivalent model (R) or
(M).

4. Extract a stationary solution for the original model (L) by choosing the best
one among all the block components of the stationary solution for the equiv-
alent model (R) or (M).

In the first step of LRBC, although it is in general hard to check whether a given
symmetric tensor F is M-quasiconvex or not, there exist some sufficient conditions
which are easily verifiable, e.g., matrix positive semidefinite described in Theorem 4.5.
In case F is not M-quasiconvex (or at least not verified to be), as we will discuss
shortly, in several applications it is possible to lift the tensor by transforming the ob-
jective into an M-quasiconvex one, while keeping the equivalence to the original model
without affecting the optimal solution. In fact, it is often convenient to transform it
into even stronger (sufficient) forms such as co-quadratic nonnegative or matrix pos-
itive semidefinite tensors; see Theorems 4.3 and 4.5. We will discuss the details of
the lifting process in the application examples later in this section. Our numerical
experiments in section 7 also suggest that the lifting technique is remarkably effective.

Once the M-quasiconvexity is satisfied, Theorem 6.1 guarantees the equivalence
of multilinear relaxation (R) or multiquadratic relaxation (M) in the second step
of LRBC. At a first glance, it might looks odd to consider (M) or (R) instead of
(L), as the latter contains a much smaller number of variables. The key observation
however, is that (M) or (R) is convenient for block optimization: it is often very easy
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to optimize over one block of variables while fixing all others. In particular for (L)
the block optimization subproblem has a linear objective function. For block variable
optimization, one choice for solving (M) or (R) is to implement the MBI method [8]
or the BCD method [26] that usually finds a stationary solution (which in practice is
often an optimal solution) quickly. The final step of LRBC is to construct a stationary
solution (or an optimal solution) for the original problem. In this circumstance,
suppose that (x1,x2, . . . ,x2m) is a stationary solution (or an optimal solution) for
(R), then we can directly find a stationary solution (or an optimal solution) xi∗ for
(L), where

i∗ = arg max
1≤i≤2m

F (xi,xi, . . . ,xi︸ ︷︷ ︸
2m

),

as the proof of Theorem 6.1 suggested. The best solution for (L) is already among the
solutions x1,x2, . . . ,x2m. The procedure is much simpler as compared to Algorithm
KKT proposed in section 4.2 of [8], thanks to the properties of M-quasiconvexity.

An immediate consequence of Theorem 6.1 is the following.

Corollary 6.3. If F ∈ Sn2m

is M-quasiconvex and integers λi ≥ 0 (i = 1, 2,
. . . , s) with

∑s
i=1 λi = 2m, then for any S ⊆ Rn

max
x1,x2,...,xs ∈S

F (x1, . . . ,x1︸ ︷︷ ︸
λ1

,x2, . . . ,x2︸ ︷︷ ︸
λ2

, . . . ,xs, . . . ,xs︸ ︷︷ ︸
λs

) = max
x∈S

F (x,x, . . . ,x︸ ︷︷ ︸
2m

).

We remark that the constraint set S is allowed to be arbitrary, which makes the
scheme viable for a wide range of problems, including discrete optimization models.
Let us present next some typical applications in polynomial and tensor optimization
that are readily solved by the LRBC method based on M-quasiconvexity.

6.1. Tensor eigenvalue problem. The concept of eigenvalues/eigenvectors of
tensors was proposed by Lim [24] and Qi [35] independently in 2005. In particular,
finding the largest eigenvalue of a symmetric tensor [35, 36] is exactly the following
spherical constrained homogeneous polynomial optimization problem:

(H) max f(x) = F (x,x, . . . ,x︸ ︷︷ ︸
d

)

s.t. ‖x‖ = 1, x ∈ Rn,

where F is a multilinear form associated with a symmetric tensor F ∈ Rnd

. This
problem has received much attention lately, not only for its fundamental properties
but also for its wide applications, including numerical linear algebra, solid mechanic,
signal processing, and quantum physics. It is also equivalent to the best rank-one
approximation of a symmetric tensor; see e.g., [23].

A tensor relaxation method (relaxing to a multilinear form optimization model)
for (H) is the following:

(T ) max F (x1,x2, . . . ,xd)
s.t. ‖xi‖ = 1, xi ∈ Rn, i = 1, 2, . . . , d.

