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MAXIMUM BLOCK IMPROVEMENT AND POLYNOMIAL
OPTIMIZATION∗

BILIAN CHEN† , SIMAI HE‡ , ZHENING LI§ , AND SHUZHONG ZHANG¶

Abstract. In this paper we propose an efficient method for solving the spherically constrained
homogeneous polynomial optimization problem. The new approach has the following three main
ingredients. First, we establish a block coordinate descent type search method for nonlinear opti-
mization, with the novelty being that we accept only a block update that achieves the maximum
improvement, hence the name of our new search method: maximum block improvement (MBI). Con-
vergence of the sequence produced by the MBI method to a stationary point is proved. Second,
we establish that maximizing a homogeneous polynomial over a sphere is equivalent to its tensor
relaxation problem; thus we can maximize a homogeneous polynomial function over a sphere by its
tensor relaxation via the MBI approach. Third, we propose a scheme to reach a KKT point of the
polynomial optimization, provided that a stationary solution for the relaxed tensor problem is avail-
able. Numerical experiments have shown that our new method works very efficiently: for a majority
of the test instances that we have experimented with, the method finds the global optimal solution
at a low computational cost.
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1. Introduction. The optimization models whose objective and constraints are
polynomial functions have recently attracted much research attention. This is in part
due to an increased demand on the application side (cf. the sample applications in
numerical linear algebra [50, 26, 28], material sciences [57], quantum physics [9, 18],
and signal processing [16, 4, 53]) and in part due to its own strong theoretical ap-
peal. Indeed, polynomial optimization is a challenging task; at the same time it is
rich enough to be fruitful. For instance, even the simplest instances of polynomial
optimization, such as maximizing a cubic polynomial over a sphere, is NP-hard (Nes-
terov [42]). However, the problem is so elementary that it can even be attempted in an
undergraduate calculus class. For readers interested in polynomial optimization with
simple constraints, see De Klerk [12] for a survey on the computational complexity
of optimizing various classes of polynomial functions over a simplex, hypercube, or
sphere. In particular, De Klerk, Laurent, and Parrilo [13] designed a polynomial-time
approximation scheme (PTAS) for minimizing polynomials of fixed degree over the
simplex.
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So far, a few results have been obtained for approximation algorithms with guar-
anteed worst-case performance ratios for higher degree polynomial optimization prob-
lems. Luo and Zhang [39] derived a polynomial-time approximation algorithm to op-
timize a multivariate quartic polynomial over a region defined by quadratic inequal-
ities. Ling et al. [37] considered the problem of minimizing a biquadratic function
over two spheres and proposed polynomial-time approximation algorithms. He, Li,
and Zhang [21] discussed the optimization of homogeneous polynomial functions of
any fixed degree over quadratic constraints and proposed approximation algorithms,
with performance ratios improving that of [39, 37]. Recently, So [56] improved the
approximation ratio in the case of spherically constrained homogeneous polynomial
optimizations. For a general inhomogeneous polynomial optimization over convex
compact sets, He, Li, and Zhang [22] proposed polynomial-time approximation algo-
rithms with relative approximation ratios, which is the only result so far with regard
to approximation algorithms for an inhomogeneous polynomial. Later, the authors
extended their results in [23] by considering polynomials in discrete (typically binary)
variables and designed randomized approximation algorithms. For a recent treatise
on the topic, see the Ph.D. thesis of Li [36].

On the computational side, polynomial optimization problems can be treated as
nonlinear programming, and many existing software packages are available, includ-
ing KNITRO, BARON, MINOS, SNOPT, and the MATLAB optimization toolbox.
(See [44] for further information.) However, these solvers are not tailor-made for
polynomial optimization problems, and so the performance may vary greatly from
one problem instance to another. Therefore, it is natural to wonder whether one
can design efficient algorithms for specific types of polynomial optimization problems.
Prajna, Papachristodoulou, and Parrilo [49] presented the package SOSTOOLS for
solving sum of squares (SOS) polynomial programs, based on the SOS decomposi-
tion for multivariate polynomials, which can be computed using (possibly large-size)
semidefinite programs. More recently, Henrion, Lasserre, and Loefberg [25] developed
a specialized tool known as GloptiPoly 3 (a later version of GloptiPoly; see Henrion
and Lasserre [24]) in finding global optimal solutions for polynomial optimizations
based on the SOS approach (see [32, 33, 35, 47, 48] for details). GloptiPoly 3 calls the
semidefinite programming (SDP) solver SeDuMi [58]. Therefore, due to the limita-
tion to solve large SDP problems, GloptiPoly 3 may not be the right tool to deal with
large-size polynomials (say, a sixth degree polynomial in 20 variables). However, if the
polynomial optimization model in question is sparse in some way, then it is possible
to exploit the sparsity in GloptiPoly 3; see [34]. As a matter of fact, SparsePOP [61]
makes use of the sparsity explicitly and is a more appropriate alternative for sparse
polynomial optimization based on the SOS approach. Unfortunately, for the problems
considered in this paper, the sparsity structure is not readily exploited by SparsePOP.
For more information on polynomial optimization, see the recent book of Anjos and
Lasserre [2] and the references therein.

Spherically constrained homogeneous polynomial optimization models have re-
ceived some recent research attention, theoretically as well as numerically. One direct
approach is to apply the method of Lagrange multipliers to reach a set of multivari-
ate polynomial equations, namely, the KKT system, which provides the necessary
conditions for optimality; see, e.g., [16, 28, 65]. In [16], one strives to enumerate
all the solutions of a KKT system, not only the global optimum, as all the KKT
solutions will be meaningful in this application. Indeed, the authors develop special
algorithms for that purpose, e.g., the subdivision methods proposed by Mourrain and
Pavone [40] and the generalized normal forms algorithms designed by Mourrain and
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Trébuchet [41]. However, the shortcomings of these methods are apparent if the de-
gree of the polynomial is high. An important application of spherically constrained
homogeneous polynomial optimizations is the best (in the sense of least-square) rank-
one approximation of tensors (sometimes also known as the rank-one factorization):
find vectors x1, x2, . . . , xd for the following minimization problem:

(Rfac) min
∑

i1,i2,...,id

(
x1
i1x

2
i2 · · ·xd

id −Fi1i2...id

)2
,

where F = (Fi1i2...id) is a dth-order tensor. In particular, if the tensor F is super-
symmetric (every element Fi1i2...id is invariant under all permutations of (i1, i2, . . . ,
id)), then the optimal vectors x1, x2, . . . , xd should coincide (namely, they should be
equal to each other). The main workhorse for solving the above tensor problem is
known as the alternating least square (ALS) method proposed originally by Carroll
and Chang [8] and Harshman [19]. However, the ALS method is not guaranteed to
converge to a global minimum or a stationary point, only to a solution where the
objective function ceases to decrease. There are numerous extensions of the ALS
method (e.g., incorporating a line-search procedure in the ALS procedure [46, 55]).
Along a related line, De Lathauwer, De Moor, and Vandewalle [14] proposed the
higher-order power method (HOPM) on rank-one approximation of higher-order ten-
sors, which can also be viewed as an extension of the ALS method. Following up
on that approach, Kofidis and Regalia [30] devised the symmetric higher-order power
method (S-HOPM) to rank-one approximation of super-symmetric tensors and proved
its convergence for super-symmetric tensors whenever their corresponding polynomial
forms have convexity or concavity. Furthermore, Wang and Qi [62] proposed a greedy
method, which iteratively computes the best super-symmetric rank-one approxima-
tion of the residual tensors in order to obtain a successive super-symmetric rank-one
decomposition. Those methods have nice properties; however, they all fail to guaran-
tee convergence for the tensor model (Rfac), whether the tensor is super-symmetric
or not. For an overview on the recent developments on tensor decomposition, see the
excellent survey by Kolda and Bader [31]. Another entirely different but very inter-
esting approach, known as the Z-eigenvalue method, was proposed by Qi, Wang, and
Wang [54]. This heuristic cross-hill Z-eigenvalue method aims to solve homogeneous
polynomial functions with degree at most three.

