MAXIMUM BLOCK IMPROVEMENT AND POLYNOMIAL OPTIMIZATION*

BILIAN CHEN ${ }^{\dagger}$, SIMAI HE ${ }^{\ddagger}$, ZHENING LI §, AND SHUZHONG ZHANG ${ }^{〔}$

Abstract

In this paper we propose an efficient method for solving the spherically constrained homogeneous polynomial optimization problem. The new approach has the following three main ingredients. First, we establish a block coordinate descent type search method for nonlinear optimization, with the novelty being that we accept only a block update that achieves the maximum improvement, hence the name of our new search method: maximum block improvement (MBI). Convergence of the sequence produced by the MBI method to a stationary point is proved. Second, we establish that maximizing a homogeneous polynomial over a sphere is equivalent to its tensor relaxation problem; thus we can maximize a homogeneous polynomial function over a sphere by its tensor relaxation via the MBI approach. Third, we propose a scheme to reach a KKT point of the polynomial optimization, provided that a stationary solution for the relaxed tensor problem is available. Numerical experiments have shown that our new method works very efficiently: for a majority of the test instances that we have experimented with, the method finds the global optimal solution at a low computational cost.

Key words. block coordinate descent, polynomial optimization problem, tensor form
AMS subject classifications. 90C26, 90C30, 15A69, 49M27
DOI. 10.1137/110834524

1. Introduction. The optimization models whose objective and constraints are polynomial functions have recently attracted much research attention. This is in part due to an increased demand on the application side (cf. the sample applications in numerical linear algebra [50, 26, 28], material sciences [57], quantum physics [9, 18], and signal processing $[16,4,53]$) and in part due to its own strong theoretical appeal. Indeed, polynomial optimization is a challenging task; at the same time it is rich enough to be fruitful. For instance, even the simplest instances of polynomial optimization, such as maximizing a cubic polynomial over a sphere, is NP-hard (Nesterov [42]). However, the problem is so elementary that it can even be attempted in an undergraduate calculus class. For readers interested in polynomial optimization with simple constraints, see De Klerk [12] for a survey on the computational complexity of optimizing various classes of polynomial functions over a simplex, hypercube, or sphere. In particular, De Klerk, Laurent, and Parrilo [13] designed a polynomial-time approximation scheme (PTAS) for minimizing polynomials of fixed degree over the simplex.
[^0]So far, a few results have been obtained for approximation algorithms with guaranteed worst-case performance ratios for higher degree polynomial optimization problems. Luo and Zhang [39] derived a polynomial-time approximation algorithm to optimize a multivariate quartic polynomial over a region defined by quadratic inequalities. Ling et al. [37] considered the problem of minimizing a biquadratic function over two spheres and proposed polynomial-time approximation algorithms. He, Li, and Zhang [21] discussed the optimization of homogeneous polynomial functions of any fixed degree over quadratic constraints and proposed approximation algorithms, with performance ratios improving that of [39, 37]. Recently, So [56] improved the approximation ratio in the case of spherically constrained homogeneous polynomial optimizations. For a general inhomogeneous polynomial optimization over convex compact sets, He, Li, and Zhang [22] proposed polynomial-time approximation algorithms with relative approximation ratios, which is the only result so far with regard to approximation algorithms for an inhomogeneous polynomial. Later, the authors extended their results in [23] by considering polynomials in discrete (typically binary) variables and designed randomized approximation algorithms. For a recent treatise on the topic, see the Ph.D. thesis of Li [36].

On the computational side, polynomial optimization problems can be treated as nonlinear programming, and many existing software packages are available, including KNITRO, BARON, MINOS, SNOPT, and the MATLAB optimization toolbox. (See [44] for further information.) However, these solvers are not tailor-made for polynomial optimization problems, and so the performance may vary greatly from one problem instance to another. Therefore, it is natural to wonder whether one can design efficient algorithms for specific types of polynomial optimization problems. Prajna, Papachristodoulou, and Parrilo [49] presented the package SOSTOOLS for solving sum of squares (SOS) polynomial programs, based on the SOS decomposition for multivariate polynomials, which can be computed using (possibly large-size) semidefinite programs. More recently, Henrion, Lasserre, and Loefberg [25] developed a specialized tool known as GloptiPoly 3 (a later version of GloptiPoly; see Henrion and Lasserre [24]) in finding global optimal solutions for polynomial optimizations based on the SOS approach (see [32, 33, 35, 47, 48] for details). GloptiPoly 3 calls the semidefinite programming (SDP) solver SeDuMi [58]. Therefore, due to the limitation to solve large SDP problems, GloptiPoly 3 may not be the right tool to deal with large-size polynomials (say, a sixth degree polynomial in 20 variables). However, if the polynomial optimization model in question is sparse in some way, then it is possible to exploit the sparsity in GloptiPoly 3; see [34]. As a matter of fact, SparsePOP [61] makes use of the sparsity explicitly and is a more appropriate alternative for sparse polynomial optimization based on the SOS approach. Unfortunately, for the problems considered in this paper, the sparsity structure is not readily exploited by SparsePOP. For more information on polynomial optimization, see the recent book of Anjos and Lasserre [2] and the references therein.

Spherically constrained homogeneous polynomial optimization models have received some recent research attention, theoretically as well as numerically. One direct approach is to apply the method of Lagrange multipliers to reach a set of multivariate polynomial equations, namely, the KKT system, which provides the necessary conditions for optimality; see, e.g., $[16,28,65]$. In [16], one strives to enumerate all the solutions of a KKT system, not only the global optimum, as all the KKT solutions will be meaningful in this application. Indeed, the authors develop special algorithms for that purpose, e.g., the subdivision methods proposed by Mourrain and Pavone [40] and the generalized normal forms algorithms designed by Mourrain and

Trébuchet [41]. However, the shortcomings of these methods are apparent if the degree of the polynomial is high. An important application of spherically constrained homogeneous polynomial optimizations is the best (in the sense of least-square) rankone approximation of tensors (sometimes also known as the rank-one factorization): find vectors $x^{1}, x^{2}, \ldots, x^{d}$ for the following minimization problem:

$$
\left(R_{f a c}\right) \min \sum_{i_{1}, i_{2}, \ldots, i_{d}}\left(x_{i_{1}}^{1} x_{i_{2}}^{2} \cdots x_{i_{d}}^{d}-\mathcal{F}_{i_{1} i_{2} \ldots i_{d}}\right)^{2}
$$

where $\mathcal{F}=\left(\mathcal{F}_{i_{1} i_{2} \ldots i_{d}}\right)$ is a d th-order tensor. In particular, if the tensor \mathcal{F} is supersymmetric (every element $\mathcal{F}_{i_{1} i_{2} \ldots i_{d}}$ is invariant under all permutations of (i_{1}, i_{2}, \ldots, $\left.i_{d}\right)$), then the optimal vectors $x^{1}, x^{2}, \ldots, x^{d}$ should coincide (namely, they should be equal to each other). The main workhorse for solving the above tensor problem is known as the alternating least square (ALS) method proposed originally by Carroll and Chang [8] and Harshman [19]. However, the ALS method is not guaranteed to converge to a global minimum or a stationary point, only to a solution where the objective function ceases to decrease. There are numerous extensions of the ALS method (e.g., incorporating a line-search procedure in the ALS procedure [46, 55]). Along a related line, De Lathauwer, De Moor, and Vandewalle [14] proposed the higher-order power method (HOPM) on rank-one approximation of higher-order tensors, which can also be viewed as an extension of the ALS method. Following up on that approach, Kofidis and Regalia [30] devised the symmetric higher-order power method (S-HOPM) to rank-one approximation of super-symmetric tensors and proved its convergence for super-symmetric tensors whenever their corresponding polynomial forms have convexity or concavity. Furthermore, Wang and Qi [62] proposed a greedy method, which iteratively computes the best super-symmetric rank-one approximation of the residual tensors in order to obtain a successive super-symmetric rank-one decomposition. Those methods have nice properties; however, they all fail to guarantee convergence for the tensor model $\left(R_{f a c}\right)$, whether the tensor is super-symmetric or not. For an overview on the recent developments on tensor decomposition, see the excellent survey by Kolda and Bader [31]. Another entirely different but very interesting approach, known as the Z-eigenvalue method, was proposed by Qi, Wang, and Wang [54]. This heuristic cross-hill Z-eigenvalue method aims to solve homogeneous polynomial functions with degree at most three.

Motivated by the block coordinate descent (BCD) method for nondifferentiable minimization proposed by Tseng [60] and the iterative waterfilling algorithm (IWA) for multiuser power control in digital subscriber lines by Luo and Pang [38], in this paper we shall propose a different method, to be called the maximum block improvement (MBI), for solving spherically constrained homogeneous polynomial optimization problems. Our new method guarantees convergence to a stationary point of the problem, which is typically also global optimal in our numerical experiences. The method actually has a general appeal: it can be applied to solve any optimization model with separate block constraints. The proposed MBI approach can naturally be regarded as a local improvement scheme for polynomial optimization, to start from any good initial solutions. Therefore, the new MBI method can be used in combination with any approximation algorithms (such as Khot and Naor [29] and He, Li, and Zhang [21, 22, 23]) to achieve excellent performance in practice while enjoying the theoretical worst case performance guarantees.