This relaxation is first proposed in [11] where the relationship between (H) and (T )
as well as their approximate methods are discussed. Later, Chen et al. [8] and Zhang,
Ling, and Qi [40] further explored this idea to solve (H).

The study of the new classes of nonnegative tensors, however, gives us a much
simpler way to deal with the model (H) when the degree of the objective is even using
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the LRBC method. Rather than relaxing (H) to (T ) directly, we first add a constant
form α(xTx)m = α to the objective function, where m = d/2 in (H). By choosing
α large enough we can ensure that the new objective function fα(x) := f(x) +
α(xTx)m is co-quadratic nonnegative, hence M-quasiconvex, which is guaranteed by
the following result.

Theorem 6.4. Denote H ∈ Sn2m

to be the symmetric tensor associated with the
homogeneous polynomial function (xTx)m. Then H ∈ int Sn2m

2+ (the interior of Sn2m

2+ ).

Proof. Denote Kn2m

to be the convex hull of the set of symmetric rank-one ten-
sors, i.e.,

Kn
2m

= conv

{
F ∈ Sn

2m

∣∣∣∣∣F = a ◦ a ◦ · · · ◦ a︸ ︷︷ ︸
2m

, a ∈ Rn
}
.

The proof is essentially based on the result that H ∈ intKn2m

, which is stated as
Theorem 8.15 in [37]. By noticing from Example 2.4 that any even order symmetric

rank-one tensor is co-quadratic nonnegative, we have that any tensor in Kn2m

is co-
quadratic nonnegative, and hence Kn2m ⊆ Sn2m

2+ . This proves H ∈ int Sn2m

2+ .

In practice, for quartic tensor F , letting α = 3‖F‖ is sufficient to guarantee the
co-quadratic nonnegativity of F + αH. This is because

H(x,x,y,y) =
1

3
(xTx)(yTy) +

2

3
(xTy)2 ≥ 1

3
‖x‖2‖y‖2,

implying that

(F + αH)(x,x,y,y) = F (x,x,y,y) + αH(x,x,y,y)

≥ −‖F‖‖x‖2‖y‖2 + 3‖F‖ · 1

3
‖x‖2‖y‖2

= 0.

Another way to find α for a general degree tensor is to lift it to a matrix positive
semidefinite tensor described in Theorem 4.5. This approach requires lifting with a
parameter α > 0 such that M(F+αH) � 0. Such an α can be easily found by solving
a semidefinite program.

After lifting the objective function of (H) by α, we can then equivalently refor-
mulate the new homogeneous polynomial fα(x) to its multilinear relaxation (T ), and
apply a block optimization method to get a stationary (which is often optimal) solu-
tion. This equivalence is guaranteed by Theorem 6.1 since co-quadratic nonnegativity
implies M-quasiconvexity. Finally, to return a solution to the original problem (H),
we only need to find the best i∗ with

i∗ = arg max
1≤i≤2m

Fα(xi,xi, . . . ,xi︸ ︷︷ ︸
2m

),

thanks to the M-quasiconvexity of Fα guaranteed by its co-quadratic nonnegativity
(Theorem 4.3).

Indeed according to LRBC, we can also equivalently transfer (H) to a multi-
quadratic form optimization after its objective function is lifted to fα(x),

(Q) max Fα(x1,x1,x2,x2, . . . ,xm,xm)
s.t. ‖xi‖ = 1, xi ∈ Rn, i = 1, 2, . . . ,m.
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This relaxation can also be solved by resorting to block optimization (fixing m−1
blocks and optimizing one block at each time), e.g., the MBI or the BCD method as
a subroutine, which in this case reduces to a matrix eigenvalue problem. Moreover,
after obtaining a solution for (Q), we are able to return a solution for (H) by choosing

i∗ = arg max
1≤i≤m

Fα(xi,xi, . . . ,xi︸ ︷︷ ︸
2m

)

because of the co-quadratic M-quasiconvexity of Fα, which is guaranteed by its
co-quadratic nonnegativity (Theorem 4.2).