Motivated by the block coordinate descent (BCD) method for nondifferentiable
minimization proposed by Tseng [60] and the iterative waterfilling algorithm (IWA)
for multiuser power control in digital subscriber lines by Luo and Pang [38], in this
paper we shall propose a different method, to be called the maximum block improve-
ment (MBI), for solving spherically constrained homogeneous polynomial optimiza-
tion problems. Our new method guarantees convergence to a stationary point of the
problem, which is typically also global optimal in our numerical experiences. The
method actually has a general appeal: it can be applied to solve any optimization
model with separate block constraints. The proposed MBI approach can naturally be
regarded as a local improvement scheme for polynomial optimization, to start from
any good initial solutions. Therefore, the new MBI method can be used in combi-
nation with any approximation algorithms (such as Khot and Naor [29] and He, Li,
and Zhang [21, 22, 23]) to achieve excellent performance in practice while enjoying
the theoretical worst case performance guarantees.

The remainder of the paper is organized as follows. In section 2, we introduce the
notation and the models to be discussed throughout the paper. Then in section 3,
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the general scheme of the MBI method is introduced and convergence properties are
discussed. In section 4, we present an equivalence result between the spherically
constrained homogeneous polynomial optimization and its tensor relaxation problem.
This will enable application of the MBI method to solve the polynomial optimization
model. Finally, we present the results of our numerical experiments in section 5.

2. Notations and models. Let us consider the following multilinear tensor
function:

(1) F (x1, x2, . . . , xd) =
∑

1≤i1≤n1,1≤i2≤n2,...,1≤id≤nd

Fi1i2...idx
1
i1x

2
i2 . . . x

d
id
,

where xk ∈ �nk for k = 1, 2, . . . , d and F = (Fi1i2...id) ∈ �n1×n2×···×nd is a dth-order
tensor with F being its associated multilinear function. Closely related to the tensor
form F is a general dth-degree homogeneous polynomial function f(x), where x ∈ �n

with its associated tensor F being super-symmetric. In fact, super-symmetric tensors
are bijectively related to homogeneous polynomials; see [31]. Denote F to be the
multilinear function defined by the super-symmetric tensor form F ; we then have

(2) f(x) = F (x, x, . . . , x︸ ︷︷ ︸
d

).

A generic multivariate (inhomogeneous) polynomial function of degree d, denoted by
p(x), can be explicitly written as a summation of homogeneous polynomial functions
in decreasing degrees, namely,

(3) p(x) :=

d∑
i=1

fi(x) + f0 =

d∑
i=1

Fi(x, x, . . . , x︸ ︷︷ ︸
i

) + f0,

where x ∈ �n, f0 ∈ �, and fi(x) = Fi(x, x, . . . , x︸ ︷︷ ︸
i

) is a homogeneous polynomial

function of degree i for i = 1, 2, . . . , d.
Throughout this paper, we use F to denote a multilinear function defined by a

tensor form F , f for a homogeneous polynomial function, and p for an inhomogeneous
polynomial function; see functions (1), (2), and (3). To avoid triviality, we also assume
that at least one component of the tensor form, F in functions F and f , and Fd in
function p is nonzero. Throughout the paper we shall use the 2-norm for vectors,
matrices, and tensors, which is the usual Euclidean norm, defined as

‖F‖ :=

√ ∑
1≤i1≤n1,1≤i2≤n2,...,1≤id≤nd

Fi1i2...id
2.

The ⊗ symbol represents the vector outer product. For example, for vectors x ∈
�n1 , y ∈ �n2 , z ∈ �n3 , the notion x⊗y⊗z defines a third-order tensor F ∈ �n1×n2×n3 ,
whose (i, j, k)th element Fijk is equal to xiyjzk.

In this paper we shall focus on the polynomial optimization models as consid-
ered in He, Li, and Zhang [21, 22], such as optimization of multilinear tensor func-
tion (1), homogeneous polynomial (2), and general inhomogeneous polynomial (3) over
quadratic constraints, including spherical constraint or the Euclidean ball constraint
as a special case. In particular, the authors considered a general model where an
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inhomogeneous polynomial function is maximized over the intersection of co-centered
ellipsoids:

(Q) max p(x)

s.t. xTQjx ≤ 1, j = 1, 2, . . . ,m,

x ∈ �n,

where matrices Qj � 0 for j = 1, 2, . . . ,m and
∑m

j=1 Qj � 0.
In this paper we shall pay special attention to the following model:

(H) max f(x)

s.t. ‖x‖ = 1, x ∈ �n.

As we shall see later, (H) has applications in magnetic resonance imaging (MRI), the
best rank-one approximation of the super-symmetric tensor F , and the problem of
finding the largest eigenvalue of the tensor F ; see, e.g., [16, 30, 50, 52]. The multilinear
tensor relaxation of (H) is

(T ) max F (x1, x2, . . . , xd)

s.t. ‖xi‖ = 1, xi ∈ �n, i = 1, 2, . . . , d.

In He, Li, and Zhang [21], the above relaxation played a crucial role in the approxima-
tion algorithms for solving (H). One of the main contributions of the current paper
is to reveal an intrinsic relationship between the optimal solutions of (T ) and (H).
Finally, as a matter of notation, for a given optimization problem (P ) we shall denote
its optimal value by v(P ).