The remainder of the paper is organized as follows. In section 2 , we introduce the notation and the models to be discussed throughout the paper. Then in section 3,
the general scheme of the MBI method is introduced and convergence properties are discussed. In section 4, we present an equivalence result between the spherically constrained homogeneous polynomial optimization and its tensor relaxation problem. This will enable application of the MBI method to solve the polynomial optimization model. Finally, we present the results of our numerical experiments in section 5 .
2. Notations and models. Let us consider the following multilinear tensor function:

$$
\begin{equation*}
F\left(x^{1}, x^{2}, \ldots, x^{d}\right)=\sum_{1 \leq i_{1} \leq n_{1}, 1 \leq i_{2} \leq n_{2}, \ldots, 1 \leq i_{d} \leq n_{d}} \mathcal{F}_{i_{1} i_{2} \ldots i_{d}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{d}}^{d} \tag{1}
\end{equation*}
$$

where $x^{k} \in \Re^{n_{k}}$ for $k=1,2, \ldots, d$ and $\mathcal{F}=\left(\mathcal{F}_{i_{1} i_{2} \ldots i_{d}}\right) \in \Re^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ is a d th-order tensor with F being its associated multilinear function. Closely related to the tensor form \mathcal{F} is a general d th-degree homogeneous polynomial function $f(x)$, where $x \in \Re^{n}$ with its associated tensor \mathcal{F} being super-symmetric. In fact, super-symmetric tensors are bijectively related to homogeneous polynomials; see [31]. Denote F to be the multilinear function defined by the super-symmetric tensor form \mathcal{F}; we then have

$$
\begin{equation*}
f(x)=F(\underbrace{x, x, \ldots, x}_{d}) \tag{2}
\end{equation*}
$$

A generic multivariate (inhomogeneous) polynomial function of degree d, denoted by $p(x)$, can be explicitly written as a summation of homogeneous polynomial functions in decreasing degrees, namely,

$$
\begin{equation*}
p(x):=\sum_{i=1}^{d} f_{i}(x)+f_{0}=\sum_{i=1}^{d} F_{i}(\underbrace{x, x, \ldots, x}_{i})+f_{0} \tag{3}
\end{equation*}
$$

where $x \in \Re^{n}, f_{0} \in \Re$, and $f_{i}(x)=F_{i}(\underbrace{x, x, \ldots, x}_{i})$ is a homogeneous polynomial function of degree i for $i=1,2, \ldots, d$.

Throughout this paper, we use F to denote a multilinear function defined by a tensor form \mathcal{F}, f for a homogeneous polynomial function, and p for an inhomogeneous polynomial function; see functions (1), (2), and (3). To avoid triviality, we also assume that at least one component of the tensor form, \mathcal{F} in functions F and f, and \mathcal{F}_{d} in function p is nonzero. Throughout the paper we shall use the 2-norm for vectors, matrices, and tensors, which is the usual Euclidean norm, defined as

$$
\|\mathcal{F}\|:=\sqrt{\sum_{1 \leq i_{1} \leq n_{1}, 1 \leq i_{2} \leq n_{2}, \ldots, 1 \leq i_{d} \leq n_{d}} \mathcal{F}_{i_{1} i_{2} \ldots i_{d}}{ }^{2}} .
$$

The \otimes symbol represents the vector outer product. For example, for vectors $x \in$ $\Re^{n_{1}}, y \in \Re^{n_{2}}, z \in \Re^{n_{3}}$, the notion $x \otimes y \otimes z$ defines a third-order tensor $\mathcal{F} \in \Re^{n_{1} \times n_{2} \times n_{3}}$, whose (i, j, k) th element $\mathcal{F}_{i j k}$ is equal to $x_{i} y_{j} z_{k}$.

In this paper we shall focus on the polynomial optimization models as considered in He, Li, and Zhang [21, 22], such as optimization of multilinear tensor function (1), homogeneous polynomial (2), and general inhomogeneous polynomial (3) over quadratic constraints, including spherical constraint or the Euclidean ball constraint as a special case. In particular, the authors considered a general model where an
inhomogeneous polynomial function is maximized over the intersection of co-centered ellipsoids:

$$
\begin{array}{lll}
(Q) & \max & p(x) \\
\text { s.t. } & x^{\mathrm{T}} Q_{j} x \leq 1, j=1,2, \ldots, m, \\
& x \in \Re^{n},
\end{array}
$$

where matrices $Q_{j} \succeq 0$ for $j=1,2, \ldots, m$ and $\sum_{j=1}^{m} Q_{j} \succ 0$.
In this paper we shall pay special attention to the following model:

$$
\begin{array}{lll}
(H) & \max & f(x) \\
& \text { s.t. } & \|x\|=1, x \in \Re^{n} .
\end{array}
$$

As we shall see later, (H) has applications in magnetic resonance imaging (MRI), the best rank-one approximation of the super-symmetric tensor \mathcal{F}, and the problem of finding the largest eigenvalue of the tensor \mathcal{F}; see, e.g., $[16,30,50,52]$. The multilinear tensor relaxation of (H) is

$$
\begin{array}{lll}
(T) & \max & F\left(x^{1}, x^{2}, \ldots, x^{d}\right) \\
& \text { s.t. } & \left\|x^{i}\right\|=1, x^{i} \in \Re^{n}, i=1,2, \ldots, d .
\end{array}
$$

In He, Li, and Zhang [21], the above relaxation played a crucial role in the approximation algorithms for solving (H). One of the main contributions of the current paper is to reveal an intrinsic relationship between the optimal solutions of (T) and (H). Finally, as a matter of notation, for a given optimization problem (P) we shall denote its optimal value by $v(P)$.
3. The MBI method. Toward eventually solving (T), let us start by considering a generic optimization model in the form of

$$
\begin{array}{lll}
(G) & \max & f\left(x^{1}, x^{2}, \ldots, x^{d}\right) \\
& \text { s.t. } & x^{i} \in S^{i} \subseteq \Re^{n_{i}}, i=1,2, \ldots, d
\end{array}
$$

where $f: \Re^{n_{1}+n_{2}+\cdots+n_{d}} \rightarrow \Re$ is a general continuous function and S^{i} is a general set, $i=1,2, \ldots, d$. A popular special case of the model is where $S^{i}=\Re^{n_{i}}, i=1,2, \ldots, d$. For that special case, a method known as the block coordinate descent (BCD) is well studied; see Tseng [60] and the references therein. The method calls for maximizing one block, say, $x^{i} \in \Re^{n_{i}}$, at one time, while all other variables in other blocks are temporarily fixed. One then moves on to alter the choice of the blocks. Very recently, Wright [63] introduced an extension based on BCD. Typically, under various convexity assumptions on the objective function, one is able to show some convergence property of the BCD method (cf. [60]). In fact, the BCD method can be applied regardless of any convexity assumptions, as long as one is able to optimize over one block of variable while fixing the others. A summary of the BCD or other block search methods can be found in Bertsekas [5]. The approach has a relatively long history (it is also known as the block nonlinear Gauss-Seidel method). Without taking any precaution, the BCD method may not be convergent; see the examples in Powell [51]. In the literature, this issue of convergence has been thoroughly studied. However, the results were not entirely satisfactory. To ensure convergence, either one would require some type of convexity (cf. the discussion in [5]) or the search routine is modified (cf. a proximalpoint modification in Grippo and Sciandrone [11]). Our new block search method
does not modify the objective function in the block search subroutine and at the same time ensures the convergence to a stationary solution within the structure of the BCD framework. The so-called ALS method for tensor decomposition problems (see section 1) is a special form of the BCD method. We shall remark that the model is reminiscent of a noncooperative game, where S^{i} can be regarded as the strategy set of player $i, i=1,2, \ldots, d$. Certainly, in the case of noncooperative game, the objective of each player may be different in general. In a channel spectrum allocation game in communication, the corresponding BCD approach is also known as the iterative waterfilling algorithm (IWA); Luo and Pang [38] show that the IWA is convergent to the Nash equilibrium under some fairly loose conditions. It is possible that the IWA may cycle in the absence of these conditions; see an example in [20].

To simplify the analysis, we assume here that S^{i} is compact, $i=1,2, \ldots, d$. But that alone is insufficient to guarantee the convergence, as we know that even for the special case of the ALS, the iterates may not converge to a stationary point; see e.g., $[10,14,15,55]$. A sufficient condition for convergence is to take a step that corresponds to the maximum improvement. The enhanced procedure is as follows:

Algorithm MBI. The MBI method for solving (G).
0 (Initialization). Choose a feasible solution $\left(x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{d}\right)$ with $x_{0}^{i} \in S^{i}$ for $i=1,2, \ldots, d$ and compute initial objective value $v_{0}:=f\left(x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{d}\right)$. Set $k:=0$.
1 (Block Improvement). For each $i=1,2, \ldots, d$, solve

$$
\begin{aligned}
\left(G_{i}\right) & \max \\
& f\left(x_{k}^{1}, \ldots, x_{k}^{i-1}, x^{i}, x_{k}^{i+1}, \ldots, x_{k}^{d}\right) \\
\text { s.t. } & x^{i} \in S^{i}
\end{aligned}
$$

and let

$$
\begin{aligned}
y_{k+1}^{i} & :=\arg \max _{x^{i} \in S^{i}} f\left(x_{k}^{1}, \ldots, x_{k}^{i-1}, x^{i}, x_{k}^{i+1}, \ldots, x_{k}^{d}\right), \\
w_{k+1}^{i} & :=f\left(x_{k}^{1}, \ldots, x_{k}^{i-1}, y_{k+1}^{i}, x_{k}^{i+1}, \ldots, x_{k}^{d}\right) .
\end{aligned}
$$

2 (Maximum Improvement). Let $w_{k+1}:=\max _{1 \leq i \leq d} w_{k+1}^{i}$ and $i^{*}=$ $\arg \max _{1 \leq i \leq d} w_{k+1}^{i}$. Let

$$
\begin{aligned}
x_{k+1}^{i} & :=x_{k}^{i}, \forall i \in\{1,2, \ldots, d\} \backslash\left\{i^{*}\right\} \\
x_{k+1}^{i^{*}} & :=y_{k+1}^{i^{*}} \\
v_{k+1} & :=w_{k+1}
\end{aligned}
$$

3 (Stopping Criterion). If $\left|v_{k+1}-v_{k}\right|<\epsilon$, stop. Otherwise, set $k:=k+1$, and go to Step 1.

The key assumption in the above process is that problem $\left(G_{i}\right)$ can be easily solved, which is the case for many applications. For instance, when $f\left(x^{1}, x^{2}, \ldots, x^{d}\right)=$ $-\left\|\mathcal{F}-x^{1} \otimes x^{2} \otimes \cdots \otimes x^{d}\right\|^{2}$, and $S^{i}=\Re^{n_{i}}$, then $\left(G_{i}\right)$ is simply a least squares problem; when $f\left(x^{1}, x^{2}, \ldots, x^{d}\right)$ is a multilinear tensor form and S^{i} is convex, then $\left(G_{i}\right)$ is a convex optimization problem. A major difference between MBI and IWA (or, for that matter, ALS, BCD, or block nonlinear Gauss-Seidel) lies in Step 2: rather than improving among block decision variables alternatively or cyclically, MBI chooses to update the block variables that achieve the maximum improvement. If in Step 2, solving $\left(G_{i}\right)$ is a least squares problem, then MBI becomes a variant of the ALS
method, which is widely used in tensor decompositions (cf. [31]). Unlike the ALS method, as we show next, the MBI method guarantees converging to a stationary point.

