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NORMS OF NONNEGATIVE TENSORS*
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Abstract. One of the fundamental problems in multilinear algebra, the minimum ratio between
the spectral and Frobenius norms of tensors, has received considerable attention in recent years.
While most values are unknown for real and complex tensors, the asymptotic order of magnitude
and tight lower bounds have been established. However, little is known about nonnegative tensors. In
this paper, we present an almost complete picture of the ratio for nonnegative tensors. In particular,
we provide a tight lower bound that can be achieved by a wide class of nonnegative tensors under a
simple necessary and sufficient condition, which helps to characterize the extreme tensors and obtain
results such as the asymptotic order of magnitude. We show that the ratio for symmetric tensors
is no more than that for general tensors multiplied by a constant depending only on the order of
tensors, hence determining the asymptotic order of magnitude for real, complex, and nonnegative
symmetric tensors. We also find that the ratio is in general different from the minimum ratio between
the Frobenius and nuclear norms for nonnegative tensors, a sharp contrast to the case for real tensors
and complex tensors.
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tensors, nuclear norm, rank-one approximation, norm equivalence inequality
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1. Introduction. Let \BbbF be \BbbC (the set of complex numbers), \BbbR (the set of real
numbers), \BbbR + (the set of nonnegative reals), or even a subset of one of these. Given
d positive integers n1, n2, . . . , nd \geq 2, we consider the space \BbbF n1\times n2\times \cdot \cdot \cdot \times nd := \BbbF n1 \otimes 
\BbbF n2 \otimes \cdot \cdot \cdot \otimes \BbbF nd of tensors of order d. One fundamental problem in multilinear algebra
is the extreme ratio between the spectral norm and the Frobenius norm of the space,

(1.1) \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) := min
\scrT \in \BbbF n1\times n2\times \cdot \cdot \cdot \times nd\setminus \{ \scrO \} 

\| \scrT \| \sigma 
\| \scrT \| 

.

Here, \| \scrT \| :=
\sqrt{} 
\langle \scrT ,\scrT \rangle denotes the Frobenius norm (also known as the Hilbert--

Schmidt norm), naturally defined by the Frobenius inner product

\langle \scrT ,\scrX \rangle :=
n1\sum 

i1=1

n2\sum 
i2=1

\cdot \cdot \cdot 
nd\sum 

id=1

ti1i2...idxi1i2...id with \scrT = (ti1i2...id),\scrX = (xi1i2...id),
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and \| \scrT \| \sigma denotes the spectral norm, defined by

(1.2) \| \scrT \| \sigma := max
\| \bfitx k\| =1, k=1,2,...,d

| \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle | ,

where \bfitx k \in \BbbC nk or \BbbR nk depending on where \BbbF resides. The value of \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd)
is an attribute of the tensor space and depends only on the set \BbbF and the dimensions
n1, n2, . . . , nd.

Since \| \scrT \| \sigma \leq \| \scrT \| , the maximization counterpart of (1.1) is trivially one, obtained
by any rank-one tensor (also called a simple tensor), i.e., a tensor that can be written
as outer products of vectors such as \bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d. In this sense, the constant
\phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) is the largest coefficient in the norm equivalence inequality, i.e.,

\phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd)\| \scrT \| \leq \| \scrT \| \sigma \leq \| \scrT \| .

It is easy to see that \| \bfitx 1\otimes \bfitx 2\otimes \cdot \cdot \cdot \otimes \bfitx d\| = 1 if \| \bfitx k\| = 1 for k= 1,2, . . . , d. Substi-
tuting \bfitx 1\otimes \bfitx 2\otimes \cdot \cdot \cdot \otimes \bfitx d with \scrX in (1.2), one has \| \scrT \| \sigma =max\| \scrX \| =1, rank (\scrX )=1 | \langle \scrT ,\scrX \rangle | .
If we remove the rank-one constraint of this optimization problem, one easily obtains
max\| \scrX \| =1 | \langle \scrT ,\scrX \rangle | = \| \scrT \| . Therefore, the constant \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) measures the gap
of this rank-one relaxation from the optimization point of view. Recently, Eisenmann
and Uschmajew also considered similar problems for rank-two tensors [10].