3. The MBI method. Toward eventually solving (T ), let us start by consider-
ing a generic optimization model in the form of

(G) max f(x1, x2, . . . , xd)

s.t. xi ∈ Si ⊆ �ni , i = 1, 2, . . . , d,

where f : �n1+n2+···+nd → � is a general continuous function and Si is a general set,
i = 1, 2, . . . , d. A popular special case of the model is where Si = �ni , i = 1, 2, . . . , d.
For that special case, a method known as the block coordinate descent (BCD) is well
studied; see Tseng [60] and the references therein. The method calls for maximizing
one block, say, xi ∈ �ni , at one time, while all other variables in other blocks are
temporarily fixed. One then moves on to alter the choice of the blocks. Very recently,
Wright [63] introduced an extension based on BCD. Typically, under various convexity
assumptions on the objective function, one is able to show some convergence property
of the BCD method (cf. [60]). In fact, the BCD method can be applied regardless of
any convexity assumptions, as long as one is able to optimize over one block of variable
while fixing the others. A summary of the BCD or other block search methods can be
found in Bertsekas [5]. The approach has a relatively long history (it is also known as
the block nonlinear Gauss–Seidel method). Without taking any precaution, the BCD
method may not be convergent; see the examples in Powell [51]. In the literature,
this issue of convergence has been thoroughly studied. However, the results were not
entirely satisfactory. To ensure convergence, either one would require some type of
convexity (cf. the discussion in [5]) or the search routine is modified (cf. a proximal-
point modification in Grippo and Sciandrone [11]). Our new block search method
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does not modify the objective function in the block search subroutine and at the
same time ensures the convergence to a stationary solution within the structure of
the BCD framework. The so-called ALS method for tensor decomposition problems
(see section 1) is a special form of the BCD method. We shall remark that the model
is reminiscent of a noncooperative game, where Si can be regarded as the strategy set
of player i, i = 1, 2, . . . , d. Certainly, in the case of noncooperative game, the objective
of each player may be different in general. In a channel spectrum allocation game
in communication, the corresponding BCD approach is also known as the iterative
waterfilling algorithm (IWA); Luo and Pang [38] show that the IWA is convergent to
the Nash equilibrium under some fairly loose conditions. It is possible that the IWA
may cycle in the absence of these conditions; see an example in [20].

To simplify the analysis, we assume here that Si is compact, i = 1, 2, . . . , d. But
that alone is insufficient to guarantee the convergence, as we know that even for the
special case of the ALS, the iterates may not converge to a stationary point; see
e.g., [10, 14, 15, 55]. A sufficient condition for convergence is to take a step that
corresponds to the maximum improvement. The enhanced procedure is as follows:

Algorithm MBI. The MBI method for solving (G).
0 (Initialization). Choose a feasible solution (x1

0, x
2
0, . . . , x

d
0) with xi

0 ∈ Si for
i = 1, 2, . . . , d and compute initial objective value v0 := f(x1

0, x
2
0, . . . , x

d
0).

Set k := 0.
1 (Block Improvement). For each i = 1, 2, . . . , d, solve

(Gi) max f(x1
k, . . . , x

i−1
k , xi, xi+1

k , . . . , xd
k)

s.t. xi ∈ Si,

and let

yik+1 := arg max
xi∈Si

f(x1
k, . . . , x

i−1
k , xi, xi+1

k , . . . , xd
k),

wi
k+1 := f(x1

k, . . . , x
i−1
k , yik+1, x

i+1
k , . . . , xd

k).

2 (Maximum Improvement). Let wk+1 := max1≤i≤d w
i
k+1 and i∗ =

argmax1≤i≤d wi
k+1. Let

xi
k+1 := xi

k, ∀ i ∈ {1, 2, . . . , d}\{i∗},
xi∗
k+1 := yi

∗
k+1,

vk+1 := wk+1.

3 (Stopping Criterion). If |vk+1 − vk| < ε, stop. Otherwise, set k := k + 1,
and go to Step 1.

The key assumption in the above process is that problem (Gi) can be easily
solved, which is the case for many applications. For instance, when f(x1, x2, . . . , xd) =
−‖F−x1⊗x2⊗· · ·⊗xd‖2, and Si = �ni , then (Gi) is simply a least squares problem;
when f(x1, x2, . . . , xd) is a multilinear tensor form and Si is convex, then (Gi) is a
convex optimization problem. A major difference between MBI and IWA (or, for
that matter, ALS, BCD, or block nonlinear Gauss–Seidel) lies in Step 2: rather than
improving among block decision variables alternatively or cyclically, MBI chooses to
update the block variables that achieve the maximum improvement. If in Step 2,
solving (Gi) is a least squares problem, then MBI becomes a variant of the ALS
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method, which is widely used in tensor decompositions (cf. [31]). Unlike the ALS
method, as we show next, the MBI method guarantees converging to a stationary
point.

Theorem 3.1. If Si is compact for i = 1, 2, . . . , d, then any cluster point of the
iterates (x1

k, x
2
k, . . . , x

d
k), say, (x

1
∗, x

2
∗, . . . , x

d
∗), will be a stationary point for (G); i.e.,

xi
∗ = arg max

xi∈Si
f(x1

∗, . . . , x
i−1
∗ , xi, xi+1

∗ , . . . , xd
∗)∀ i = 1, 2, . . . , d.

Proof. For each fixed (x1, . . . , xi−1, xi+1, . . . , xd), denote Ri(x
1, . . . , xi−1, xi+1,

. . . , xd) to be a best response function to xi, namely,

Ri(x
1, . . . , xi−1, xi+1, . . . , xd) ∈ arg max

xi∈Si
f(x1, . . . , xi−1, xi, xi+1, . . . , xd).

Suppose that (x1
kt
, x2

kt
, . . . , xd

kt
) → (x1

∗, x
2
∗, . . . , x

d
∗) as t → ∞. Then, for any 1 ≤ i ≤ d,

we have

f(x1
kt
, . . . , xi−1

kt
, Ri(x

1
∗, . . . , x

i−1
∗ , xi+1

∗ , . . . , xd
∗), x

i+1
kt

, . . . , xd
kt
)

≤ f(x1
kt
, . . . , xi−1

kt
, Ri(x

1
kt
, . . . , xi−1

kt
, xi+1

kt
, . . . , xd

kt
), xi+1

kt
, . . . , xd

kt
)

≤ f(x1
kt+1, x

2
kt+1, . . . , x

d
kt+1)

≤ f(x1
kt+1

, x2
kt+1

, . . . , xd
kt+1

).

By continuity, when t → ∞, it follows that

f(x1
∗, . . . , x

i−1
∗ , Ri(x

1
∗, . . . , x

i−1
∗ , xi+1

∗ , . . . , xd
∗), x

i+1
∗ , . . . , xd

∗) ≤ f(x1
∗, x

2
∗, . . . , x

d
∗),

which implies that the above should hold as an equality, since the other inequality is
true by the definition of the best response function Ri. Thus, x

i
∗ is the best response to

(x1
∗, . . . , x

i−1
∗ , xi+1

∗ , . . . , xd
∗), or equivalently, x

i
∗ is the optimal solution for the problem

max
xi∈Si

f(x1
∗, . . . , x

i−1
∗ , xi, xi+1

∗ , . . . , xd
∗)

for all i = 1, 2, . . . , d.
In many applications, Si is described by inequalities and equalities; e.g.,

Si = {xi ∈ �ni | gij(xi) ≤ 0, j = 1, 2, . . . ,mi; h
i
j(x

i) = 0, j = 1, 2, . . . , �i},

where i = 1, 2, . . . , d. It is then more convenient to use the so-called KKT conditions,
instead of an abstract form of the stationarity, under some constraint qualifications
(CQ).1

Corollary 3.2. If Si = {xi ∈ �ni | gij(xi) ≤ 0, j = 1, 2, . . . ,mi; h
i
j(x

i) = 0, j =
1, 2, . . . , �i} is compact for all i = 1, 2, . . . , d, and it satisfies a suitable constraint
qualification (cf. footnote 1), then any cluster point of the iterates (x1

k, x
2
k, . . . , x

d
k),

say (x1
∗, x

2
∗, . . . , x

d
∗), will be a KKT point for (G).