Theorem 3.1. If S^{i} is compact for $i=1,2, \ldots, d$, then any cluster point of the iterates $\left(x_{k}^{1}, x_{k}^{2}, \ldots, x_{k}^{d}\right)$, say, $\left(x_{*}^{1}, x_{*}^{2}, \ldots, x_{*}^{d}\right)$, will be a stationary point for (G); i.e.,

$$
x_{*}^{i}=\arg \max _{x^{i} \in S^{i}} f\left(x_{*}^{1}, \ldots, x_{*}^{i-1}, x^{i}, x_{*}^{i+1}, \ldots, x_{*}^{d}\right) \forall i=1,2, \ldots, d
$$

Proof. For each fixed $\left(x^{1}, \ldots, x^{i-1}, x^{i+1}, \ldots, x^{d}\right)$, denote $R_{i}\left(x^{1}, \ldots, x^{i-1}, x^{i+1}\right.$, \ldots, x^{d}) to be a best response function to x^{i}, namely,

$$
R_{i}\left(x^{1}, \ldots, x^{i-1}, x^{i+1}, \ldots, x^{d}\right) \in \arg \max _{x^{i} \in S^{i}} f\left(x^{1}, \ldots, x^{i-1}, x^{i}, x^{i+1}, \ldots, x^{d}\right)
$$

Suppose that $\left(x_{k_{t}}^{1}, x_{k_{t}}^{2}, \ldots, x_{k_{t}}^{d}\right) \rightarrow\left(x_{*}^{1}, x_{*}^{2}, \ldots, x_{*}^{d}\right)$ as $t \rightarrow \infty$. Then, for any $1 \leq i \leq d$, we have

$$
\begin{aligned}
& f\left(x_{k_{t}}^{1}, \ldots, x_{k_{t}}^{i-1}, R_{i}\left(x_{*}^{1}, \ldots, x_{*}^{i-1}, x_{*}^{i+1}, \ldots, x_{*}^{d}\right), x_{k_{t}}^{i+1}, \ldots, x_{k_{t}}^{d}\right) \\
& \quad \leq f\left(x_{k_{t}}^{1}, \ldots, x_{k_{t}}^{i-1}, R_{i}\left(x_{k_{t}}^{1}, \ldots, x_{k_{t}}^{i-1}, x_{k_{t}}^{i+1}, \ldots, x_{k_{t}}^{d}\right), x_{k_{t}}^{i+1}, \ldots, x_{k_{t}}^{d}\right) \\
& \quad \leq f\left(x_{k_{t}+1}^{1}, x_{k_{t}+1}^{2}, \ldots, x_{k_{t}+1}^{d}\right) \\
& \quad \leq f\left(x_{k_{t+1}}^{1}, x_{k_{t+1}}^{2}, \ldots, x_{k_{t+1}}^{d}\right)
\end{aligned}
$$

By continuity, when $t \rightarrow \infty$, it follows that

$$
f\left(x_{*}^{1}, \ldots, x_{*}^{i-1}, R_{i}\left(x_{*}^{1}, \ldots, x_{*}^{i-1}, x_{*}^{i+1}, \ldots, x_{*}^{d}\right), x_{*}^{i+1}, \ldots, x_{*}^{d}\right) \leq f\left(x_{*}^{1}, x_{*}^{2}, \ldots, x_{*}^{d}\right),
$$

which implies that the above should hold as an equality, since the other inequality is true by the definition of the best response function R_{i}. Thus, x_{*}^{i} is the best response to $\left(x_{*}^{1}, \ldots, x_{*}^{i-1}, x_{*}^{i+1}, \ldots, x_{*}^{d}\right)$, or equivalently, x_{*}^{i} is the optimal solution for the problem

$$
\max _{x^{i} \in S^{i}} f\left(x_{*}^{1}, \ldots, x_{*}^{i-1}, x^{i}, x_{*}^{i+1}, \ldots, x_{*}^{d}\right)
$$

for all $i=1,2, \ldots, d$.
In many applications, S^{i} is described by inequalities and equalities; e.g.,

$$
S^{i}=\left\{x^{i} \in \Re^{n_{i}} \mid g_{j}^{i}\left(x^{i}\right) \leq 0, j=1,2, \ldots, m_{i} ; h_{j}^{i}\left(x^{i}\right)=0, j=1,2, \ldots, \ell_{i}\right\}
$$

where $i=1,2, \ldots, d$. It is then more convenient to use the so-called KKT conditions, instead of an abstract form of the stationarity, under some constraint qualifications (CQ). ${ }^{1}$

Corollary 3.2. If $S^{i}=\left\{x^{i} \in \Re^{n_{i}} \mid g_{j}^{i}\left(x^{i}\right) \leq 0, j=1,2, \ldots, m_{i} ; h_{j}^{i}\left(x^{i}\right)=0, j=\right.$ $\left.1,2, \ldots, \ell_{i}\right\}$ is compact for all $i=1,2, \ldots, d$, and it satisfies a suitable constraint qualification (cf. footnote 1), then any cluster point of the iterates $\left(x_{k}^{1}, x_{k}^{2}, \ldots, x_{k}^{d}\right)$, say $\left(x_{*}^{1}, x_{*}^{2}, \ldots, x_{*}^{d}\right)$, will be a KKT point for (G).

Proof. As asserted by Theorem $3.1,\left(x_{*}^{1}, x_{*}^{2}, \ldots, x_{*}^{d}\right)$ is a stationary point. Moreover, since a constraint qualification is satisfied for S^{i}, we know that x_{*}^{i} is a KKT

[^1]point as well. Namely, there exist u_{j}^{i} and v_{j}^{i} such that $x^{i}=x_{*}^{i}$ satisfies the equations
\[

\left\{$$
\begin{array}{l}
\nabla_{x^{i}} f\left(x_{*}^{1}, \ldots, x_{*}^{i-1}, x^{i}, x_{*}^{i+1}, \ldots, x_{*}^{d}\right)=\sum_{j=1}^{m_{i}} u_{j}^{i} \nabla g_{j}^{i}\left(x^{i}\right)+\sum_{j=1}^{\ell_{i}} v_{j}^{i} \nabla h_{j}^{i}\left(x^{i}\right) \\
u_{j}^{i} g_{j}^{i}\left(x^{i}\right)=0, u_{j}^{i} \geq 0, j=1,2, \ldots, m_{i} \\
x^{i} \in S^{i}
\end{array}
$$\right.
\]

where u_{j}^{i} is the Lagrangian multiplier corresponding to the inequality constraint $g_{j}^{i}\left(x^{i}\right) \leq 0$ for $j=1,2, \ldots, m_{i}$, and v_{j}^{i} is the Lagrangian multiplier corresponding to the equality constraint $h_{j}^{i}\left(x^{i}\right)=0$ for $j=1,2, \ldots, \ell_{i}$. Therefore, $\left(x^{1}, x^{2}, \ldots, x^{d}\right)=$ $\left(x_{*}^{1}, x_{*}^{2}, \ldots, x_{*}^{d}\right)$ is a solution for

$$
\left\{\begin{array}{l}
\nabla_{x^{i}} f\left(x^{1}, \ldots, x^{i-1}, x^{i}, x^{i+1}, \ldots, x^{d}\right)=\sum_{j=1}^{m_{i}} u_{j}^{i} \nabla g_{j}^{i}\left(x^{i}\right)+\sum_{j=1}^{\ell_{i}} v_{j}^{i} \nabla h_{j}^{i}\left(x^{i}\right), i=1,2, \ldots, d \\
u_{j}^{i} g_{j}^{i}\left(x^{i}\right)=0, u_{j}^{i} \geq 0, j=1,2, \ldots, m_{i}, i=1,2, \ldots, d \\
x^{i} \in S^{i}, i=1,2, \ldots, d
\end{array}\right.
$$

which is exactly the KKT system for (G). Therefore, $\left(x_{*}^{1}, x_{*}^{2}, \ldots, x_{*}^{d}\right)$ must be a KKT point of (G) as well.

Remark that since not all KKT points are stationary, Theorem 3.1 is in fact a stronger statement; however, Corollary 3.2 is convenient to use in many applications.
4. Spherically constrained homogeneous polynomial optimization. Our study of (G) in this paper is motivated by the tensor optimization model (T) considered in section 2 :

$$
\begin{aligned}
(T) \quad \max & \sum_{1 \leq i_{1} \leq n_{1}, 1 \leq i_{2} \leq n_{2}, \ldots, 1 \leq i_{d} \leq n_{d}} \mathcal{F}_{i_{1} i_{2} \ldots i_{d}} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{d}}^{d} \\
& \left\|x^{i}\right\|=1, x^{i} \in \Re^{n_{i}}, i=1,2, \ldots, d
\end{aligned}
$$

which is clearly a special case of (G). Moreover, Algorithm MBI is simple to implement in this case, as optimizing one block while fixing all other blocks is a trivial problem to solve. In fact, simultaneously optimizing over two vectors of variables, while fixing other vectors, is also easy to implement; see, [59, 64]. In particular, if d is even, then we may partition the blocks as $\left\{x^{1}, x^{2}\right\}, \ldots,\left\{x^{d-1}, x^{d}\right\}$, and then the subroutine reduces to an eigenvalue problem, rather than least square. (Some numerical results for the latter implementation will be presented in section 5.) The flexibility in the design of the blocks is an important factor to consider in order for the MBI method to achieve its full efficiency.

It is not hard to verify (see, e.g., section 3.4.2 of [36]) that (T) is actually equivalent to the so-called best rank-one tensor approximation problem given as

$$
\begin{array}{ll}
\min & \left\|\mathcal{F}-\lambda \cdot x^{1} \otimes x^{2} \otimes \cdots \otimes x^{d}\right\| \\
\text { s.t. } & \lambda \in \Re,\left\|x^{i}\right\|=1, x^{i} \in \Re^{n_{i}}, i=1,2, \ldots, d
\end{array}
$$

Traditionally, the ALS method is a popular solution method for such models (see [30, 14]). However, the convergence of the ALS method is not guaranteed in general, as we remarked before, and the new MBI method avoids the pitfalls regarding the convergence.