The value of \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) also originates from an important geometrical fact
that the tensor spectral norm measures its approximability by rank-one tensors. To
understand this, let \scrX (\scrT ) be a best rank-one approximation tensor of \scrT , i.e., \scrX (\scrT )
minimizes \| \scrT  - \scrX \| among all rank-one \scrX 's. It is well known (see, e.g., [19, Proposi-

tion 1.1]) that \scrX (\scrT )
\| \scrX (\scrT )\| is an optimal solution to max\| \scrX \| =1, rank (\scrX )=1 | \langle \scrT ,\scrX \rangle | = \| \scrT \| \sigma .

Therefore,

\phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) = min
\scrT \in \BbbF n1\times n2\times \cdot \cdot \cdot \times nd\setminus \{ \scrO \} 

| \langle \scrT ,\scrX (\scrT )\rangle | 
\| \scrT \| \cdot \| \scrX (\scrT )\| 

and it can be seen as the worst-case angle between a tensor and its best rank-one
approximation.

The most important notion in quantum mechanics is the quantum entanglement
of d-partite systems. A d-partite state can be represented by a complex tensor \scrT 
of order d with \| \scrT \| = 1. A state \scrT is called entangled if it is not a product state
(rank-one tensor). One of the quantitative ways to measure the entanglement of a
state \scrT is the geometric measure of entanglement, given by the distance of \scrT to the
variety of product states, which is

\sqrt{} 
2(1 - \| \scrT \| \sigma ). Therefore, the most entangled d-

partite state is a tensor that achieves the minimum in (1.1), and its geometric measure
of entanglement is

\sqrt{} 
2(1 - \phi (\BbbC n1\times n2\times \cdot \cdot \cdot \times nd)). Readers are referred to [4] for recent

developments on this topic.
In composition algebras, the value of \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd) is directly related to the

Hurwitz problem, which is to find multiplicative relations between quadratic forms;
see [19] for details. In algorithm analysis, \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) governs the convergence
rate of truncated steepest descent methods for tensor optimization problems [25].
However, in contrast to the various connections and applications mentioned above,
this beautiful mathematical problem (1.1) had been little studied until the early 2000s
[7, 8]. Since Qi [22] formally defined this problem as the best rank-one approximation
ratio of a tensor space and proposed several open questions in 2011, there has been
a considerable amount of work along this line [15, 9, 19, 20, 1, 10, 16], especially in
recent years.
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For \BbbF = \BbbC ,\BbbR , or \BbbR +, apart from a trivial case \phi (\BbbF n1) = 1 for d = 1 (vector
space) and an easy case \phi (\BbbF n1\times n2) = 1\surd 

min\{ n1,n2\} 
for d= 2 (matrix space), the exact

values of \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) are mostly unknown for d \geq 3. This is mainly due to the
NP-hardness to compute the tensor spectral norm (1.2) when d\geq 3 [12], let alone the
optimization over the spectral norm in (1.1).

For small nk's, \phi (\BbbR n1\times n2\times n3) were determined by K\"uhn and Peetre [17] for all
2 \leq n1, n2, n3 \leq 4 except the case n1 = n2 = n3 = 3, which was only recently deter-
mined by Agrachev, Kozhasov, and Uschmajew [1]. Many values of \phi (\BbbR n1\times n2\times n3) for
larger (n1, n2, n3) can be decided by solutions to the Hurwitz problem. These were
generalized to \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) for any order d in the context of orthogonal tensors
(for \BbbF = \BbbR ) and unitary tensors (for \BbbF = \BbbC ) [19]. In the complex field, less is under-
stood but the values are usually strictly larger than that of the real field from known
instances, e.g., \phi (\BbbC 2\times 2\times 2) = 2

3 [8] while \phi (\BbbR 2\times 2\times 2) = 1
2 and \phi (\BbbC 2\times 2\times 2\times 2) =

\surd 
2
3 [9]

while \phi (\BbbR 2\times 2\times 2\times 2) = 1\surd 
8
.