Proof. As asserted by Theorem 3.1, (x1
∗, x

2
∗, . . . , x

d
∗) is a stationary point. More-

over, since a constraint qualification is satisfied for Si, we know that xi∗ is a KKT

1The most widely used CQs include the Slater condition, the linear independence constraint
qualification, the Mangasarian–Fromowitz constraint qualification, the constant rank constraint qual-
ification, the constant positive linear dependence constraint qualification, and the quasi-normality
constraint qualification. For details see a textbook on nonlinear programming, e.g., Bertsekas [5].
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point as well. Namely, there exist ui
j and vij such that xi = xi

∗ satisfies the equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇xif(x1
∗, . . . , x

i−1
∗ , xi, xi+1

∗ , . . . , xd
∗) =

mi∑
j=1

ui
j∇gij(x

i) +

�i∑
j=1

vij∇hi
j(x

i),

ui
jg

i
j(x

i) = 0, ui
j ≥ 0, j = 1, 2, . . . ,mi,

xi ∈ Si,

where ui
j is the Lagrangian multiplier corresponding to the inequality constraint

gij(x
i) ≤ 0 for j = 1, 2, . . . ,mi, and vij is the Lagrangian multiplier corresponding

to the equality constraint hi
j(x

i) = 0 for j = 1, 2, . . . , �i. Therefore, (x
1, x2, . . . , xd) =

(x1
∗, x

2
∗, . . . , x

d
∗) is a solution for⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
∇xif(x1, . . . , xi−1, xi, xi+1, . . . , xd) =

mi∑
j=1

ui
j∇gij(x

i) +

�i∑
j=1

vij∇hi
j(x

i), i = 1, 2, . . . , d,

ui
jg

i
j(x

i) = 0, ui
j ≥ 0, j = 1, 2, . . . ,mi, i = 1, 2, . . . , d,

xi ∈ Si, i = 1, 2, . . . , d,

which is exactly the KKT system for (G). Therefore, (x1
∗, x

2
∗, . . . , x

d
∗) must be a KKT

point of (G) as well.
Remark that since not all KKT points are stationary, Theorem 3.1 is in fact a

stronger statement; however, Corollary 3.2 is convenient to use in many applications.

4. Spherically constrained homogeneous polynomial optimization. Our
study of (G) in this paper is motivated by the tensor optimization model (T ) consid-
ered in section 2:

(T ) max
∑

1≤i1≤n1,1≤i2≤n2,...,1≤id≤nd

Fi1i2...idx
1
i1x

2
i2 . . . x

d
id

s.t. ‖xi‖ = 1, xi ∈ �ni , i = 1, 2, . . . , d,

which is clearly a special case of (G). Moreover, AlgorithmMBI is simple to implement
in this case, as optimizing one block while fixing all other blocks is a trivial problem
to solve. In fact, simultaneously optimizing over two vectors of variables, while fixing
other vectors, is also easy to implement; see, [59, 64]. In particular, if d is even, then we
may partition the blocks as {x1, x2}, . . . , {xd−1, xd}, and then the subroutine reduces
to an eigenvalue problem, rather than least square. (Some numerical results for the
latter implementation will be presented in section 5.) The flexibility in the design of
the blocks is an important factor to consider in order for the MBI method to achieve
its full efficiency.

It is not hard to verify (see, e.g., section 3.4.2 of [36]) that (T ) is actually equiv-
alent to the so-called best rank-one tensor approximation problem given as

min ‖F − λ · x1 ⊗ x2 ⊗ · · · ⊗ xd‖
s.t. λ ∈ �, ‖xi‖ = 1, xi ∈ �ni , i = 1, 2, . . . , d.

Traditionally, the ALS method is a popular solution method for such models (see [30,
14]). However, the convergence of the ALS method is not guaranteed in general,
as we remarked before, and the new MBI method avoids the pitfalls regarding the
convergence.
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In the case when the given dth-order tensor F ∈ �nd

is super-symmetric, then
the corresponding super-symmetric rank-one approximation should be

min

∥∥∥∥F − λ · x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
d

∥∥∥∥
s.t. λ ∈ �, x ∈ �n.

Similar to the nonsymmetric case, by imposing the vector x on the unit sphere, we
can also verify that the rank-one approximation of super-symmetric tensor problem
is indeed equivalent to

(H) max f(x) = F (x, x, . . . , x︸ ︷︷ ︸
d

)

s.t. ‖x‖ = 1, x ∈ �n,

where F is the multilinear tensor function defined by the super-symmetric tensor form
F . In fact, the above problem (H) is also directly related to computing the maximal
eigenvalue of the tensor F ; see Qi [50, 52]. The main contribution of this section is
to present a new procedure, based on MBI, to effectively compute a KKT point for
the best rank-one approximation of a super-symmetric tensor F , namely, (H).

4.1. Relationship between (H) and (T ). In He, Li, and Zhang [21], problem
(T ) is regarded as a relaxation of (H), and an approximate solution for (T ) is used
to construct an approximate solution for (H). Now we shall prove that these two
problems are actually equivalent. In fact, we shall prove the following result.

Theorem 4.1. Suppose that F ∈ �nd

is a dth-order super-symmetric tensor with
F being its corresponding multilinear function. Let Gi ∈ �mt

be a tth-order super-
symmetric tensor with Gi being its corresponding multilinear function, i = 1, 2, . . . , n.
Consider a mapping g : �m �→ �n where the ith component of g is given by gi(x) =
Gi(x, x, . . . , x︸ ︷︷ ︸

t

), i = 1, 2, . . . , n. If the image set g(�m) ⊆ �n is a linear subspace of

�n, then

max
‖g(x)‖=1

|F (g(x), g(x), . . . , g(x)︸ ︷︷ ︸
d

)| = max
‖g(xi)‖=1, i=1,2,...,d

|F (g(x1), g(x2), . . . , g(xd))|.

Proof. Denote the linear subspace g(�m) to be K ⊆ �n. It is clear that the two
optimization problems in Theorem 4.1 are equivalent to

(Hd) max |F (y, y, . . . , y︸ ︷︷ ︸
d

)|

s.t. ‖y‖ = 1, y ∈ K

and

(Td) max |F (y1, y2, . . . , yd)|
s.t. ‖yi‖ = 1, yi ∈ K, i = 1, 2, . . . , d,

respectively. We shall aim to prove that v(Td) = v(Hd).
The proof is based on the induction on the order of the tensor d. It is trivially

true when d = 1. Suppose that v(Td) = v(Hd) for d with d ≥ 1. Then, for the case
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d+1, denote (ŷ1, ŷ2, . . . , ŷd, ŷd+1) to be an optimal solution of (Td+1). By induction,
we have

v(Td+1) = max
‖yi‖=1, yi∈K, i=1,2,...,d

|F (y1, y2, . . . , yd, ŷd+1)|
(4)

= max
‖y‖=1, y∈K

|F (y, y, . . . , y︸ ︷︷ ︸
d

, ŷd+1)|.