In the case when the given d th-order tensor $\mathcal{F} \in \Re^{n^{d}}$ is super-symmetric, then the corresponding super-symmetric rank-one approximation should be

$$
\begin{array}{ll}
\min & \|\mathcal{F}-\lambda \cdot \underbrace{x \otimes x \otimes \cdots \otimes x}_{d}\| \\
\text { s.t. } & \lambda \in \Re, x \in \Re^{n} .
\end{array}
$$

Similar to the nonsymmetric case, by imposing the vector x on the unit sphere, we can also verify that the rank-one approximation of super-symmetric tensor problem is indeed equivalent to

$$
\begin{array}{rll}
(H) & \max & f(x)=F(\underbrace{x, x, \ldots, x}_{d}) \\
& \text { s.t. } & \|x\|=1, x \in \Re^{n},
\end{array}
$$

where F is the multilinear tensor function defined by the super-symmetric tensor form \mathcal{F}. In fact, the above problem (H) is also directly related to computing the maximal eigenvalue of the tensor \mathcal{F}; see Qi [50, 52]. The main contribution of this section is to present a new procedure, based on MBI, to effectively compute a KKT point for the best rank-one approximation of a super-symmetric tensor \mathcal{F}, namely, (H).
4.1. Relationship between (\boldsymbol{H}) and (\boldsymbol{T}). In He, Li, and Zhang [21], problem (T) is regarded as a relaxation of (H), and an approximate solution for (T) is used to construct an approximate solution for (H). Now we shall prove that these two problems are actually equivalent. In fact, we shall prove the following result.

Theorem 4.1. Suppose that $\mathcal{F} \in \Re^{n^{d}}$ is a dth-order super-symmetric tensor with F being its corresponding multilinear function. Let $\mathcal{G}_{i} \in \Re^{m^{t}}$ be a tth-order supersymmetric tensor with G_{i} being its corresponding multilinear function, $i=1,2, \ldots, n$. Consider a mapping $g: \Re^{m} \mapsto \Re^{n}$ where the ith component of g is given by $g_{i}(x)=$ $G_{i}(\underbrace{x, x, \ldots, x}_{t}), i=1,2, \ldots, n$. If the image set $g\left(\Re^{m}\right) \subseteq \Re^{n}$ is a linear subspace of \Re^{n}, then

$$
\max _{\|g(x)\|=1}|F(\underbrace{g(x), g(x), \ldots, g(x)}_{d})|=\max _{\left\|g\left(x^{i}\right)\right\|=1, i=1,2, \ldots, d}\left|F\left(g\left(x^{1}\right), g\left(x^{2}\right), \ldots, g\left(x^{d}\right)\right)\right| .
$$

Proof. Denote the linear subspace $g\left(\Re^{m}\right)$ to be $K \subseteq \Re^{n}$. It is clear that the two optimization problems in Theorem 4.1 are equivalent to

$$
\begin{aligned}
\left(H_{d}\right) & \max \\
\text { s.t. } & |F(\underbrace{y, y, \ldots, y}_{d})| \\
& \|y\|=1, y \in K
\end{aligned}
$$

and

$$
\begin{array}{rll}
\left(T_{d}\right) & \max & \left|F\left(y^{1}, y^{2}, \ldots, y^{d}\right)\right| \\
& \text { s.t. } & \left\|y^{i}\right\|=1, y^{i} \in K, i=1,2, \ldots, d
\end{array}
$$

respectively. We shall aim to prove that $v\left(T_{d}\right)=v\left(H_{d}\right)$.
The proof is based on the induction on the order of the tensor d. It is trivially true when $d=1$. Suppose that $v\left(T_{d}\right)=v\left(H_{d}\right)$ for d with $d \geq 1$. Then, for the case
$d+1$, denote $\left(\hat{y}^{1}, \hat{y}^{2}, \ldots, \hat{y}^{d}, \hat{y}^{d+1}\right)$ to be an optimal solution of $\left(T_{d+1}\right)$. By induction, we have

$$
\begin{align*}
v\left(T_{d+1}\right) & =\max _{\left\|y^{i}\right\|=1, y^{i} \in K, i=1,2, \ldots, d}\left|F\left(y^{1}, y^{2}, \ldots, y^{d}, \hat{y}^{d+1}\right)\right| \\
& =\max _{\|y\|=1, y \in K}|F(\underbrace{y, y, \ldots, y}_{d}, \hat{y}^{d+1})| . \tag{4}
\end{align*}
$$

Denote S to be the set of all optimal solutions of $\left(T_{d+1}\right)$ with support 1 or 2 , i.e., the number of distinctive vectors of $\left\{y^{1}, y^{2}, \ldots, y^{d}, y^{d+1}\right\}$ is less than or equal to 2 . From (4), we know that S is nonempty. By the continuity of F and compactness of the feasible region of y^{i} for $i=1,2, \ldots, d$, it is not hard to verify that S is compact. Now consider the following optimization problem:

$$
\begin{equation*}
\max _{(y, y, \ldots, y ; z, z, \ldots, z) \in S} y^{\mathrm{T}} z \tag{A}
\end{equation*}
$$

If the optimal value $v(A)<1$, then let one of its optimal solution be $(\hat{y}, \hat{y}, \ldots, \hat{y} ; \hat{z}$, \hat{z}, \ldots, \hat{z}). Clearly, $\hat{y} \neq \pm \hat{z}$, because otherwise $(\hat{y}, \hat{y}, \ldots, \hat{y}) \in S$ would have $v(A)=1$, a contradiction to $v(A)<1$. Now denote $\hat{w}=(\hat{y}+\hat{z}) /\|\hat{y}+\hat{z}\|$. Since $\hat{y}, \hat{z} \in K, \hat{y} \neq \pm \hat{z}$, and K is a linear subspace of \Re^{n}, we shall have $\|\hat{w}\|=1$ and $\hat{w} \in \operatorname{span}(\hat{y}, \hat{z}) \subset K$.

Without loss of generality, we may let $F(\hat{y}, \hat{y}, \ldots, \hat{y} ; \hat{z}, \hat{z}, \ldots, \hat{z})=v\left(T_{d+1}\right)$. (Otherwise use $-\mathcal{F}$ instead of \mathcal{F}.) Since $(\hat{y}, \hat{y}, \ldots, \hat{y} ; \hat{z}, \hat{z}, \ldots, \hat{z})$ is an optimal solution for $\left(T_{d+1}\right)$ and $\operatorname{span}(\hat{y}, \hat{z}) \subset K$, it is easy to show that $(\hat{y}, \hat{y}, \ldots, \hat{y} ; \hat{w}, \hat{w} ; \hat{z}, \hat{z}, \ldots, \hat{z})$ (namely, replacing the middle (\hat{y}, \hat{z}) by (\hat{w}, \hat{w})) is also optimal for $\left(T_{d+1}\right)$. Apply this replacement procedures until either \hat{y} or \hat{z} exhausts, while keeping the optimality for $\left(T_{d+1}\right)$. Without loss of generality, we may come to an optimal solution in a form of $(\hat{y}, \hat{y}, \ldots, \hat{y} ; \hat{w}, \hat{w}, \ldots, \hat{w}) \in S$.

Let $\cos \theta=v(A)$ for some $\theta \in(0, \pi]$. Now we shall have

$$
\hat{w}^{\mathrm{T}} \hat{y}=\cos (\theta / 2)>\cos \theta=\hat{y}^{\mathrm{T}} \hat{z}=v(A)
$$

which contradicts the optimality of $(\hat{y}, \hat{y}, \ldots, \hat{y} ; \hat{z}, \hat{z}, \ldots, \hat{z})$ for (A). Thus $v(A)$ must be 1 , implying that (A) has a solution with support 1 , which proves $v\left(H_{d+1}\right)=$ $v\left(T_{d+1}\right)$.

One may be led to the question, are there interesting cases where $g\left(\Re^{m}\right)$ is a subspace? The answer is yes, and the most obvious case is to let $t=1$ and $g(x)=G x$ with $G \in \Re^{n \times m}$, and then Theorem 4.1 leads us to the next corollary.

Corollary 4.2. If $\mathcal{F} \in \Re^{m^{d}}$ is a dth-order super-symmetric tensor with F being its corresponding multilinear function, then

$$
\max _{\|G x\|=1}|F(\underbrace{x, x, \ldots, x}_{d})|=\max _{\left\|G x^{i}\right\|=1, i=1,2, \ldots, d}\left|F\left(x^{1}, x^{2}, \ldots, x^{d}\right)\right| .
$$

In our particular context, our models (H) and (T) correspond to G being the identity matrix and $m=n$. This corollary connects to the so-called generalized multilinear version of the Cauchy-Bouniakovski-Schwarz inequality (Hiriart-Urruty [27]), which states, "Let F be a super-symmetric multilinear tensor form of order $d(\geq 3)$, and A be a positive semidefinite matrix. If

$$
|F(x, x, \ldots, x)| \leq\left(x^{T} A x\right)^{d / 2} \quad \forall x \in \Re^{n}
$$

then

$$
\left|F\left(x^{1}, x^{2}, \ldots, x^{d}\right)\right|^{2} \leq \prod_{i=1}^{d}\left(x^{i}\right)^{\mathrm{T}} A x^{i} \quad \forall x^{i} \in \Re^{n}, i=1,2, \ldots, d . "
$$

The above inequality was shown by Lojasiewicz (see [6]), and an alternative proof can be found in Nesterov and Nemirovski [43]. Yet, it also follows from Corollary 4.2 by setting $A=G^{\mathrm{T}} G$.

Another nontrivial special case when the condition holds is when $t=2, n=4$, $m \geq 3, x \in \mathbf{C}^{m}$ is in the complex-valued domain and $G_{i}(x, x)$ is block square-free, i.e., the vector x can be partitioned into two parts, \tilde{x} and \hat{x}, and $g_{i}(x)=G_{i}(x, x)=$ $\left(\tilde{x}^{\mathrm{H}} G_{i} \hat{x}+\hat{x}^{\mathrm{H}} G_{i}^{\mathrm{H}} \tilde{x}\right) / 2, i=1,2,3,4$. In that case, Ai, Huang, and Zhang [1] proved that the joint numerical range $g\left(\mathbf{C}^{m}\right)$ is a convex cone. Due to the block square-free property, it is also not pointed at any direction and hence is a subspace.