6.2. Biquadratic model in circuit design. The quadratic assignment prob-
lem (QAP) is known as one of the most challenging problems in combinatorial op-
timization. Recently, there have been attempts to solve the QAP via semidefinite
programming relaxations as a lower bounding procedure; see, e.g., [9, 19, 33]. The
biquadratic assignment problem (BiQAP) is a generalization of the QAP, which is to
minimize a quartic polynomial of an assignment matrix:

min
∑

1≤i,j,k,`,s,t,u,v≤nAijk`BstuvXisXjtXkuX`v

s.t.
∑n
j=1Xij = 1, i = 1, 2, . . . , n,∑n
i=1Xij = 1, j = 1, 2, . . . , n,

Xij ∈ {0, 1}, i, j = 1, 2, . . . , n,

X ∈ Rn×n,

where A,B ∈ Rn×n×n×n. Motivated by a practical application in the very large scale
integrated synthesis problem, BiQAP was first introduced and studied by Burkard,
Cela, and Klinz, [7]. Several heuristics for the BiQAP were subsequently developed
by Burkard and Cela [6] and Mavridou et al. [29].

The objective function of the BiQAP is a fourth degree polynomial function of
the variables Xij ’s, where X is taken as an n2-dimensional vector. In particular,

by denoting x := vec (X) ∈ Rn2

, we can find a quartic form F associated with a

symmetric quartic tensor F := sym (−A ⊗ B) ∈ S(n2)4 , where the notation “sym ”
symmetrizes a tensor, such that

F (x,x,x,x) :=
∑

1≤i,j,k,`,s,t,u,v≤n

−Aijk`BstuvXisXjtXkuX`v.

For the constraints, one finds vectors a1,a2, . . . ,an, b1, b2, . . . , bn ∈ Rn2

in such a
way that

aT
i x =

n∑
j=1

Xij = 1, i = 1, 2, . . . , n,

bT
j x =

n∑
i=1

Xij = 1, j = 1, 2, . . . , n.

We have the equivalent formulation of the BiQAP,

max F (x,x,x,x)
s.t. aT

i x = 1, i = 1, 2, . . . , n,

bT
j x = 1, j = 1, 2, . . . , n,

x ∈ {0, 1}n2

.
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An important observation is that xTx = n as X is an assignment matrix. Thus
the objective function of the above model can be lifted up to a co-quadratic non-
negative form by adding a constant term α(xTx)2 according to Theorem 6.4. Using
the approaches mentioned in section 6.1, we can find α to guarantee the co-quadratic
nonnegativity of Fα(x,x,x,x) := F (x,x,x,x) + α(xTx)2, which implies that it is
M-quasiconvex and establishes the first step of the LRBC method. By Theorem 6.1,
the BiQAP can then be reformulated in the multilinear form model

max Fα(x,y, z,w)
s.t. aT

i x = aT
i y = aT

i z = aT
i w = 1, i = 1, 2, . . . , n,

bT
j x = bT

j y = bT
j z = bT

j w = 1, j = 1, 2, . . . , n,

x,y, z,w ∈ {0, 1}n2

.

Note that the subproblem of the above optimization model (fixing 3 blocks and op-
timizing one block) is a linear assignment, which is easily solvable. Therefore a block
optimization method such as BCD or MBI can be used to solve this model and get a
stationary solution (x∗,y∗, z∗,w∗). Finally,

argmax{Fα(x∗,x∗,x∗,x∗), Fα(y∗,y∗,y∗,y∗), Fα(z∗,z∗,z∗,z∗), Fα(w∗,w∗,w∗,w∗)}

is a local stationary solution to the original BiQAP, as guaranteed by the M-quasi-
convexity of Fα.

6.3. Portfolio selection with higher moments. In modern portfolio manage-
ment, the celebrated mean-variance model was originally introduced by Markowitz [28]
back in 1952, where the portfolio selection problem is modeled by minimizing the
variance of the return of the portfolio for a given level of its expected return, as
follows:

min xTΣx
s.t. µTx = µ0,

eTx = 1,
x ∈ Rn,

where µ and Σ are the mean vector and covariance matrix of n given assets, respec-
tively, and e is the all-ones vector. Much of the mean variance theory has been focusing
on the first two moments of the return of the portfolio. Recently, the framework of
mean variance has been extended to include the skewness and kurtosis information;
see, e.g., Jondeau and Rockinger [17], Kleniati, Parpas, and Rustem [18], Maringer
and Parpas [27] and the references therein.