Denote S to be the set of all optimal solutions of (Td+1) with support 1 or 2, i.e.,
the number of distinctive vectors of {y1, y2, . . . , yd, yd+1} is less than or equal to 2.
From (4), we know that S is nonempty. By the continuity of F and compactness of
the feasible region of yi for i = 1, 2, . . . , d, it is not hard to verify that S is compact.
Now consider the following optimization problem:

(A) max
(y,y,...,y; z,z,...,z)∈S

yTz.

If the optimal value v(A) < 1, then let one of its optimal solution be (ŷ, ŷ, . . . , ŷ; ẑ,
ẑ, . . . , ẑ). Clearly, ŷ �= ±ẑ, because otherwise (ŷ, ŷ, . . . , ŷ) ∈ S would have v(A) = 1, a
contradiction to v(A) < 1. Now denote ŵ = (ŷ + ẑ)/‖ŷ+ ẑ‖. Since ŷ, ẑ ∈ K, ŷ �= ±ẑ,
and K is a linear subspace of �n, we shall have ‖ŵ‖ = 1 and ŵ ∈ span(ŷ, ẑ) ⊂ K.

Without loss of generality, we may let F (ŷ, ŷ, . . . , ŷ; ẑ, ẑ, . . . , ẑ) = v(Td+1). (Oth-
erwise use −F instead of F .) Since (ŷ, ŷ, . . . , ŷ; ẑ, ẑ, . . . , ẑ) is an optimal solution
for (Td+1) and span(ŷ, ẑ) ⊂ K, it is easy to show that (ŷ, ŷ, . . . , ŷ; ŵ, ŵ; ẑ, ẑ, . . . , ẑ)
(namely, replacing the middle (ŷ, ẑ) by (ŵ, ŵ)) is also optimal for (Td+1). Apply this
replacement procedures until either ŷ or ẑ exhausts, while keeping the optimality for
(Td+1). Without loss of generality, we may come to an optimal solution in a form of
(ŷ, ŷ, . . . , ŷ; ŵ, ŵ, . . . , ŵ) ∈ S.

Let cos θ = v(A) for some θ ∈ (0, π]. Now we shall have

ŵTŷ = cos(θ/2) > cos θ = ŷTẑ = v(A),

which contradicts the optimality of (ŷ, ŷ, . . . , ŷ; ẑ, ẑ, . . . , ẑ) for (A). Thus v(A) must
be 1, implying that (A) has a solution with support 1, which proves v(Hd+1) =
v(Td+1).

One may be led to the question, are there interesting cases where g(�m) is a
subspace? The answer is yes, and the most obvious case is to let t = 1 and g(x) = Gx
with G ∈ �n×m, and then Theorem 4.1 leads us to the next corollary.

Corollary 4.2. If F ∈ �md

is a dth-order super-symmetric tensor with F being
its corresponding multilinear function, then

max
‖Gx‖=1

|F (x, x, . . . , x︸ ︷︷ ︸
d

)| = max
‖Gxi‖=1, i=1,2,...,d

|F (x1, x2, . . . , xd)|.

In our particular context, our models (H) and (T ) correspond to G being the
identity matrix and m = n. This corollary connects to the so-called generalized mul-
tilinear version of the Cauchy–Bouniakovski–Schwarz inequality (Hiriart-Urruty [27]),
which states, “Let F be a super-symmetric multilinear tensor form of order d (≥ 3),
and A be a positive semidefinite matrix. If

|F (x, x, . . . , x)| ≤ (xTAx)d/2 ∀x ∈ �n,
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then

|F (x1, x2, . . . , xd)|2 ≤
d∏

i=1

(xi)TAxi ∀xi ∈ �n, i = 1, 2, . . . , d.”

The above inequality was shown by Lojasiewicz (see [6]), and an alternative proof can
be found in Nesterov and Nemirovski [43]. Yet, it also follows from Corollary 4.2 by
setting A = GTG.

Another nontrivial special case when the condition holds is when t = 2, n = 4,
m ≥ 3, x ∈ Cm is in the complex-valued domain and Gi(x, x) is block square-free,
i.e., the vector x can be partitioned into two parts, x̃ and x̂, and gi(x) = Gi(x, x) =
(x̃HGix̂ + x̂HGH

i x̃)/2, i = 1, 2, 3, 4. In that case, Ai, Huang, and Zhang [1] proved
that the joint numerical range g(Cm) is a convex cone. Due to the block square-free
property, it is also not pointed at any direction and hence is a subspace.

For our subsequent discussion, the main purpose is to solve (H) via (T ), and so we
shall focus on the application of Corollary 4.2. First we remark that the absolute value
sign in the objective function of (Td) can actually be removed, since its optimal value
is always nonnegative. Similarly, if d is odd, then the absolute value sign in (Hd) can
also be removed, due to the symmetry of the constraint set; however, for even d, this
absolute value sign in (Hd) is necessary. Ni and Wang [45] proved that Corollary 4.2
holds only for a special case d = 4 and n = 2. We have showed that this property can
be extended to a super-symmetric tensor for general dimensions. Interestingly, this
result also implies that the best super-symmetric rank-one decomposition of a super-
symmetric tensor remains optimal even among all nonsymmetric rank-one tensors.

Corollary 4.2 establishes the equivalence between (H) and (T ) for odd d, as we
discussed before. For an even degree d, one may consider H as the dth-order super-
symmetric tensor associated with the homogeneous polynomial h(x) := (xTx)d/2 and
let f(x) := f(x) + τh(x), where τ = ‖F‖. In that case, f becomes nonnegative on
the sphere, and so we can again drop the absolute value sign without affecting the
optimal solutions. In both cases, solving (H) can be equivalently transformed into
solving (T ), where the MBI method applies.

On the other hand, Corollary 4.2 may not hold for other symmetric convex con-
straints, such as hypercube or simplex; see an example below for the case of a box.

Example 4.3. Denote F a diagonal matrix Diag (−1, 1), and the boxed constraints
are −e ≤ x, y ≤ e with e = (1, 1)T. Then max |F (x, y)| = max | − x1y1 + x2y2| = 2,
while max |F (x, x)| = max | − x2

1 + x2
2| = 1.

One can further generalize Corollary 4.2 to allow the following mixed homoge-
neous polynomial function (see, e.g., [23, 36]):

f(x1, x2, . . . , xs) := F (x1, x1, . . . , x1︸ ︷︷ ︸
d1

, x2, x2, . . . , x2︸ ︷︷ ︸
d2

, . . . , xs, xs, . . . , xs︸ ︷︷ ︸
ds

),

where xk ∈ �nk for k = 1, 2, . . . , s and the tensor form F ∈ �n1
d1×n2

d2×···×ns
ds

has partial symmetric property, namely, for any fixed (x2, x3, . . . , xs), F (·, ·, . . . , ·︸ ︷︷ ︸
d1

,

x2, x2, . . . , x2︸ ︷︷ ︸
d2

, . . . , xs, xs, . . . , xs︸ ︷︷ ︸
ds

) is a super-symmetric d1th-order tensor form, and

so on. Denote the order of the tensor F to be d :=
∑s

k=1 ds; then Corollary 4.2
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immediately implies that

(5)
max |f(x1, x2, . . . , xs)| = max |F (y1, y2, . . . , yd)|
s.t. ‖xi‖ = 1, i = 1, 2, . . . , s s.t. ‖yi‖ = 1, i = 1, 2, . . . , d.