For our subsequent discussion, the main purpose is to solve (H) via (T), and so we shall focus on the application of Corollary 4.2. First we remark that the absolute value sign in the objective function of $\left(T_{d}\right)$ can actually be removed, since its optimal value is always nonnegative. Similarly, if d is odd, then the absolute value sign in $\left(H_{d}\right)$ can also be removed, due to the symmetry of the constraint set; however, for even d, this absolute value sign in $\left(H_{d}\right)$ is necessary. Ni and Wang [45] proved that Corollary 4.2 holds only for a special case $d=4$ and $n=2$. We have showed that this property can be extended to a super-symmetric tensor for general dimensions. Interestingly, this result also implies that the best super-symmetric rank-one decomposition of a supersymmetric tensor remains optimal even among all nonsymmetric rank-one tensors.

Corollary 4.2 establishes the equivalence between (H) and (T) for odd d, as we discussed before. For an even degree d, one may consider \mathcal{H} as the d th-order supersymmetric tensor associated with the homogeneous polynomial $h(x):=\left(x^{\mathrm{T}} x\right)^{d / 2}$ and let $f(x):=f(x)+\tau h(x)$, where $\tau=\|\mathcal{F}\|$. In that case, f becomes nonnegative on the sphere, and so we can again drop the absolute value sign without affecting the optimal solutions. In both cases, solving (H) can be equivalently transformed into solving (T), where the MBI method applies.

On the other hand, Corollary 4.2 may not hold for other symmetric convex constraints, such as hypercube or simplex; see an example below for the case of a box.

Example 4.3. Denote \mathcal{F} a diagonal matrix $\operatorname{Diag}(-1,1)$, and the boxed constraints are $-e \leq x, y \leq e$ with $e=(1,1)^{\mathrm{T}}$. Then $\max |F(x, y)|=\max \left|-x_{1} y_{1}+x_{2} y_{2}\right|=2$, while $\max |F(x, x)|=\max \left|-x_{1}^{2}+x_{2}^{2}\right|=1$.

One can further generalize Corollary 4.2 to allow the following mixed homogeneous polynomial function (see, e.g., $[23,36]$):

$$
f\left(x^{1}, x^{2}, \ldots, x^{s}\right):=F(\underbrace{x^{1}, x^{1}, \ldots, x^{1}}_{d_{1}}, \underbrace{x^{2}, x^{2}, \ldots, x^{2}}_{d_{2}}, \ldots, \underbrace{x^{s}, x^{s}, \ldots, x^{s}}_{d_{s}})
$$

where $x^{k} \in \Re^{n_{k}}$ for $k=1,2, \ldots, s$ and the tensor form $F \in \Re^{n_{1}{ }^{d_{1}} \times n_{2}{ }^{d_{2}} \times \cdots \times n_{s}{ }^{d_{s}}}$ has partial symmetric property, namely, for any fixed $\left(x^{2}, x^{3}, \ldots, x^{s}\right), F(\cdot \underbrace{, \cdot, \ldots, \cdot}_{d_{1}}$, $\underbrace{x^{2}, x^{2}, \ldots, x^{2}}_{d_{2}}, \ldots, \underbrace{x^{s}, x^{s}, \ldots, x^{s}}_{d_{s}})$ is a super-symmetric d_{1} th-order tensor form, and so on. Denote the order of the tensor F to be $d:=\sum_{k=1}^{s} d_{s}$; then Corollary 4.2
immediately implies that

$$
\begin{array}{ll}
\max & \left|f\left(x^{1}, x^{2}, \ldots, x^{s}\right)\right|=\max \quad\left|F\left(y^{1}, y^{2}, \ldots, y^{d}\right)\right| \\
\text { s.t. } & \left\|x^{i}\right\|=1, i=1,2, \ldots, s \tag{5}
\end{array} \text { s.t. }\left\|y^{i}\right\|=1, i=1,2, \ldots, d .
$$

Let us call the left model in the above equation

$$
(M) \max _{\left\|x^{i}\right\|=1, i=1,2, \ldots, s} f\left(x^{1}, x^{2}, \ldots, x^{s}\right)
$$

Clearly, (M) is a generalization of the biquadratic model considered in Ling et al. [37] (with $s=2$ and $d_{1}=d_{2}=2$) and the multiquadratic model considered by So [56] (with $d_{1}=d_{2}=\cdots=d_{s}=2$). Equation (5) also suggests a method to solve (M) by resorting to its multilinear form relaxation (T), where the MBI method applies. On the other hand, model (M) can also be solved by directly adopting the MBI method, given that for any fixed $\left(x^{1}, \ldots, x^{i-1}, x^{i+1}, \ldots, x^{s}\right)$, the maximization over $\left\|x^{i}\right\|=1$ can be efficiently solved, which in this case is the model (H) with degree d_{i}. In particular, we can immediately apply the MBI method to solve the biquadratic model and the multiquadratic model, since the corresponding subproblem is an eigenvalue problem. We will also test our MBI method in a triquadratic case of the model (M) in the next section.
4.2. Finding a KKT point for $\boldsymbol{(H)}$ using MBI via (\boldsymbol{T}). Corollary 4.2 suggests a way to solve the homogeneous polynomial optimization model (H) by resorting to a seemingly more relaxed tensor optimization model (T). However, the equivalence is only established at optimality. Nevertheless, one may still search for a KKT solution for (H) by means of searching for a KKT solution for (T) with identical block variables. (Corollary 4.2 guarantees that such a special KKT point exists, and so the search is valid.) According to our computational experiences, this local search process works very well. In most cases, the KKT solution so obtained is the true global optimal solution of (H).

Let us formalize this search process as follows. We shall work with the version of (T) and (H) with an absolute sign in the objective function, like in Corollary 4.2. This allows us to swap the direction from x to $-x$ without affecting its objective. As we discussed earlier, adding an absolute sign does not change the problem when d is odd, and it also solves (H) when d is even if we modify the objective by adding a (constant) positive term, as we discussed in the previous subsection.

Algorithm KKT. Finding a KKT point for (H).

0 Input a KKT solution, say $\left(x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{d}\right)$, of (T) with objective value f_{0}. Set $k:=0$ and $\left(r_{0}^{1}, r_{0}^{2}, \ldots, r_{0}^{d}\right):=\left(x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{d}\right)$.
1 If $x_{k}^{1}= \pm x_{k}^{2}=\cdots= \pm x_{k}^{d}$, stop. Otherwise, find the closest but not identical pair among these d vectors, i.e., solve

$$
\max _{1 \leq i<j \leq d,\left(x_{k}^{i}\right)^{\mathrm{T}} x_{k}^{j} \neq 1}\left(x_{k}^{i}\right)^{\mathrm{T}} x_{k}^{j}
$$

Denote its optimal solution to be $\left(i_{k}, j_{k}\right)$, and compute $z_{k}:=\left(x_{k}^{i_{k}}+\right.$ $\left.x_{k}^{j_{k}}\right) /\left\|x_{k}^{i_{k}}+x_{k}^{j_{k}}\right\|$.
2 Set $x_{k+1}^{i_{k}}:=z_{k}, x_{k+1}^{j_{k}}:=z_{k}$ and $x_{k+1}^{i}:=x_{k}^{i}$ for $i \in\{1,2, \ldots, d\} \backslash\left\{i_{k}, j_{k}\right\}$. Update the objective value of (T)

$$
f_{k+1}:=F\left(x_{k+1}^{1}, x_{k+1}^{2}, \ldots, x_{k+1}^{d}\right)
$$

$$
\begin{aligned}
& 3 \text { If } f_{k+1}>f_{k} ; \text { or if } f_{k+1}=f_{k} \text { and there is a vector } x^{i} \\
& \left(i \in\{1,2, \ldots, d\} \backslash\left\{i_{k}, j_{k}\right\}\right) \text { such that } \\
& \qquad x^{i} \neq \frac{F\left(x_{k+1}^{1}, \ldots, x_{k+1}^{i-1}, \cdot, x_{k+1}^{i+1}, \ldots, x_{k+1}^{d}\right)}{\left\|F\left(x_{k+1}^{1}, \ldots, x_{k+1}^{i-1}, \cdot, x_{k+1}^{i+1}, \ldots, x_{k+1}^{d}\right)\right\|} ; \\
& \text { in either case, starting from }\left(x_{k+1}^{1}, x_{k+1}^{2}, \ldots, x_{k+1}^{d}\right) \text {, apply Algorithm } \\
& \text { MBI to yield a KKT point }\left(r_{k+1}^{1}, r_{k+1}^{2}, \ldots, r_{k+1}^{d}\right) \text { with a larger objec- } \\
& \text { tive value for }(T) \text { Otherwise, it is already a KKT point for }(T) ; \text { set } \\
& \left(r_{k+1}^{1}, r_{k+1}^{2}, \ldots, r_{k+1}^{d}\right):=\left(x_{k+1}^{1}, x_{k+1}^{2}, \ldots, x_{k+1}^{d}\right) . \\
& \mathbf{4} \text { Let } k:=k+1, \text { and go to Step } 1 .
\end{aligned}
$$

The following property of Algorithm KKT is immediate.
Proposition 4.4. For Algorithm KKT, the following hold.

1. Each element in the sequence $\left\{\left(r_{k}^{1}, r_{k}^{2}, \ldots, r_{k}^{d}\right)\right\}$ is a $K K T$ point for (T). The sequence of the objective values $\left\{f_{k}\right\}$ for (T) is nondecreasing.
2. If $\left(r_{*}^{1}, r_{*}^{2}, \ldots, r_{*}^{d}\right)$ is a cluster point of the sequence $\left\{\left(r_{k}^{1}, r_{k}^{2}, \ldots, r_{k}^{d}\right)\right\}$, then $r_{*}:=r_{*}^{1}= \pm r_{*}^{2}=\cdots= \pm r_{*}^{d}$. Moreover, $\left(r_{*}, r_{*}, \ldots, r_{*}\right)$ or $\left(-r_{*},-r_{*}, \ldots\right.$, $-r_{*}$) is a KKT point for (T), and r_{*} or $-r_{*}$ is a KKT point for (H).
3. Numerical experiments. In this section, we shall present some preliminary test results for the algorithms proposed in this paper. All the computations are conducted in an Intel Core2 Quad CPU 2.66 GHz computer with 4 GB RAM. The supporting software is MATLAB 7.8 .0 (R2009a) as a platform. We use MATLAB Tensor Toolbox Version 2.4 [3] whenever tensor operations are called, and we use GloptiPoly 3 [25] for general polynomial optimization for the purpose of comparison and set the relaxation order of GloptiPoly 3 by default. To simplify our implementation, we use cvx v1.2 (Grant and Boyd [17]) as a modeling tool for our MBI subroutine. The (termination) precision for these algorithms is set to be 10^{-6}. For a given maximization problem dimension/structure, we run the algorithms on a number of random instances. GloptiPoly 3 produces an upper bound for the optimal value of that instance, which turns out to be equal to the optimal value in many cases, since the MBI method typically would find a KKT solution equal to the upper bound computed by GloptiPoly 3. We count the percentage of times when this happens in our tests. Moreover, the MBI method is essentially a local improvement, and so it can be started from different initial solutions. Our tests are designed to see the performance of the MBI method over various settings. The following list of abbreviations refers to the results summarized in the tables to follow:
mean (P) : average ratio between solution found by MBI and upper bound by GLP
mean(T): average cpu seconds to solve one instance
mean(I): average number of iterations to solve one instance
mean(T/I): average cpu seconds per iteration
dim.: the (d, n) dimension of the test problem
GLP: GloptiPoly 3
\# samples: total number of test instances
\# starts: number of times to run MBI from random initial solutions (keep the best one)
Opt: percentage where the MBI solutions attain the upper bound of GLP