Let us now consider a similar model proposed in [30] which minimizes the kurtosis
under the constraints of the mean and variance of the portfolio, as follows:

(K) min F (x,x,x,x)
s.t. xTΣx = σ2,

µTx ≥ µ0,
eTx = 1,
x ∈ S,

where S can be Rn or Rn+ depending on if short selling is allowed or not. Toward

the solution method, we may let y = 1
σΣ

1
2x since the covariance matrix Σ is positive
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semidefinite. Hence x = σΣ−
1
2y (use the Moore–Penrose inverse if Σ is not positive

definite). We can reformulate (K) to the following equivalent model:

(K ′) max F ′(y,y,y,y) = −σ4F
(

Σ−
1
2y,Σ−

1
2y,Σ−

1
2y,Σ−

1
2y
)

s.t. yTy = 1,

σµTΣ−
1
2y ≥ µ0,

σeTΣ−
1
2y = 1,

y ∈ S′,

where S′ is either Rn or some linear inequalities Σ−
1
2y ∈ Rn+. Noticing that yTy = 1

and using a similar lift method introduced in the previous subsections, we can change
the objective function of (K ′) to a co-quadratic nonnegative form F ′(y,y,y,y) +
α(yTy)2. Then we can reformulate it to a multilinear form optimization model as
Theorem 6.1 stipulated. The solution of (K ′) can be obtained by applying the MBI
or the BCD method to solve the multilinear model and comparing the objective F ′

among the four blocks of variables in the solution of the multilinear model, as the
M-quasiconvexity of the form F ′(y,y,y,y)+α(yTy)2 enables us to relax the coupled
variables to an easier looking but equivalent block optimization model.

7. Numerical experiments. In this section, we present some numerical results
testing the practical performance of the new technique. All the numerical experiments
are conducted on an Intel Xeon CPU 3.40 GHz computer with 8GB RAM. The sup-
porting software is MATLAB 7.12.0 (R2011a) as a platform. We use MATLAB Tensor
Toolbox v2.5 [2] whenever tensor operations are called.

We experiment with two types of polynomial optimization models: (1) portfolio
selection with higher moments as discussed in section 6.3 where historical data are
used; (2) homogeneous quartic polynomial optimization over quadratic constraints
where simulated data are used. In our implementations, the objective homogenous
polynomial is either M-quasiconvex or can be equivalently transformed to an M-
quasiconvex one, which paves the way to apply the LRBC scheme. In the block
optimization step of the LRBC procedure, we apply the MBI method to the portfolio
selection example, and the BCD method to the quadratically constrained quartic
polynomial optimization model. The subproblems in the block optimization step
(optimizing one block while fixing all other blocks) for both models can be equivalently
formulated as convex optimization models, where cvx v1.2 (Grant and Boyd [10]) is
called to solve these subroutines. To measure the quality of the solutions obtained
by our approaches, we compare them to the true global optimal solutions obtained
by a general-purpose method for polynomial optimization, in this particular case
GloptiPoly 3 [13] is called and its relaxation order is set by default.

7.1. Portfolio selection with higher moments. Let us revisit section 6.3 and
consider the model (K) for numerical experiments. Forty stocks listed in the New York
Stock Exchange are considered and their adjusted close prices ranging from March 1,
2014 to March 1, 2015 are drawn from Yahoo Finance. For n = 10, 20, 30, 40 in (K),
its first, second, and fourth moments are computed, corresponding to the mean vector
µ ∈ Rn, the covariance matrix Σ ∈ Sn2

, and the kurtosis tensor F ∈ Sn4

, respectively.
The set S is defined to be Rn, i.e., short selling is allowed.
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To apply our method based on the theory of M-quasiconvexity, we reformulate
(K) as (K ′) discussed in section 6.3:

(K ′) max F ′(y,y,y,y) = −σ4F
(

Σ−
1
2y,Σ−

1
2y,Σ−

1
2y,Σ−

1
2y
)

s.t. yTy = 1,

σµTΣ−
1
2y ≥ µ0,

σeTΣ−
1
2y = 1,

y ∈ Rn.