Let us call the left model in the above equation

(M) max
‖xi‖=1, i=1,2,...,s

f(x1, x2, . . . , xs).

Clearly, (M) is a generalization of the biquadratic model considered in Ling et al. [37]
(with s = 2 and d1 = d2 = 2) and the multiquadratic model considered by So [56]
(with d1 = d2 = · · · = ds = 2). Equation (5) also suggests a method to solve (M) by
resorting to its multilinear form relaxation (T ), where the MBI method applies. On
the other hand, model (M) can also be solved by directly adopting the MBI method,
given that for any fixed (x1, . . . , xi−1, xi+1, . . . , xs), the maximization over ‖xi‖ = 1
can be efficiently solved, which in this case is the model (H) with degree di. In
particular, we can immediately apply the MBI method to solve the biquadratic model
and the multiquadratic model, since the corresponding subproblem is an eigenvalue
problem. We will also test our MBI method in a triquadratic case of the model (M)
in the next section.

4.2. Finding a KKT point for (H) using MBI via (T ). Corollary 4.2
suggests a way to solve the homogeneous polynomial optimization model (H) by
resorting to a seemingly more relaxed tensor optimization model (T ). However, the
equivalence is only established at optimality. Nevertheless, one may still search for a
KKT solution for (H) by means of searching for a KKT solution for (T ) with identical
block variables. (Corollary 4.2 guarantees that such a special KKT point exists, and
so the search is valid.) According to our computational experiences, this local search
process works very well. In most cases, the KKT solution so obtained is the true
global optimal solution of (H).

Let us formalize this search process as follows. We shall work with the version
of (T ) and (H) with an absolute sign in the objective function, like in Corollary 4.2.
This allows us to swap the direction from x to −x without affecting its objective. As
we discussed earlier, adding an absolute sign does not change the problem when d is
odd, and it also solves (H) when d is even if we modify the objective by adding a
(constant) positive term, as we discussed in the previous subsection.

Algorithm KKT. Finding a KKT point for (H ).

0 Input a KKT solution, say (x1
0, x

2
0, . . . , x

d
0), of (T ) with objective value f0.

Set k := 0 and (r10 , r
2
0 , . . . , r

d
0) := (x1

0, x
2
0, . . . , x

d
0).

1 If x1
k = ±x2

k = · · · = ±xd
k, stop. Otherwise, find the closest but not identical

pair among these d vectors, i.e., solve

max
1≤i<j≤d, (xi

k)
Txj

k �=1
(xi

k)
Txj

k.

Denote its optimal solution to be (ik, jk), and compute zk := (xik
k +

xjk
k )/‖xik

k + xjk
k ‖.

2 Set xik
k+1 := zk, x

jk
k+1 := zk and xi

k+1 := xi
k for i ∈ {1, 2, . . . , d}\{ik, jk}.

Update the objective value of (T )

fk+1 := F (x1
k+1, x

2
k+1, . . . , x

d
k+1).
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3 If fk+1 > fk; or if fk+1 = fk and there is a vector xi

(i ∈ {1, 2, . . . , d}\{ik, jk}) such that

xi �= F (x1
k+1, . . . , x

i−1
k+1, ·, xi+1

k+1, . . . , x
d
k+1)

‖F (x1
k+1, . . . , x

i−1
k+1, ·, xi+1

k+1, . . . , x
d
k+1)‖

;

in either case, starting from (x1
k+1, x

2
k+1, . . . , x

d
k+1), apply Algorithm

MBI to yield a KKT point (r1k+1, r
2
k+1, . . . , r

d
k+1) with a larger objec-

tive value for (T ). Otherwise, it is already a KKT point for (T ); set
(r1k+1, r

2
k+1, . . . , r

d
k+1) := (x1

k+1, x
2
k+1, . . . , x

d
k+1).

4 Let k := k + 1, and go to Step 1.

The following property of Algorithm KKT is immediate.
Proposition 4.4. For Algorithm KKT, the following hold.
1. Each element in the sequence {(r1k, r2k, . . . , rdk)} is a KKT point for (T ). The

sequence of the objective values {fk} for (T ) is nondecreasing.
2. If (r1∗, r

2
∗, . . . , r

d
∗) is a cluster point of the sequence {(r1k, r2k, . . . , rdk)}, then

r∗ := r1∗ = ±r2∗ = · · · = ±rd∗. Moreover, (r∗, r∗, . . . , r∗) or (−r∗,−r∗, . . . ,
−r∗) is a KKT point for (T ), and r∗ or −r∗ is a KKT point for (H).

5. Numerical experiments. In this section, we shall present some prelimi-
nary test results for the algorithms proposed in this paper. All the computations are
conducted in an Intel Core2 Quad CPU 2.66 GHz computer with 4 GB RAM. The sup-
porting software is MATLAB 7.8.0 (R2009a) as a platform. We use MATLAB Tensor
Toolbox Version 2.4 [3] whenever tensor operations are called, and we use GloptiPoly
3 [25] for general polynomial optimization for the purpose of comparison and set the
relaxation order of GloptiPoly 3 by default. To simplify our implementation, we use
cvx v1.2 (Grant and Boyd [17]) as a modeling tool for our MBI subroutine. The
(termination) precision for these algorithms is set to be 10−6. For a given maximiza-
tion problem dimension/structure, we run the algorithms on a number of random
instances. GloptiPoly 3 produces an upper bound for the optimal value of that in-
stance, which turns out to be equal to the optimal value in many cases, since the MBI
method typically would find a KKT solution equal to the upper bound computed
by GloptiPoly 3. We count the percentage of times when this happens in our tests.
Moreover, the MBI method is essentially a local improvement, and so it can be started
from different initial solutions. Our tests are designed to see the performance of the
MBI method over various settings. The following list of abbreviations refers to the
results summarized in the tables to follow:

mean(P): average ratio between solution found by MBI and upper bound
by GLP

mean(T): average cpu seconds to solve one instance
mean(I): average number of iterations to solve one instance
mean(T/I): average cpu seconds per iteration
dim.: the (d, n) dimension of the test problem
GLP: GloptiPoly 3
# samples: total number of test instances
# starts: number of times to run MBI from random initial solutions (keep

the best one)
Opt: percentage where the MBI solutions attain the upper bound of

GLP
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Table 1

Numerical results for (E1) when n = 2 and n = 3.

dim. # samples # starts GLP MBI

mean(T) Opt mean(T) mean(P)
(4, 2) 10 1 1.5961 80% 0.1257 90.83%

2 idem 90% 0.1352 94.62%
3 idem 100% 0.1472 100%

(4, 3) 10 1 31.6348 20% 0.1735 84.03%
2 idem 50% 0.2595 92.67%
3 idem 60% 0.3113 93.52%
4 idem 90% 0.3466 98.97%

5.1. Randomly simulated data. Throughout this subsection, all the data for
testing problems are generated in the following manner. First, a dth-order tensor
F ′ is randomly generated with its nd entries following i.i.d. normal distribution; we
then symmetrize F ′ to form a super-symmetric tensor F . For co-centered ellipsoidal
constraints, we generate an n × n matrix Q′

j (j = 1, 2, . . . ,m), whose entries follow

i.i.d. normal distribution, and then let Qj = (Q′
j)

TQ′
j . For comparison, we call

GloptiPoly 3 to get optimal value and optimal solution if possible, or else we get an
upper bound of the optimal value if GloptiPoly 3 fails to solve the given problem
instance.