Most efforts in this topic have been put on the lower and upper bounds of
\phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) with an aim to establish its asymptotic behavior when nk's tend to
infinity for fixed d. Qi [22] proposed a naive lower bound (min1\leq j\leq d

\prod 
1\leq k\leq d,k \not =j nk)

 - 1
2

of \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd), which can indeed be achieved by an interesting class of tensors
called orthogonal tensors [19]. By applying probabilistic estimates of random tensors
in [24], Li et al. [19] showed that

(1.3)
1\sqrt{} 

min1\leq j\leq d

\prod 
1\leq k\leq d, k \not =j nk

\leq \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd)\leq c
\surd 
d lnd\sqrt{} 

min1\leq j\leq d

\prod 
1\leq k\leq d, k \not =j nk

for some universal constant c \in \BbbR +. A constant c was very recently discovered along
with the case of the complex field by Kozhasov and Tonelli-Cueto [16], in which they
showed that

1\sqrt{} 
min1\leq j\leq d

\prod 
1\leq k\leq d, k \not =j nk

\leq \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd)\leq 32
\surd 
d lnd\sqrt{} 

min1\leq j\leq d

\prod 
1\leq k\leq d, k \not =j nk

if \BbbF = \BbbC ,\BbbR . Although nonnegative tensors are more important in practical applica-
tions, the study of \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ ) remains blank apart from the results implied by
\phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd). In this paper we completely settle its asymptotic behavior.

The asymptotic behavior of \phi (\BbbF n\times n\times \cdot \cdot \cdot \times n) was known earlier. By estimating the
expectation of the spectral norm of random tensors, Cobos, K\"uhn, and Peetre [7]
showed that

1

n
\leq \phi (\BbbR n\times n\times n)\leq 3

\surd 
\pi \surd 
2n

and
1

n
\leq \phi (\BbbC n\times n\times n)\leq 3

\surd 
\pi 

n
.

They also remarked, but without proof, that

1\surd 
nd - 1

\leq \phi (\BbbR n\times n\times \cdot \cdot \cdot \times n)\leq d
\surd 
\pi \surd 

2nd - 1
,

a slightly worse upper bound than that in (1.3) by applying nk = n for k= 1,2, . . . , d.
For nonnegative reals, it was shown recently by Li and Zhao [20] that

1

n
\leq \phi (\BbbR n\times n\times n

+ )\leq 1.5

n0.584
,
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where the exact order of magnitude remained unclear. However, \phi (\BbbR n\times n\times \cdot \cdot \cdot \times n
+ ) is

uncovered with an exact value for even d and an order of magnitude for odd d in this
paper.

The extreme ratio for the space of symmetric tensors has attracted particular
interest recently [1, 16]. A symmetric tensor is a tensor in \BbbF n\times n\times \cdot \cdot \cdot \times n and its entries
are invariant under permutation of indices. The space of symmetric tensors is denoted
by \BbbF nd

sym. Since a symmetric tensor in \BbbF nd

sym can be equivalently represented by a
homogeneous polynomial function of degree d in n variables,

\phi (\BbbF nd

sym) := min
\scrT \in \BbbF nd

\mathrm{s}\mathrm{y}\mathrm{m}\setminus \{ \scrO \} 

\| \scrT \| \sigma 
\| \scrT \| 

is the same to the minimization of the ratio between the uniform norm on the unit
sphere and the Bombieri norm [3] among all homogeneous polynomials of degree d
in n variables. Agrachev, Kozhasov, and Uschmajew [1] showed that the Chebyshev
polynomial of degree d is a local minimizer for this optimization problem. However, it
is not a global minimizer, disproved by a counterexample in [20]. Using that example,
Li and Zhao [20] showed that

1

n
\leq \phi (\BbbR n3

sym)\leq 
1.5

n0.584
.