Table 1
Numerical results for $\left(E_{1}\right)$ when $n=2$ and $n=3$.

dim.	\# samples	\# starts	GLP	MBI		
			mean(T)	Opt	mean(T)	mean(P)
$(4,2)$	10	1	1.5961	80\%	0.1257	90.83\%
		2	idem	90\%	0.1352	94.62\%
		3	idem	100\%	0.1472	100\%
(4,3)	10	1	31.6348	20\%	0.1735	84.03\%
		2	idem	50\%	0.2595	92.67\%
		3	idem	60\%	0.3113	93.52\%
		4	idem	90\%	0.3466	98.97\%

5.1. Randomly simulated data. Throughout this subsection, all the data for testing problems are generated in the following manner. First, a d th-order tensor \mathcal{F}^{\prime} is randomly generated with its n^{d} entries following i.i.d. normal distribution; we then symmetrize \mathcal{F}^{\prime} to form a super-symmetric tensor \mathcal{F}. For co-centered ellipsoidal constraints, we generate an $n \times n$ matrix $Q_{j}^{\prime}(j=1,2, \ldots, m)$, whose entries follow i.i.d. normal distribution, and then let $Q_{j}=\left(Q_{j}^{\prime}\right)^{\mathrm{T}} Q_{j}^{\prime}$. For comparison, we call GloptiPoly 3 to get optimal value and optimal solution if possible, or else we get an upper bound of the optimal value if GloptiPoly 3 fails to solve the given problem instance.
5.1.1. Multilinear tensor function over spherical constraints. Here, we present some numerical tests on (T). In particular, we consider

$$
\begin{array}{rll}
\left(E_{1}\right) \max & F(x, y, z, w)=\sum_{1 \leq i, j, k, l \leq n} \mathcal{F}_{i j k l} x_{i} y_{j} z_{k} w_{l} \\
\text { s.t. } & \|x\|=\|y\|=\|z\|=\|w\|=1, \\
& x, y, z, w \in \Re^{n},
\end{array}
$$

where tensor \mathcal{F} is super-symmetric. The starting points $\left(x_{0}, y_{0}, z_{0}, w_{0}\right)$ for Algorithm MBI in our numerical experiments are all randomly generated. In our tests, we consider all the variables in the same constraint set, and dimensions are set to be $n=2$ or $n=3$. Here the total dimension of the test problems is chosen to be low since for our comparison we need to use GloptiPoly 3, which works only for low dimensions.

The comparison is listed in Table 1 for $\left(E_{1}\right)$. Evidently, the results show that Algorithm MBI finds good-quality solutions very quickly. The more starts we use to run the MBI algorithm, the higher the chance we get an optimal solution. In some cases, GloptiPoly 3 is only capable of providing an upper bound; however, our MBI solution achieves these upper bounds, proving the optimality of both the GloptiPoly 3 bound and the MBI solution. Besides, a majority of our simulation results show that the KKT point $\left(x^{*}, y^{*}, z^{*}, w^{*}\right)$ of $\left(E_{1}\right)$ is automatically a KKT point for the homogeneous polynomial case, namely, their block variables are identical already.
5.1.2. Tests of another implementation of MBI. Algorithm MBI is optimizing one block while fixing all other blocks. As mentioned in section 4, simultaneously optimizing over two blocks of variables while fixing other blocks works under the MBI framework as well. Indeed, the similar procedures of Algorithm MBI still perform efficiently, and the convergence is guaranteed. For convenience, we call this modified procedures MBI'. Here, we test the performance of our methods MBI and

Table 2
Numerical results for $\left(E_{2}\right)$ when $n=5,10,15$.

dim.	\# samples	MBI			MBI'		
		mean(T)	mean(I)	mean(T/I)	mean(T)	mean(I)	$\operatorname{mean}(\mathrm{T} / \mathrm{I})$
$\overline{(6,5)}$	10	0.3087	57.3	0.0055	0.1438	20.4	0.0077
$(6,10)$	10	4.7894	86.7	0.0551	1.1106	38.0	0.0297
$(6,15)$	10	75.1913	127.3	0.5901	22.9004	68.3	0.3346

TABLE 3
Numerical results for $\left(E_{2}\right)$ when $(d, n)=(6,10)$.

	1	2	3	4	5	6	7	8	9	10
MBI	4.3856	4.6422	4.8539	4.6369	4.6196	4.2168	4.5176	4.6628	4.5077	4.3039
MBI $^{\prime}$	4.2235	4.8136	4.7079	4.5767	4.6906	4.4538	4.3806	4.7177	4.2873	4.3228

MBI' $^{\prime}$ for (T) when $d=6$:

$$
\begin{aligned}
\left(E_{2}\right) \max & M(x, y, z, w, p, q)=\sum_{1 \leq i, j, k, l, s, t \leq n} \mathcal{M}_{i j k l s t} x_{i} y_{j} z_{k} w_{l} p_{s} q_{t} \\
\text { s.t. } & \|x\|=\|y\|=\|z\|=\|w\|=\|p\|=\|q\|=1, \\
& x, y, z, w, p, q \in \Re^{n},
\end{aligned}
$$

where tensor \mathcal{M} is super-symmetric. In our tests, we choose blocks x, y as a group, blocks z, w as another group, and blocks p, q as the last group when implementing MBI^{\prime}. Algorithms MBI and MBI' start from the same point ($x_{0}, y_{0}, z_{0}, w_{0}, p_{0}, q_{0}$), which are all randomly generated as before.

Two test sets are reported for $\left(E_{2}\right)$. Table 2 reports the average computational time, and Table 3 reports the average objective value, where $(d, n)=(6,10)$. In Table 3, we test 10 random instances, and each entry is the average objective value by running the corresponding algorithm 20 times. Tables 2 and 3 show that Algorithm MBI^{\prime} is comparable to Algorithm MBI in terms of the solution quality produced; however, Algorithm MBI' requires much less computational effort on average. This means that the MBI approach is quite flexible and various innovative implementations are possible, and it should in fact be encouraged.
5.1.3. General polynomial function over quadratic constraints. Here, we report numerical tests on (Q) when $d=4$:

$$
\begin{array}{rll}
\left(E_{3}\right) & \max & p(x)=F_{4}(x, x, x, x)+F_{3}(x, x, x)+F_{2}(x, x)+F_{1}(x) \\
\text { s.t. } & x^{\mathrm{T}} Q_{j} x \leq 1, j=1,2, \ldots, m, \\
& x \in \Re^{n},
\end{array}
$$

where tensors $\mathcal{F}_{4} \in \Re^{n^{4}}, \mathcal{F}_{3} \in \Re^{n^{3}}, \mathcal{F}_{2} \in \Re^{n^{2}}$, and $\mathcal{F}_{1} \in \Re^{n}$ are super-symmetric and $Q_{j} \succeq 0$ for $j=1,2, \ldots, m$. One natural way to handle an inhomogeneous polynomial function $p(x)$ is through homogenization, e.g., the technique used in [22]. To be specific, by introducing an auxiliary new variable x_{h}, which is set to be 1 , we can homogenize function $p(x)$ as

$$
p(x)=F\left(\binom{x}{x_{h}},\binom{x}{x_{h}},\binom{x}{x_{h}},\binom{x}{x_{h}}\right):=F(\bar{x}, \bar{x}, \bar{x}, \bar{x})=f(\bar{x}),
$$

TABLE 4
$C P U$ seconds of GloptiPoly 3 and MBI for $\left(E_{3}\right)$ when $m=15$.

n	5	10	15	20	30	40
GLP	2.1830	14.6947	578.3944	∞	∞	∞
MBI	24.8763	42.1047	42.9723	43.6567	44.8106	44.9569

where $f(\bar{x})$ is an $(n+1)$-dimensional homogeneous polynomial function of degree 4 and its associated fourth-order super-symmetric tensor form $\mathcal{F} \in \Re^{(n+1)^{4}}$. Therefore, by denoting $\bar{x}:=\binom{x}{1}$, we may equivalently rewrite $\left(E_{3}\right)$ as

$$
\begin{aligned}
\left(\bar{E}_{3}\right) \quad \max & f(\bar{x})=F\left(\binom{x}{1},\binom{x}{1},\binom{x}{1},\binom{x}{1}\right) \\
\text { s.t. } & x^{\mathrm{T}} Q_{j} x \leq 1, j=1,2, \ldots, m, \\
& x \in \Re^{n} .
\end{aligned}
$$

We shall first call Algorithm MBI to solve the multilinear relaxation problem for $\left(\bar{E}_{3}\right)$ and get a KKT point, to be denoted by $\left(x_{*}^{1}, x_{*}^{2}, x_{*}^{3}, x_{*}^{4}\right)$. Then, we select the best one from those four vectors as a feasible point for the original model $\left(E_{3}\right)$, namely, $x_{\text {MBI }}=\arg \max _{1 \leq i \leq 4}\left\{p\left(x_{*}^{i}\right)\right\}$. Unlike the equivalence between (H) and (T) followed from Corollary 4.2 due to its special structure, $\left(\bar{E}_{3}\right)$ may not be equivalent to its tensor relaxation problem. Hence, in the last set of tests, starting from the point x_{MBI}, we further apply a projected gradient method [7] (denoted by PGM in Table 5) to improve the solution of $\left(E_{3}\right)$. For an overview of gradient projection methods, see [5]. This method is also used as a supplement in [62,54] for handling homogeneous polynomial optimization over ball constraint or spherical constraint. The projected gradient method is applied because this method converges to a KKT point of the problem concerned, and also the optimal projection from \Re^{n} onto the ellipsoidal constraints set $E=\left\{x \in \Re^{n} \mid x^{\mathrm{T}} Q_{j} x \leq 1, j=1,2, \ldots, m\right\}$ can be formulated as a second-order cone program (SOCP) problem

$$
\begin{array}{ll}
\min & \|x-y\| \\
\text { s.t. } & x \in E,
\end{array}
$$

where $y \in \Re^{n}$ is given, which we call cvx to solve under the same computational platform. The starting points for MBI are all randomly generated as before. Two test sets are constructed for $\left(E_{3}\right)$. First, we fix $m=15$ for varying n, and we test the performance of GloptiPoly 3 and MBI in terms of the computational time, regardless of the quality of x_{MBI} obtained by running MBI once. (Recall the relaxation order of GloptiPoly 3 is set by default.) Numerical results are listed in Table 4. Each entry is the average time of 10 randomly generated instances. From Table 4, we conclude that the computational time of MBI is insensitive to the dimension n, while GloptiPoly 3 is very sensitive to the dimension. In fact, the computational time of MBI is much less than that of GloptiPoly 3 when the dimension n gets large.