5.1.1. Multilinear tensor function over spherical constraints. Here, we
present some numerical tests on (T ). In particular, we consider

(E1) max F (x, y, z, w) =
∑

1≤i,j,k,l≤n Fijklxiyjzkwl

s.t. ‖x‖ = ‖y‖ = ‖z‖ = ‖w‖ = 1,

x, y, z, w ∈ �n,

where tensor F is super-symmetric. The starting points (x0, y0, z0, w0) for Algorithm
MBI in our numerical experiments are all randomly generated. In our tests, we
consider all the variables in the same constraint set, and dimensions are set to be
n = 2 or n = 3. Here the total dimension of the test problems is chosen to be
low since for our comparison we need to use GloptiPoly 3, which works only for low
dimensions.

The comparison is listed in Table 1 for (E1). Evidently, the results show that
Algorithm MBI finds good-quality solutions very quickly. The more starts we use to
run the MBI algorithm, the higher the chance we get an optimal solution. In some
cases, GloptiPoly 3 is only capable of providing an upper bound; however, our MBI
solution achieves these upper bounds, proving the optimality of both the GloptiPoly 3
bound and the MBI solution. Besides, a majority of our simulation results show
that the KKT point (x∗, y∗, z∗, w∗) of (E1) is automatically a KKT point for the
homogeneous polynomial case, namely, their block variables are identical already.

5.1.2. Tests of another implementation of MBI. Algorithm MBI is opti-
mizing one block while fixing all other blocks. As mentioned in section 4, simultane-
ously optimizing over two blocks of variables while fixing other blocks works under
the MBI framework as well. Indeed, the similar procedures of Algorithm MBI still
perform efficiently, and the convergence is guaranteed. For convenience, we call this
modified procedures MBI′. Here, we test the performance of our methods MBI and
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Table 2

Numerical results for (E2) when n = 5, 10, 15.

dim. # samples MBI MBI′

mean(T) mean(I) mean(T/I) mean(T) mean(I) mean(T/I)
(6, 5) 10 0.3087 57.3 0.0055 0.1438 20.4 0.0077
(6, 10) 10 4.7894 86.7 0.0551 1.1106 38.0 0.0297
(6, 15) 10 75.1913 127.3 0.5901 22.9004 68.3 0.3346

Table 3

Numerical results for (E2) when (d, n) = (6, 10).

1 2 3 4 5 6 7 8 9 10
MBI 4.3856 4.6422 4.8539 4.6369 4.6196 4.2168 4.5176 4.6628 4.5077 4.3039
MBI′ 4.2235 4.8136 4.7079 4.5767 4.6906 4.4538 4.3806 4.7177 4.2873 4.3228

MBI′ for (T ) when d = 6:

(E2) max M(x, y, z, w, p, q) =
∑

1≤i,j,k,l,s,t≤n Mijklstxiyjzkwlpsqt

s.t. ‖x‖ = ‖y‖ = ‖z‖ = ‖w‖ = ‖p‖ = ‖q‖ = 1,

x, y, z, w, p, q ∈ �n,

where tensor M is super-symmetric. In our tests, we choose blocks x, y as a group,
blocks z, w as another group, and blocks p, q as the last group when implementing
MBI′. Algorithms MBI and MBI′ start from the same point (x0, y0, z0, w0, p0, q0),
which are all randomly generated as before.

Two test sets are reported for (E2). Table 2 reports the average computational
time, and Table 3 reports the average objective value, where (d, n) = (6, 10). In
Table 3, we test 10 random instances, and each entry is the average objective value by
running the corresponding algorithm 20 times. Tables 2 and 3 show that Algorithm
MBI′ is comparable to Algorithm MBI in terms of the solution quality produced;
however, Algorithm MBI′ requires much less computational effort on average. This
means that the MBI approach is quite flexible and various innovative implementations
are possible, and it should in fact be encouraged.

5.1.3. General polynomial function over quadratic constraints. Here, we
report numerical tests on (Q) when d = 4:

(E3) max p(x) = F4(x, x, x, x) + F3(x, x, x) + F2(x, x) + F1(x)

s.t. xTQjx ≤ 1, j = 1, 2, . . . ,m,

x ∈ �n,

where tensors F4 ∈ �n4

, F3 ∈ �n3

, F2 ∈ �n2

, and F1 ∈ �n are super-symmetric and
Qj � 0 for j = 1, 2, . . . ,m. One natural way to handle an inhomogeneous polynomial
function p(x) is through homogenization, e.g., the technique used in [22]. To be
specific, by introducing an auxiliary new variable xh, which is set to be 1, we can
homogenize function p(x) as

p(x) = F

((
x

xh

)
,

(
x

xh

)
,

(
x

xh

)
,

(
x

xh

))
:= F (x̄, x̄, x̄, x̄) = f(x̄),
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Table 4

CPU seconds of GloptiPoly 3 and MBI for (E3) when m = 15.

n 5 10 15 20 30 40
GLP 2.1830 14.6947 578.3944 ∞ ∞ ∞
MBI 24.8763 42.1047 42.9723 43.6567 44.8106 44.9569

where f(x̄) is an (n + 1)-dimensional homogeneous polynomial function of degree 4

and its associated fourth-order super-symmetric tensor form F ∈ �(n+1)4 . Therefore,
by denoting x̄ :=

(
x
1

)
, we may equivalently rewrite (E3) as

(Ē3) max f(x̄) = F

((
x

1

)
,

(
x

1

)
,

(
x

1

)
,

(
x

1

))
s.t. xTQjx ≤ 1, j = 1, 2, . . . ,m,

x ∈ �n.