The exact order of magnitude was not clear although we do have 1
n \leq \phi (\BbbR n\times n\times n) \leq 

3
\surd 
\pi \surd 

2n
. It is quite obvious that \phi (\BbbF n\times n\times \cdot \cdot \cdot \times n)\leq \phi (\BbbF nd

sym). In this paper, by applying a

simple idea of homogeneous polynomial mapping, we show that for any \BbbF , \phi (\BbbF nd

sym)
is no more than \phi (\BbbF n\times n\times \cdot \cdot \cdot \times n) multiplied by a constant depending only on d, nailing
down its exact order of magnitude. At the same time, by examining Gaussian tensors,
Kozhasov and Tonelli-Cueto [16] recently showed that

1\surd 
nd - 1

\leq \phi (\BbbF nd

sym)\leq 
36

\surd 
d! lnd\surd 
nd - 1

if \BbbF =\BbbC ,\BbbR .

The other extreme ratio, dual to \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd), was also studied along with
this topic. It is the extreme ratio between the Frobenius norm and the nuclear norm
of a tensor space, i.e.,

(1.4) \psi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) := min
\scrT \in \BbbF n1\times n2\times \cdot \cdot \cdot \times nd\setminus \{ \scrO \} 

\| \scrT \| 
\| \scrT \| \ast 

.

Here, \| \scrT \| \ast denotes the nuclear norm, defined by

(1.5) \| \scrT \| \ast := min
\scrT =

\sum r
i=1 \bfitx 1

i\otimes \bfitx 2
i\otimes \cdot \cdot \cdot \otimes \bfitx d

i , r\in \BbbN 

r\sum 
i=1

\bigm\| \bigm\| \bfitx 1
i \otimes \bfitx 2

i \otimes \cdot \cdot \cdot \otimes \bfitx d
i

\bigm\| \bigm\| ,
where \BbbN denotes the set of positive integers. The nuclear norm is the dual norm to
the spectral norm and is also NP-hard to compute when d\geq 3 [11]. One obvious fact
is \| \scrT \| \sigma \leq \| \scrT \| \leq \| \scrT \| \ast where equality holds only at rank-one tensors. A perfect result
was shown by Derksen et al. [9] that

\psi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) = \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) and \psi (\BbbF nd

sym) = \phi (\BbbF nd

sym) if \BbbF =\BbbC ,\BbbR ,

as a consequence of the duality between the spectral and nuclear norms; see [6, Theo-
rem 2.1]. Moreover, the two extreme ratios can be obtained by the same tensor. This
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Table 1
Asymptotic order of magnitude for extreme ratios.

Tensors min\scrT \not =\scrO \| \scrT \| \sigma /\| \scrT \| Reference min\scrT \not =\scrO \| \scrT \| /\| \scrT \| \ast Reference

\BbbC n1\times n2\times \cdot \cdot \cdot \times nd max
j

\prod 
k \not =j

1\surd 
nk

[16] max
j

\prod 
k \not =j

1\surd 
nk

[16] + [9]

\BbbR n1\times n2\times \cdot \cdot \cdot \times nd max
j

\prod 
k \not =j

1\surd 
nk

[19] max
j

\prod 
k \not =j

1\surd 
nk

[19] + [9]

\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ min

\Biggl\{ \prod 
k
nk

 - 1
4 ,max

j

\prod 
k \not =j

1\surd 
nk

\Biggr\} 
Cor. 4.5 max

j

\prod 
k \not =j

1\surd 
nk

Cor. 4.11

\BbbC n\times n\times \cdot \cdot \cdot \times n n - d - 1
2 [16] n - d - 1

2 [16] + [9]

\BbbR n\times n\times \cdot \cdot \cdot \times n n - d - 1
2 [7] n - d - 1

2 [7] + [9]

\BbbR n\times n\times \cdot \cdot \cdot \times n
+ n - d

4 Cor. 4.2 n - d - 1
2 Cor. 4.11

\BbbC nd

\mathrm{s}\mathrm{y}\mathrm{m} n - d - 1
2 [16], Thm. 4.6 n - d - 1

2 Cor. 4.9

\BbbR nd

\mathrm{s}\mathrm{y}\mathrm{m} n - d - 1
2 [16], Thm. 4.6 n - d - 1

2 Cor. 4.9

\BbbR nd

+\mathrm{s}\mathrm{y}\mathrm{m} n - d
4 Cor. 4.8 n - d - 1

2 Cor. 4.11

seemingly closed the topic of \psi and left the research to \phi . However, for nonnegative
reals, \psi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ ) and \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ) are in general different, even in different

orders of magnitude, to be shown in this paper.
We summarize the asymptotic order of magnitude for various cases in the lit-

erature together with our own results shown in this paper in Table 1. Now, let us
summarize the main contribution of our work.