Second, we fix $m=10$ and pick some lower dimensions n, whose problems can be efficiently solved by GloptiPoly 3. We then test the performance of MBI. Specifically, we solve $\left(E_{3}\right)$ by three different approaches: (1) directly using GloptiPloy 3 ; (2) applying MBI with randomly generated starting points to get the point x_{MBI}; and (3) using projected gradient method with the starting point x_{MBI}. Numerical results are summarized in Table 5, which shows the excellent performance of the MBI method.

TABLE 5
Numerical results for $\left(E_{3}\right)$ when $m=10$.

dim.	\# samples	GLP	MBI			MBI+PGM		
		$\operatorname{mean}(\mathrm{T})$	Opt	mean(T)	mean(P)	Opt	$\operatorname{mean}(\mathrm{T})$	mean (P)
$(4,5)$	20	1.79	20\%	22.81	85.57\%	95\%	29.68	98.21\%
$(4,10)$	20	13.01	0\%	38.95	85.79\%	95\%	48.66	99.93\%
$(4,12)$	20	66.73	0\%	41.36	89.61\%	100\%	50.13	100\%

GloptiPoly 3 is a powerful tool for solving $\left(E_{3}\right)$ with low dimensions. However, the MBI method works very well for polynomial optimization over ellipsoidal constraints even in large dimensions.
5.2. Applications. In this subsection, we shall test our proposed algorithms by using data from real applications, including rank-one approximation of supersymmetric tensors, and MRI.
5.2.1. Rank-one approximation of super-symmetric tensors. As discussed in section 4, homogeneous polynomial optimization over spherical constraint is equivalent to the best rank-one approximation of super-symmetric tensors and hence is solvable by our methods. We consider an example in this subsection from Kofidis and Regalia (Example 1 of [30]). The authors of [30] used this example to show that their proposed method S-HOPM did not converge for the particular super-symmetric tensor $\mathcal{G} \in \Re^{3 \times 3 \times 3 \times 3}$ with entries

$$
\begin{array}{llll}
\mathcal{G}_{1111}=0.2883, & \mathcal{G}_{1112}=-0.0031, & \mathcal{G}_{1113}=0.1973, & \mathcal{G}_{1122}=-0.2485, \\
\mathcal{G}_{1123}=-0.2939, & \mathcal{G}_{1133}=0.3847, & \mathcal{G}_{1222}=0.2972, & \mathcal{G}_{1223}=0.1862, \\
\mathcal{G}_{1233}=0.0919, & \mathcal{G}_{1333}=-0.3619, & \mathcal{G}_{2222}=0.1241, & \mathcal{G}_{2223}=-0.3420, \\
\mathcal{G}_{2233}=0.2127, & \mathcal{G}_{2333}=0.2727, & \mathcal{G}_{3333}=-0.3054 . &
\end{array}
$$

We will test this example using MBI. In our setting, the best rank-one approximation of the tensor \mathcal{G} is formulated as

$$
\begin{array}{rll}
\left(E_{4}\right) & \max & \sum_{1 \leq i, j, k, l \leq 3} \mathcal{G}_{i j k l} x_{i} x_{j} x_{k} x_{l} \\
& \text { s.t. } & \|x\|=1, x \in \Re^{3} .
\end{array}
$$

Since the order of \mathcal{G} is even, we choose $\eta=6$ and construct a modified and equivalent optimization problem of $\left(E_{4}\right)$

$$
\begin{array}{rll}
\left(E_{5}\right) & \max & \sum_{1 \leq i, j, k, l \leq 3}(\mathcal{G}+\eta \mathcal{H})_{i j k l} x_{i} x_{j} x_{k} x_{l} \\
& \text { s.t. } & \|x\|=1, x \in \Re^{3},
\end{array}
$$

where \mathcal{H} is a fourth-order super-symmetric tensor associated with the homogeneous polynomial $h(x)=\left(x^{\mathrm{T}} x\right)^{2}$. For the reformulated problem, we apply Algorithm MBI to the multilinear tensor form relaxation of $\left(E_{5}\right)$:

$$
\begin{aligned}
\left(E_{6}\right) \max & G(x, y, z, w)=\sum_{1 \leq i, j, k, l \leq 3}(\mathcal{G}+\eta \mathcal{H})_{i j k l} x_{i} y_{j} z_{k} w_{l} \\
\text { s.t. } & \|x\|=\|y\|=\|z\|=\|w\|=1, \\
& x, y, z, w \in \Re^{3} .
\end{aligned}
$$

Fig. 1. Convergence results of $M B I$ for $\left(E_{6}\right)$.

By using MBI with randomly generated starting points, we get three local maximum solutions for $\left(E_{6}\right)$. For each local maxima (x, y, z, w) we found, it shares the same directions among these four vectors when MBI stops, i.e., $x=y=z=w$. Hence, it provides a local maxima for the original model $\left(E_{5}\right)$, which is also a local maxima for $\left(E_{4}\right)$. In Figure 1, the total number of iterations in each round of MBI is presented for each local maxima we have found. Indeed, MBI converges very quickly to a local maxima. The optimal value for $\left(E_{4}\right)$ is 0.8893 (recall we should subtract 6 in the function $G(x, y, z, w)$), and the optimal solutions are $x^{*}=$ $\pm(0.6671,0.2487,-0.7022)$. Hence, the best rank-one approximation for the supersymmetric tensor \mathcal{G} is $0.8893 x^{*} \otimes x^{*} \otimes x^{*} \otimes x^{*}$.
5.2.2. MRI. Finally, we shall conclude this section by considering one real data set for polynomial optimization in MRI. Ghosh et al. [16] formulated a fiber detection problem in diffusion MRI by maximizing a homogeneous polynomial function over spherical constraint. In this particular case, the following polynomial optimization model is considered:

$$
\begin{array}{ll}
\max & f(x) \\
\text { s.t. } & \|x\|=1, x \in \Re^{3},
\end{array}
$$

where $f(x)$ is a homogeneous polynomial of even degree d. The problem lives in three dimensions as in the real world, and all its local maxima have physical meanings for MRI.

We shall test our Algorithm MBI by using a set of data provided by Ghosh and Deriche. The corresponding objective function $f(x)$ is

$$
\begin{aligned}
& 0.74694 x_{0}{ }^{4}-0.435103 x_{0}{ }^{3} x_{1}+0.37089 x_{0}{ }^{3} x_{2}+0.454945 x_{0}^{2} x_{1}^{2} \\
- & 0.29883 x_{0}{ }^{2} x_{1} x_{2}+1.24733 x_{0}^{2} x_{2}^{2}+0.0657818 x_{0} x_{1}{ }^{3}-0.795157 x_{0} x_{1}^{2} x_{2} \\
+ & 0.714359 x_{0} x_{1} x_{2}{ }^{2}-0.397391 x_{0} x_{2}{ }^{3}+ \\
+ & 0.316264 x_{1}{ }^{2} x_{2}{ }^{2}-0.405544 x_{1} x_{2}{ }^{3}+0.794869 x_{2}^{4},
\end{aligned}
$$

Table 6
Numerical results for MRI.

Method	KKT solution	Objective value
MBI	$\pm(0.0116,0.9992,0.0382)$	1.0031
	$\pm(0.3166,0.2130,-0.9243)$	0.9213
	$\pm(0.9542,-0.1434,0.2624)$	0.8428
GLP	$\pm(0.0116,0.9992,0.0382)$	1.0031

where $x=\left(x_{0}, x_{1}, x_{2}\right)^{\mathrm{T}}$. By choosing $\eta=2$, we adopt the same procedures for rankone approximation of super-symmetric tensors discussed in section 5.2.1 to solve the MRI problem. GloptiPoly 3 is also called for comparison. The numerical results are reported in Table 6. MBI is able to find all three local maxima, while GloptiPoly 3 finds only the global maximum.

Acknowledgment. We would like to thank A. Ghosh and R. Deriche for providing us a set of real data from the MRI application.