We shall first call Algorithm MBI to solve the multilinear relaxation problem for
(Ē3) and get a KKT point, to be denoted by (x1

∗, x
2
∗, x

3
∗, x

4
∗). Then, we select the best

one from those four vectors as a feasible point for the original model (E3), namely,
xMBI = argmax1≤i≤4{p(xi∗)}. Unlike the equivalence between (H) and (T ) followed
from Corollary 4.2 due to its special structure, (Ē3) may not be equivalent to its
tensor relaxation problem. Hence, in the last set of tests, starting from the point
xMBI, we further apply a projected gradient method [7] (denoted by PGM in Table 5)
to improve the solution of (E3). For an overview of gradient projection methods,
see [5]. This method is also used as a supplement in [62, 54] for handling homogeneous
polynomial optimization over ball constraint or spherical constraint. The projected
gradient method is applied because this method converges to a KKT point of the
problem concerned, and also the optimal projection from �n onto the ellipsoidal
constraints set E = {x ∈ �n | xTQjx ≤ 1, j = 1, 2, . . . ,m} can be formulated as a
second-order cone program (SOCP) problem

min ‖x− y‖
s.t. x ∈ E,

where y ∈ �n is given, which we call cvx to solve under the same computational
platform. The starting points for MBI are all randomly generated as before. Two
test sets are constructed for (E3). First, we fix m = 15 for varying n, and we test the
performance of GloptiPoly 3 and MBI in terms of the computational time, regardless
of the quality of xMBI obtained by running MBI once. (Recall the relaxation order of
GloptiPoly 3 is set by default.) Numerical results are listed in Table 4. Each entry is
the average time of 10 randomly generated instances. From Table 4, we conclude that
the computational time of MBI is insensitive to the dimension n, while GloptiPoly 3
is very sensitive to the dimension. In fact, the computational time of MBI is much
less than that of GloptiPoly 3 when the dimension n gets large.

Second, we fix m = 10 and pick some lower dimensions n, whose problems can be
efficiently solved by GloptiPoly 3. We then test the performance of MBI. Specifically,
we solve (E3) by three different approaches: (1) directly using GloptiPloy 3; (2)
applying MBI with randomly generated starting points to get the point xMBI; and (3)
using projected gradient method with the starting point xMBI. Numerical results are
summarized in Table 5, which shows the excellent performance of the MBI method.
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Table 5

Numerical results for (E3) when m = 10.

dim. # samples GLP MBI MBI+PGM

mean(T) Opt mean(T) mean(P) Opt mean(T) mean(P)

(4, 5) 20 1.79 20% 22.81 85.57% 95% 29.68 98.21%
(4, 10) 20 13.01 0% 38.95 85.79% 95% 48.66 99.93%
(4, 12) 20 66.73 0% 41.36 89.61% 100% 50.13 100%

GloptiPoly 3 is a powerful tool for solving (E3) with low dimensions. However, the
MBI method works very well for polynomial optimization over ellipsoidal constraints
even in large dimensions.

5.2. Applications. In this subsection, we shall test our proposed algorithms
by using data from real applications, including rank-one approximation of super-
symmetric tensors, and MRI.

5.2.1. Rank-one approximation of super-symmetric tensors. As discussed
in section 4, homogeneous polynomial optimization over spherical constraint is equiv-
alent to the best rank-one approximation of super-symmetric tensors and hence is
solvable by our methods. We consider an example in this subsection from Kofidis
and Regalia (Example 1 of [30]). The authors of [30] used this example to show that
their proposed method S-HOPM did not converge for the particular super-symmetric
tensor G ∈ �3×3×3×3 with entries

G1111 = 0.2883, G1112 = −0.0031, G1113 = 0.1973, G1122 = −0.2485,

G1123 = −0.2939, G1133 = 0.3847, G1222 = 0.2972, G1223 = 0.1862,

G1233 = 0.0919, G1333 = −0.3619, G2222 = 0.1241, G2223 = −0.3420,

G2233 = 0.2127, G2333 = 0.2727, G3333 = −0.3054.

We will test this example using MBI. In our setting, the best rank-one approximation
of the tensor G is formulated as

(E4) max
∑

1≤i,j,k,l≤3

Gijklxixjxkxl

s.t. ‖x‖ = 1, x ∈ �3.

Since the order of G is even, we choose η = 6 and construct a modified and equivalent
optimization problem of (E4)

(E5) max
∑

1≤i,j,k,l≤3

(G + ηH)ijklxixjxkxl

s.t. ‖x‖ = 1, x ∈ �3,

where H is a fourth-order super-symmetric tensor associated with the homogeneous
polynomial h(x) = (xTx)2. For the reformulated problem, we apply Algorithm MBI
to the multilinear tensor form relaxation of (E5):

(E6) max G(x, y, z, w) =
∑

1≤i,j,k,l≤3

(G + ηH)ijklxiyjzkwl

s.t. ‖x‖ = ‖y‖ = ‖z‖ = ‖w‖ = 1,

x, y, z, w ∈ �3.
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Fig. 1. Convergence results of MBI for (E6).

By using MBI with randomly generated starting points, we get three local maxi-
mum solutions for (E6). For each local maxima (x, y, z, w) we found, it shares the
same directions among these four vectors when MBI stops, i.e., x = y = z = w.
Hence, it provides a local maxima for the original model (E5), which is also a lo-
cal maxima for (E4). In Figure 1, the total number of iterations in each round
of MBI is presented for each local maxima we have found. Indeed, MBI converges
very quickly to a local maxima. The optimal value for (E4) is 0.8893 (recall we
should subtract 6 in the function G(x, y, z, w)), and the optimal solutions are x∗ =
±(0.6671, 0.2487,−0.7022). Hence, the best rank-one approximation for the super-
symmetric tensor G is 0.8893 x∗ ⊗ x∗ ⊗ x∗ ⊗ x∗.

5.2.2. MRI. Finally, we shall conclude this section by considering one real data
set for polynomial optimization in MRI. Ghosh et al. [16] formulated a fiber detection
problem in diffusion MRI by maximizing a homogeneous polynomial function over
spherical constraint. In this particular case, the following polynomial optimization
model is considered:

max f(x)

s.t. ‖x‖ = 1, x ∈ �3,

where f(x) is a homogeneous polynomial of even degree d. The problem lives in three
dimensions as in the real world, and all its local maxima have physical meanings for
MRI.

We shall test our Algorithm MBI by using a set of data provided by Ghosh and
Deriche. The corresponding objective function f(x) is

0.74694 x0
4 − 0.435103 x0

3x1 + 0.37089 x0
3x2 + 0.454945 x0

2x1
2

− 0.29883 x0
2x1x2 + 1.24733 x0

2x2
2 + 0.0657818 x0x1

3 − 0.795157 x0x1
2x2

+ 0.714359 x0x1x2
2 − 0.397391 x0x2

3 + x1
4 + 0.139751 x1

3x2

+ 0.316264 x1
2x2

2 − 0.405544 x1x2
3 + 0.794869 x2

4,
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Table 6

Numerical results for MRI.

Method KKT solution Objective value
MBI ±(0.0116, 0.9992, 0.0382) 1.0031

±(0.3166, 0.2130,−0.9243) 0.9213
±(0.9542,−0.1434, 0.2624) 0.8428

GLP ±(0.0116, 0.9992, 0.0382) 1.0031

where x = (x0, x1, x2)
T. By choosing η = 2, we adopt the same procedures for rank-

one approximation of super-symmetric tensors discussed in section 5.2.1 to solve the
MRI problem. GloptiPoly 3 is also called for comparison. The numerical results are
reported in Table 6. MBI is able to find all three local maxima, while GloptiPoly 3
finds only the global maximum.

Acknowledgment. We would like to thank A. Ghosh and R. Deriche for pro-
viding us a set of real data from the MRI application.
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