1. We provide a tight lower bound of \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ) that can be achieved by

a wide class of nonnegative tensors and characterize these extreme tensors.
2. We provide general lower and upper bounds of \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ ) and
\phi (\BbbR n\times n\times \cdot \cdot \cdot \times n

+ ) with either an exact value or an exact order of magnitude.

3. We show that \phi (\BbbF nd

sym) is no more than \phi (\BbbF n\times n\times \cdot \cdot \cdot \times n) multiplied by a constant
depending only on d for any \BbbF and hence determine the order of magnitude
for \phi (\BbbR nd

+sym).

4. We determine the order of magnitude for \psi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ), which is different

from that for \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ), a sharp contrast to the cases for \BbbC and \BbbR .

5. We examine \phi (\BbbR n1\times n2\times n3
+ ) for 2\leq n1, n2, n3 \leq 4 and \phi (\BbbR n3

+sym) for 2\leq n\leq 4,
providing its exact value or its lower bound and upper bound.

The rest of this paper is organized as follows. We first present some uniform
notation, tensor operations, and basic properties for tensors and tensor norms in
section 2. We then show the tight lower bound of \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ ) and examine
the extreme tensors that achieve the bound in section 3. Finally, we discuss the
asymptotic behavior, symmetric tensors, the extreme ratio between the Frobenius
and nuclear norms, as well as low-dimension cases for nonnegative tensors in section 4.

2. Preparation. Throughout this paper we uniformly use lowercase letters (e.g.,
x), boldface lowercase letters (e.g., \bfitx = (xi)), capital letters (e.g., X = (xij)), and
calligraphic letters (e.g., \scrX = (xi1i2...id)) to denote scalars, vectors, matrices, and
high-order (order 3 or more) tensors, respectively. We assume that all the dimensions,
n1, n2, . . . , nd and n, are larger than or equal to two. The convention norm, a norm
without a subscript, is the Frobenius norm, which includes the Euclidean norm of
vectors as a special case.

2.1. Tensor operations. In order for tensor operations to be closed in \BbbF , we
now only consider \BbbF =\BbbC ,\BbbR , or \BbbR + in this subsection. Nevertheless, these operations
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924 SHENGYU CAO, SIMAI HE, ZHENING LI, AND ZHEN WANG

can be applied to any \BbbF in general. A tensor \scrT = (ti1i2...id) \in \BbbF n1\times n2\times \cdot \cdot \cdot \times nd has d
modes, namely 1,2, . . . , d. Fixing the mode-k index to i where 1 \leq i \leq nk will result
in a tensor of order d - 1 in \BbbF n1\times \cdot \cdot \cdot \times nk - 1\times nk+1\times \cdot \cdot \cdot \times nd . We call it the ith mode-k slice,
denoted by \scrT (k)

i . Fixing every mode index to a fixed value except the mode-k index
will result in a vector in \BbbF nk , called a mode-k fiber. In particular for a matrix, a
mode-1 slice or a mode-2 fiber is a row, while a mode-2 slice or a mode-1 fiber is a
column. The mode-k contraction is obtained by the mode-k product with a vector
\bfitx = (xi)\in \BbbF nk , denoted by

\scrT \times k \bfitx =

nk\sum 
i=1

xi\scrT (k)
i \in \BbbF n1\times \cdot \cdot \cdot \times nk - 1\times nk+1\times \cdot \cdot \cdot \times nd .