In the first step of LRBC, we add a constant 3‖F ′‖ to F ′(y,y,y,y) and the objective
function is lifted to

(7.1) G(y,y,y,y) := F ′(y,y,y,y) + 3‖F ′‖(yTy)2,

which is M-quasiconvex as discussed in section 6.1. We then equivalently formulate
the lifted problem to the multilinear model (K1), as guaranteed by Theorem 6.1:

(K1) max G(x1,x2,x3,x4)
s.t. x1,x2,x3,x4 ∈ S′,

where S′ := {y ∈ Rn : yTy = 1, σµTΣ−
1
2y ≥ µ0, σe

TΣ−
1
2y = 1}. The MBI

method is applied to solve the block optimization model (K1), starting from any fea-
sible solution (x1,x2,x3,x4) and optimize one block xk while fixing the other three
blocks xi’s. Here, the subproblem is maximizing a linear form over S′, which is
equivalent to the maximization over {y ∈ Rn : yTy ≤ 1, σµTΣ−

1
2y ≥ µ0, σe

TΣ−
1
2

y = 1}, i.e., replacing the spherical constraint to the ball constraint. This reformu-
lated subproblem is convex, and can be easily solved, e.g., using cvx.

For the purpose of showing the effect of lifting the objective function in the first
step of LRBC, we also apply the MBI method to solve the multilinear form relaxation
model of (K ′) directly without lifting (7.1):

(K2) max F ′(x1,x2,x3,x4)
s.t. x1,x2,x3,x4 ∈ S′.

When applying the MBI method to solve (K1) and (K2), we begin with the same
initial solutions, which are randomly generated in S′. The termination precision is set
to be 10−4. Unlike the equivalence between (K ′) and (K1) from Theorem 6.1, (K2)
and (K ′) may not be equivalent. Denote (x∗1,x

∗
2,x
∗
3,x
∗
4) to be a stationary solution

found by the MBI method for (K1) or (K2). Our numerical results show that these four
blocks are always identical for (K1), i.e., x∗1 = x∗2 = x∗3 = x∗4, but they are always not
equal to each other for (K2). In the latter case, the solution for (K ′) is chosen as the
best one among those four vectors, namely, y∗ = arg max1≤i≤4{F ′(x∗i ,x∗i ,x∗i ,x∗i )},
as suggested in the last step of LRBC.

Numerical results are summarized in Table 1. To validate the solution qualities of
both the lifted and unlifted approaches, GloptiPoly 3 is chosen as the global method
to solve (K) directly. For all the cases, we report the (local) optimal value or its
lower bound (if GloptiPoly 3 fails to provide an optimal certificate) of the original
problem (K). Values in boldface indicate that the global method guarantees the
output objective value to be optimal. For the block optimization step of LRBC in each
instance, we run the MBI method 10 times, starting from 10 different initial points.
The column Value denotes the range of these objective values, with the left end being
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Table 1
Numerical results for portfolio optimization.

n (µ0, σ) Global method LRBC Unlifted

Value Value (range) Value (mean) CPU (mean) Value (mean)
10 (0.05, 2) 43.80 [43.82, 47.08] 45.41 1.04e+03 95.75

(0.10, 2) 44.50 [44.51, 49.52] 46.48 0.76e+03 95.80
20 (0.05, 2) 35.27 [35.36, 37.23] 36.23 2.00e+03 147.78

(0.10, 2) 35.55 [35.73, 37.83] 36.86 1.83e+03 156.80
30 (0.05, 2) – [29.26, 34.90] 30.63 3.32e+03 116.61

(0.10, 2) – [29.25, 31.11] 29.83 4.86e+03 160.36
40 (0.05, 2) – [26.87, 29.64] 27.84 4.47e+03 225.42

(0.10, 2) – [26.23, 29.78] 27.82 4.92e+03 166.10

the best recorded solution and the right end being the worst recorded solution among
these 10. We also report the average computational time in CPU among these 10
trials. The column Unlifted denotes the results for solving the unlifted model (K2),
i.e., without the lifting step in LRBC.