REFERENCES

[1] W. Ai, Y. Huang, and S. Zhang, New results on Hermitian matrix rank-one decomposition. Math. Program. Ser. A, 128 (2011), pp. 253-283.
[2] M. F. Anjos and J. B. Lasserre, Handbook of Semidefinite, Conic and Polynomial Optimization, Springer, New York, 2011.
[3] B. W. Bader and T. G. Kolda, Matlab Tensor Toolbox Version 2.4, http://csmr.ca. sandia.gov/~tgkolda/TensorToolbox (2010).
[4] A. Barmpoutis, B. Jian, B. C. Vemuri, and T. M. Shepherd, Symmetric Positive 4th Order Tensors and Their Estimation from Diffusion Weighted MRI, Lecture Notes in Comput. Sci. 4584, N. Karssemijer and B. Lelieveldt, eds., Springer, New York, 2007, pp. 308-319.
[5] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.
[6] J. Bochnak and J. Siciak, Polynomials and multilinear mappings in topological vector spaces, Stud. Math., 39 (1971), pp. 59-76.
[7] P. H. Calamai and J. J. Moré, Projected gradient methods for linearly constrained problems, Math. Program., 39 (1987), pp. 93-116.
[8] J. D. Carroll and J. J. Chang, Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition, Psychometrika, 35 (1970), pp. 283-319.
[9] G. Dahl, J. M. Leinaas, J. Myrheim, and E. Ovrum, A tensor product matrix approximation problem in quantum physics, Linear Algebra Appl., 420 (2007), pp. 711-725.
[10] E. F. Gonzalez and Y. Zhang, Accelerating the Lee-Seung Algorithm for Nonnegative Matrix Factorization, preprint, Department of Computational and Applied Mathematics, Rice University, March 2005.
[11] L. Grippo and M. Sciandrone, On the convergence of the block nonlinear Gauss-Seidel method under convex constraints, Oper. Res. Lett., 26 (2000), pp. 127-136.
[12] E. DE KLERK, The complexity of optimizing over a simplex, hypercube or sphere: A short survey, Cent. Eur. J. Oper. Res., 16 (2008), pp. 111-125.
[13] E. de Klerk, M. Laurent, and P. A. Parrilo, A PTAS for the minimization of polynomials of fixed degree over the simplex, Theoret. Comput. Sci., 261 (2006), pp. 210-225.
[14] L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank-1 and rank$\left(R_{1}, R_{2}, \ldots, R_{N}\right)$ approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1324-1342.
[15] L. De Lathauwer and D. Nion, Decompositions of a higher-order tensor in block termsPart III: Alternating least squares algorithms, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1067-1083.
[16] A. Ghosh, E. Tsigaridas, M. Descoteaux, P. Comon, B. Mourrain, and R. Deriche, A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract fiber directions from the orientation distribution function in diffusion MRI, in Proceedings of the Computational Diffusion MRI Workshop (CDMRI'08), New York, 2008.
[17] M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, version 1.2, http://cvxr.com/cvx (2010).
[18] L. Gurvits, Classical deterministic complexity of Edmonds' problem and quantum entanglement, in Proceedings of the 35th ACM Symposium on Theory of Computing, New York, 2003.
[19] R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis, UCLA Working Papers in Phonetics, 16 (1970), pp. 1-84; also available online from http://publish.uwo.ca/ ${ }^{\text {harshman/wpppfac0.pdf. }}$
[20] S. He, M. Li, S. Zhang, and Z.-Q. Luo, A nonconvergent example for the iterative waterfilling algorithm, Numer. Algebra Control Optim., 1 (2011), pp. 147-150.
[21] S. He, Z. Li, AND S. Zhang, Approximation algorithms for homogeneous polynomial optimization with quadratic constraints, Math. Program. Ser. B, 125 (2010), pp. 353-383.
[22] S. He, Z. Li, and S. Zhang, General Constrained Polynomial Optimization: An Approximation Approach, Technical report SEEM2009-06, Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, 2009.
[23] S. He, Z. Li, And S. Zhang, Approximation Algorithms for Discrete Polynomial Optimization, Technical report SEEM2010-01, Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, 2010.
[24] D. Henrion and J. B. Lasserre, GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi, ACM Trans. Math. Software, 29 (2003), pp. 165-194.
[25] D. Henrion, J. B. Lasserre, and J. Loefberg, GloptiPoly 3: Moments, optimization and semidefinite programming, Optim. Methods Softw., 24 (2009), pp. 761-779.
[26] C. J. Hillar and L.-H. Lim, Most Tensor Problems are NP Hard, preprint; also available online from http://www.stat.uchicago.edu/~lekheng/work/np.pdf (2010).
[27] J.-B. Hiriart-Urruty, A new series of conjectures and open questions in optimization and matrix analysis, ESAIM Control Optim. Calc. Var., 15 (2009), pp. 454-470.
[28] P. M. J. Hof, C. Scherer, and P. S. C. Heuberger, Model-Based Control: Bridging Rigorous Theory and Advanced Technology, Part 1, Springer, New York, 2009, pp. 49-68.
[29] S. Khot and A. Naor, Linear equations modulo 2 and the L_{1} diameter of convex bodies, in Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, 2007, pp. 318-328.
[30] E. Kofidis and P. A. Regalia, On the best rank-1 approximation of higher order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 863-884.
[31] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), pp. 455-500.
[32] J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim., 11 (2001), pp. 796-817.
[33] J. B. Lasserre, Polynomials nonnegative on a grid and discrete representations, Trans. Amer. Math. Soc., 354 (2001), pp. 631-649.
[34] J. B. Lasserre, Convergent SDP relaxations in polynomial optimization with sparsity, SIAM J. Optim., 17 (2006), pp. 822-843.
[35] J. B. Lasserre, A sum of squares approximation of nonnegative polynomials, SIAM Rev., 49 (2007), pp. 651-669.
[36] Z. Li, Polynomial Optimization Problems - Approximation Algorithms and Applications, Ph.D. thesis, The Chinese University of Hong Kong, 2011.
[37] C. Ling, J. Nie, L. Qi, And Y. Ye, Biquadratic optimization over unit spheres and semidefinite programming relaxations, SIAM J. Optim., 20 (2009), pp. 1286-1310.
[38] Z.-Q. LUO AND J.-S. Pang, Analysis of iterative waterfilling algorithm for multiuser power control in digital subscriber lines, EURASIP J. Appl. Signal Process., 2006 (2006), pp. 110.
[39] Z.-Q. Luo and S. Zhang, A semidefinite relaxation scheme for multivariate quartic polynomial optimization with quadratic constraints, SIAM J. Optim., 20 (2010), pp. 1716-1736.
[40] B. Mourrain and J. P. Pavone, Subdivision methods for solving polynomial equations, J. Symbolic Comput., 44 (2009), pp. 292-306.
[41] B. Mourrain and P. Trébuchet, Generalized normal forms and polynomial system solving, in Proceedings of the International Symposium on Symbolic and Algebraic Computation, M. Kauers, ed., 2005, ACM Press, New York, pp. 253-260.
[42] Y. Nesterov, Random Walk in a Simplex and Quadratic Optimization over Convex Polytopes, CORE Discussion Paper, UCL, Louvain-la-Neuve, Belgium, 2003.
[43] Y. Nesterov and A. Nemirovski, Interior-Point Polynomial Algorithms in Convex Programming, SIAM Stud. Appl. Math., 1994.
[44] Network-Enabled Optimization Systems (NEOS) Server for Optimization, http://www.neosserver.org/neos.
[45] G. Ni and Y. Wang, On the best rank-1 approximation to higher-order symmetric tensors, Math. Comput. Model., 46 (2007), pp. 1345-1352.
[46] D. Nion and L. De Lathauwer, An enhanced line search scheme for complex-valued tensor decompositions, Appl. DS-CDMA Signal Process., 88 (2008), pp. 749-755.
[47] P. A. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, Ph.D. dissertation, California Institute of Technology, 2000.
[48] P. A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Program. Ser. B, 96 (2003), pp. 293-320.
[49] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, Introducing SOSTOOLS: A general purpose sum of squares programming solver, in Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, 2002.
[50] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), pp. 13021324.
[51] M. J. D. Powell, On search directions for minimization algorithms, Math. Program., 4 (1973), pp. 193-201.
[52] L. Qi, Eigenvalues and invariants of tensors, J. Math. Anal. Appl., 325 (2007), pp. 1363-1377.
[53] L. Qi and K. L. Teo, Multivariate polynomial minimization and its application in signal processing, J. Global Optim., 26 (2003), pp. 419-433.
[54] L. Qi, F. WANG, AND Y. WANG, Z-eigenvalue methods for a global polynomial optimization problem, Math. Program. Ser. A, 118 (2009), pp. 301-316.
[55] M. Rajih, P. Comon, and R. A. Harshman, Enhanced line search: A novel method to accelerate PARAFAC, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1128-1147.
[56] A. M.-C. So, Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems, Math. Program. Ser. B, 129 (2011), pp. 357-382.
[57] S. Soare, J. W. Yoon, and O. Cazacu, On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming, Int. J. Plasticity, 24 (2008), pp. 915-944.
[58] J. F. Sturm, SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones, Optim. Methods Softw., 11/12 (1999), pp. 625-653.
[59] J. F. Sturm and S. Zhang, On cones of nonnegative quadratic functions, Math. Oper. Res., 28 (2003), pp. 246-267.
[60] P. TsEng, Convergence of a block coordinate descent method for nondifferentiable minimization, J. Optim. Theory Appl., 109 (2001), pp. 475-494.
[61] H. Waki, S. Kim, M. Kojima, M. Muramatsu, and H. Sugimoto, Algorithm 883: SparsePOP: A sparse semidefinite programming relaxation of polynomial optimization problems, ACM Trans. Math. Software, 35 (2008), pp. 1-13.
[62] Y. Wang and L. QI, On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors, Numer. Linear Algebra Appl., 14 (2007), pp. 503-519.
[63] S. Wright, Accelerated Block-Coordinate Relaxation for Regularized Optimization, SIAM J. Optim., to appear.
[64] Y. Ye and S. Zhang, New results on quadratic minimization, SIAM J. Optim., 14 (2003), pp. 245-267.
[65] T. Zhang and G. H. Golub, Rank-one approximation to high order tensors, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 534-550.

[^0]: *Received by the editors May 18, 2011; accepted for publication (in revised form) October 7, 2011; published electronically January 24, 2012.
 http://www.siam.org/journals/siopt/22-1/83452.html
 ${ }^{\dagger}$ Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, Hong Kong (blchen@se.cuhk.edu.hk).
 ${ }^{\ddagger}$ Department of Management Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong (simaihe@cityu.edu.hk). The research of this author was supported in part by Hong Kong GRF grant CityU143711.
 \S Department of Mathematics, Shanghai University, Baoshan District, Shanghai 200444, China (zheningli@gmail.com). The research of this author was supported in part by the Shanghai Leading Academic Discipline Project under grant S30104.
 ${ }^{\text {4}}$ Industrial and Systems Engineering Program, University of Minnesota, Minneapolis, MN 55455 (zhangs@umn.edu). (On leave from the Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, Hong Kong.) The research of this author was supported in part by Hong Kong GRF grant CUHK419409.

[^1]: ${ }^{1}$ The most widely used CQs include the Slater condition, the linear independence constraint qualification, the Mangasarian-Fromowitz constraint qualification, the constant rank constraint qualification, the constant positive linear dependence constraint qualification, and the quasi-normality constraint qualification. For details see a textbook on nonlinear programming, e.g., Bertsekas [5].