This is the same mode-k product of a tensor with a matrix widely used in the literature
(see, e.g., [14]) by looking at the vector \bfitx as a 1\times nk matrix. As a consequence, mode
contractions by more vectors are obtained by applying mode products one by one,
e.g.,

\scrT \times 1 \bfitx \times 2 \bfity = (\scrT \times 2 \bfity )\times 1 \bfitx = (\scrT \times 1 \bfitx )\times 1 \bfity ,

where \times 1\bfity in the last equality is used instead of \times 2\bfity as mode 2 of \scrT becomes mode
1 of \scrT \times 1\bfitx . Mode contractions by d - 2 vectors result in a matrix and with one more
contraction result in a vector. In particular, one has
(2.1)

\scrT \times 1\bfitx 
1\times 2\bfitx 

2 \cdot \cdot \cdot \times d\bfitx 
d = \langle \scrT ,\bfitx 1\otimes \bfitx 2\otimes \cdot \cdot \cdot \otimes \bfitx d\rangle =

n1\sum 
i1=1

n2\sum 
i2=1

\cdot \cdot \cdot 
nd\sum 

id=1

ti1i2...idx
1
i1x

2
i2 . . . x

d
id
,

which can be taken as a multilinear form of (\bfitx 1,\bfitx 2, . . . ,\bfitx d). By multilinearity, it
means that it is a linear form of \bfitx j by fixing all \bfitx k's but \bfitx j for every j = 1,2, . . . , d.
Mode contraction by a unit vector will decrease the spectral norm in the weak sense.

Proposition 2.1. If \scrT \in \BbbF n1\times n2\times \cdot \cdot \cdot \times nd and \| \bfitx \| = 1, then \| \scrT \times k \bfitx \| \sigma \leq \| \scrT \| \sigma 
for any mode k.

The proof can be easily obtained from the optimization formulation (1.2) because
\langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle = \langle \scrT \times k \bfitx 

k,\bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx k - 1 \otimes \bfitx k+1 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle .
For a fixed mode k and a permutation \pi = (\pi 1, \pi 2, . . . , \pi nk

) of \{ 1,2, . . . , nk\} , a
mode-k slice permutation of \scrT is a new tensor in the same size of \scrT , whose ith
mode-k slice is \scrT (k)

\pi i for every i. This is similar to rearranging rows (or columns) of a
matrix. For a permutation \pi = (\pi 1, \pi 2, . . . , \pi d) of \{ 1,2, . . . , d\} , the mode transpose of
\scrT , denoted by \scrT \pi \in \BbbF n\pi 1

\times n\pi 2
\times \cdot \cdot \cdot \times n\pi d , satisfies that

ti1i2...id = (t\pi )i\pi 1 i\pi 2 ...i\pi d
for all i1, i2, . . . , id.

In particular, T\pi = TT if T is a matrix and \pi = \{ 2,1\} . The following property is
obvious.

Proposition 2.2. The spectral, nuclear, and Frobenius norms of a tensor are
invariant under any slice permutation and mode transpose.

Entries of a tensor can be rearranged by combining two modes or splitting a mode.
For any two modes of \scrT \in \BbbF n1\times n2\times \cdot \cdot \cdot \times nd , say modes 1 and 2, a tensor unfolding of
\scrT combines the two modes into one, resulting in a tensor in \BbbF n1n2\times n3\times \cdot \cdot \cdot \times nd of order
d - 1. The reverse operation of tensor unfolding is called tensor folding . For instance,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



EXTREME RATIO BETWEEN SPECTRAL AND FROBENIUS NORMS 925

if n1 =m1m2 where m1,m2 \geq 2 are integers, folding \scrT in mode 1 results in a tensor
in \BbbF m1\times m2\times n2\times \cdot \cdot \cdot \times nd of order d + 1. Tensor unfoldings can be applied to a tensor
repeatedly, as can tensor foldings. In particular, unfolding a tensor d - 2 times results
in a matrix, and one more time results in a vector. To the other end, if we let
nk =