One observes that the LRBC approach almost always finds global optima guar-
anteed by GloptiPoly 3 when n = 10 by choosing the best one among the 10 trials
in the block optimization step. For n = 20, the lower bound provided by Glop-
tiPoly 3 and local optimal value found by LRBC are very close. This implies that
GloptiPoly 3 and our new method, in collaboration, produce solutions with an opti-
mality certificate. In the case when high precision is needed, one usually runs more
trials in the block optimization step and chooses the best one. This will certainly
improve the solution quality of LRBC. Unfortunately, there is no global method that
can handle problems with size n ≥ 30 to validate the solution quality of LRBC, but
we believe it is still very good from the results for n ≤ 20. For the computational
cost, LRBC is almost linear in terms of the dimension n. These observations imply
that LRBC can solve large scale problems in reasonable computational time with
high solution quality. As observed before, the values of the unlifted model do not
lead to optimal solutions at all. This means that equivalently turning the model into
the M-quasiconvexity one is really the key for the lifting and relaxation approach to
work well.

7.2. Homogeneous polynomial optimization over quadratic constraints.
To extensively test our method, we now use randomly generated datasets. The model
considered here is to maximize a convex quartic form over the intersection of co-
centered ellipsoids:

(E) max F (x,x,x,x)
s.t. xTQjx ≤ 1, j = 1, 2, ...,m,

x ∈ Rn,

where the tensor F is symmetric and M-quasiconvex, the matrix Qj is positive
semidefinite for j = 1, 2, ...,m, and

∑m
j=1Qj is positive definite.

By the M-quasiconvexity (or convexity) of F , LRBC can be easily applied to solve
(E), whose equivalent multilinear form relaxation is

(E1) max F (x1,x2,x3,x4)
s.t. xT

i Qjxi ≤ 1, i = 1, 2, 3, 4, j = 1, 2, . . . ,m,
xi ∈ Rn, i = 1, 2, 3, 4.
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Table 2
Numerical results for solving (E) when m = 10.

n # samples Global method LRBC Gap (mean)

# opt CPU (mean) # opt # cert CPU (mean)
5 100 90 0.3 89 3 61.2 0.001333
10 100 98 4.3 95 2 159.2 0.001862
15 100 95 190.6 94 4 246.8 0.000128

We use the cyclic (alternatively updating) BCD method to solve (E1) in the block
optimization step of LRBC. The relevant subproblem in question is in the form of

max uTxi
s.t. xT

i Qjxi ≤ 1, j = 1, 2, ...,m,
xi ∈ Rn,

and it can be formulated as a second order cone program; we use cvx to solve these
subproblems in our implementation.

The data for (E) are generated in the following manner. First, a fourth order
tensor with its n4 entries following i.i.d. standard normal distributions are generated
and then symmetrized by averaging the corresponding entries, denoted by F ′. Next,
we let F = F ′ + 3‖F ′‖H, where H ∈ Sn4

is the symmetric tensor associated with
the homogeneous polynomial (xTx)2 as discussed in Theorem 6.4. In this setting,
F is convex and hence M-quasiconvex. For the matrix Qj (j = 1, 2, . . . ,m), we first
generate Q′j whose entries follow i.i.d. standard normal distribution, and then let

Qj = (Q′j)
TQ′j for j = 1, 2, . . . ,m.

In the block optimization step of LRBC, we run the BCD method 10 times from
10 diffident randomly generated starting solutions and pick the best one when the
algorithm stops. The termination precision is set to be 10−6. Table 2 presents the
detailed performance of the solution quality for the global method (GloptiPoly 3)
and LRBC when m = 10 and n is small for which GloptiPoly 3 is applicable. For
GloptiPoly 3, if it works then it either outputs the optimal value or an upper bound.
A list of abbreviations to understand Table 2 is as follows:

• # samples: The total number of randomly generated instances of (E).
• # opt: The number of instances that GloptiPoly 3 guarantees the optimality

or the solution found by LRBC attains the optimal value assured by Glop-
tiPoly 3.

• # cert: The number of instances that the solutions by LRBC attain the upper
bounds produced by GloptiPoly 3, hence certifying that the upper bounds of
GloptiPoly 3 are actually optimal.

• Gap (mean): The average gap between the solution by LRBC and the optimal
value or its upper bound by GloptiPoly 3.