\prod ak

i=1 p
k
i where 2 \leq pk1 \leq pk2 \leq \cdot \cdot \cdot \leq pkak

are primes for k = 1,2, . . . , d, the unique

tensor of order
\sum d

k=1 ak with dimension p11 \times p12 \times \cdot \cdot \cdot \times p1a1
\times \cdot \cdot \cdot \times pd1 \times pd2 \times \cdot \cdot \cdot \times pdad

that is folded from \scrT is called the maximum folding .
Given a partition \{ \BbbI 1, \BbbI 2, . . . , \BbbI s\} of modes \{ 1,2, . . . , d\} , we denote \scrT (\BbbI 1, \BbbI 2, . . . , \BbbI s)

to be a tensor of order s with dimensions
\prod 

k\in \BbbI 1 nk \times 
\prod 

k\in \BbbI 2 nk \times \cdot \cdot \cdot \times 
\prod 

k\in \BbbI s nk,
unfolded by combining modes \BbbI k of \scrT to mode k of \scrT (\BbbI 1, \BbbI 2, . . . , \BbbI s) for k= 1,2, . . . , s.
In particular, if d is even, we call \scrT (\{ 1,2, . . . , d2\} ,\{ 

d
2 + 1, d2 + 2, . . . , d\} ) the standard

matricization. For any mode 1\leq k\leq d, we call \scrT (\{ k\} ,\{ 1, . . . , k - 1, k+1, . . . , d\} ) the
mode-k matricization. Also, \scrT (\{ 1,2, . . . , d\} ) is called the vectorization of \scrT , which can
be taken as the maximum unfolding. The following monotonicity is quite standard.

Proposition 2.3. If \scrT is unfolded to \scrX (the same as \scrX being folded to \scrT ), then

\| \scrT \| \sigma \leq \| \scrX \| \sigma ,\| \scrT \| = \| \scrX \| , and \| \scrT \| \ast \geq \| \scrX \| \ast .

The proof is not difficult by comparing feasibility with optimality from the opti-
mization point of view. We skip it as it needs the introduction of many unnecessary
notations. One may check [26, Proposition 4.1] for the proof of the spectral norm and
apply a similar idea in [13, Proposition 4.1] for the proof of the nuclear norm.

The tensor nuclear norm is the dual norm to the tensor spectral norm described
as follows.

Lemma 2.4. Given a tensor \scrT , one has

\| \scrT \| \sigma = max
\| \scrX \| \ast \leq 1

\langle \scrT ,\scrX \rangle and \| \scrT \| \ast = max
\| \scrX \| \sigma \leq 1

\langle \scrT ,\scrX \rangle .

This was known in the context of multilinear maps [6, Theorem 2.1], even for
infinite-dimensional Hilbert spaces [6, Theorem 2.3]. For a proof in tensor notations,
one is referred to [21, Lemma 21].

2.2. Symmetric tensor and homogeneous polynomial. Given a symmetric
tensor \scrT \in \BbbF nd

sym, by substituting \bfitx k = \bfitx for k = 1,2, . . . , d in the multilinear form
(2.1) one has a homogeneous polynomial function \langle \scrT ,\bfitx \otimes \bfitx \otimes \cdot \cdot \cdot \otimes \bfitx \rangle of degree d in n
variables. A classical result originally due to Banach [2] regarding the spectral norm
is the following.

Theorem 2.5. If \scrT \in \BbbR nd

sym, then

\| \scrT \| \sigma = max
\| \bfitx k\| =1, k=1,2,...,d

| \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle | = max
\| \bfitx \| =1

| \langle \scrT ,\bfitx \otimes \bfitx \otimes \cdot \cdot \cdot \otimes \bfitx \rangle | .

In the tensor community, this is known as the best rank-one approximation of a
symmetric tensor that can be obtained by a symmetric rank-one tensor [5, 27].