In running the tests, we observe that the BCD method for solving (E1) always
outputs its stationary solution (x1,x2,x3,x4) satisfying x1 = ±x2 = ±x3 = ±x4,
meaning that x1 is a local maxima of the original problem (E). Remark that we
can always swap the direction from x1 to −x1 without affecting its objective value.
This again shows the importance of the M-quasiconvexity, which is the usual con-
vexity here for quartic forms. From Table 2, we see that the quality of LRBC is
evident from the optimality certificates of GloptiPoly 3. In addition, in most of the
instances that GloptiPoly 3 fails to provide an optimality certificate, the optimality
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Table 3
Average CPU seconds for solving (E) when m = 15.

n 5 10 15 20 30 40 50 70 100
LRBC 44 199 312 542 780 1.18e+03 1.43e+03 2.25e+03 5.63e+03

is actually certified by the solution of LRBC as its objective value equals the upper
bound provided by GloptiPoly 3 (# Cert).

Finally, let us report the computational time of the LRBC method. Although it is
slower than GloptiPoly 3 for low dimension problems as shown in Table 2, it is actually
insensitive to the problem dimensions. In Table 3, we fix m = 15 for various n, and
present the performance of the LRBC method in terms of CPU time. Each entry is
the average computational time of 30 randomly generated instances. Although the
computational time is highly dependent on the number of trials for performing the
block optimization step in LRBC (in Table 3 it is 10 trials for each instance), it is
actually observed to be linear in terms of the problem dimension.

To summarize, our numerical experiments show that for certain classes of poly-
nomial optimization models where the M-quasiconvexity can be guaranteed (equiv-
alently transformed into) then the LRBC approach is found to be able to generate
high quality solutions efficiently, even for large scale problems. For small size prob-
lems, the solution’s qualities are comparable to that of globally optimal ones. The
computational cost is observed to be linear in terms of the dimension of the model.

8. Concluding remarks. In this paper we study three new classes of non-
negative tensors: co-quadratic nonnegativity, M-quasiconvexity, and co-quadratic
M-quasiconvexity, respectively. We also discuss their relationships. We demonstrate
that the M-quasiconvexity plays an important role in linking homogeneous polyno-
mial optimization problems to their tensor relaxation counterparts. As a result, this
makes it possible to solve polynomial optimization models by means of block coor-
dinate search methods. Finally, we remark that it is possible to extend the notion
of co-quadratic nonnegativity and M-quasiconvexity to more general settings. As an
example, consider the following extension.

Definition 8.1. Suppose that F is a multilinear form associated with a symmet-
ric tensor F ∈ Sntm

of order tm, where t and m are two positive integers. The tensor
F (or the form F ) is called co-nonnegative of order t over S ⊆ Rn if

F (x1, . . . ,x1︸ ︷︷ ︸
t

,x2, . . . ,x2︸ ︷︷ ︸
t

, . . . ,xm, . . . ,xm︸ ︷︷ ︸
t

) ≥ 0 ∀x1,x2, . . . ,xm ∈ S.

Definition 8.2. Suppose that F is a multilinear form associated with a symmet-
ric tensor F ∈ Sntm

of order tm, where t and m are two positive integers. The tensor
F is called M-quasiconvex of order t over S ⊆ Rn if

F (x1, . . . ,x1︸ ︷︷ ︸
t

,x2, . . . ,x2︸ ︷︷ ︸
t

, . . . ,xm, . . . ,xm︸ ︷︷ ︸
t

)

≤ max
1≤i≤m

{F (xi,xi, . . . ,xi︸ ︷︷ ︸
tm

)} ∀x1,x2, . . . ,xm ∈ S.

Therefore, co-quadratic nonnegativity is co-nonnegativity of order 2 over Rn, and
M-quasiconvexity and co-quadratic M-quasiconvexity are M-quasiconvexity of orders
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1 and 2, respectively. For any two positive integers t1 < t2 with t2 a multiple of t1,
it is easy to see that M-quasiconvexity of order t1 implies M-quasiconvexity of order
t2 for a symmetric tensor F ∈ Snt2m

. To conclude this paper, we state the following
result without proof, which generalizes Theorem 4.2.

Theorem 8.3. If S is a linear subspace of Rn, then co-nonnegativity of order t
over S implies M-quasiconvexity of order t over S.
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