On the other hand, given any nonzero tensor \scrT \in \BbbF n1\times n2\times \cdot \cdot \cdot \times nd , the multilinear
form \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle itself is a homogeneous polynomial function of degree d
in n =

\sum d
k=1 nk variables, i.e., \bfitx = ((\bfitx 1)T, (\bfitx 2)T, . . . , (\bfitx d)T)T. Therefore, there is a

unique symmetric tensor \scrZ \in \BbbF nd

sym such that

(2.2) \langle \scrZ ,\bfitx \otimes \bfitx \otimes \cdot \cdot \cdot \otimes \bfitx \rangle = \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle .
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From the tensor point of view, \scrZ can be explicitly partitioned into dd block tensors,
which have sizes of ni1 \times ni2 \times \cdot \cdot \cdot \times nid , where ik = 1,2, . . . , d for k = 1,2, . . . , d.
Among these, there are exactly d! nonzero blocks. Each nonzero block has dimension
n\pi 1

\times n\pi 2
\times \cdot \cdot \cdot \times n\pi d

where \pi is a permutation of \{ 1,2, . . . , d\} and is equal to \scrT \pi 

d! be-
cause of (2.2). We remark that this is almost the same idea of symmetric embeddings
introduced by Ragnarsson and Van Loan [23], while the connection to the homoge-
neous polynomial is more straightforward. As an example, if T \in \BbbF n1\times n2 is a matrix,

then Z =
\Bigl( 

O
T\mathrm{T}/2

T/2
O

\Bigr) 
, while the symmetric embedding of T is

\Bigl( 
O
T\mathrm{T}

T
O

\Bigr) 
. We shall use

this idea to study the extreme ratio for symmetric tensors in section 4.2.

2.3. Basic properties of extreme ratios. We provide some properties regard-
ing the extreme ratio between the spectral and Frobenius norms and that between
the Frobenius and nuclear norms. The first two results are immediate from Proposi-
tions 2.2 and 2.3, respectively.

Lemma 2.6. The ratio between the spectral and Frobenius norms of a nonzero ten-
sor is invariant under slice permutation, mode transpose, and multiplication by a non-
zero constant. This is the same as the ratio between the Frobenius and nuclear norms.

Lemma 2.7. If \BbbF 1 and \BbbF 2 are two spaces where tensors in \BbbF 2 are obtained by
unfolding tensors in \BbbF 1, then \phi (\BbbF 1)\leq \phi (\BbbF 2) and \psi (\BbbF 1)\leq \psi (\BbbF 2).

Our final property is on the monotonicity of the extreme ratios with respect to
the dimensions.

Lemma 2.8. If nk \leq mk for k= 1,2, . . . , d, then

\phi (\BbbF m1\times m2\times \cdot \cdot \cdot \times md)\leq \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd),

\psi (\BbbF m1\times m2\times \cdot \cdot \cdot \times md)\leq \psi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd).

For any positive integer m and mode k where 1\leq k\leq d, one has

\phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd)\leq 
\surd 
m\phi (\BbbF n1\times \cdot \cdot \cdot \times nk - 1\times mnk\times nk+1\times \cdot \cdot \cdot \times nd),

\psi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd)\leq 
\surd 
m\psi (\BbbF n1\times \cdot \cdot \cdot \times nk - 1\times mnk\times nk+1\times \cdot \cdot \cdot \times nd).

Proof. The first two bounds are trivial as \BbbF n1\times n2\times \cdot \cdot \cdot \times nd can be taken as a subset
of \BbbF m1\times m2\times \cdot \cdot \cdot \times md by enlarging the dimensions with zero entries.

To show the remaining bounds, let a general \scrT \in \BbbF n1\times \cdot \cdot \cdot \times nk - 1\times mnk\times nk+1\times \cdot \cdot \cdot \times nd

that can be partitioned into m block subtensors \scrT 1,\scrT 2, . . . ,\scrT m \in \BbbF n1\times n2\times \cdot \cdot \cdot \times nd via
cuts in mode k.

Let \| \scrT i\| = max1\leq j\leq m \| \scrT j\| . According to a bound of the spectral norm of sub-
tensors [18, Theorem 3.1], one has \| \scrT i\| \sigma \leq \| \scrT \| . Therefore,

\| \scrT \| \sigma 2

\| \scrT \| 2
\geq \| \scrT i\| \sigma 2\sum m

j=1 \| \scrT j\| 2
\geq \| \scrT i\| \sigma 2

m\| \scrT i\| 2
\geq \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd)2

m
.

By the generality of \scrT , we have \phi (\BbbF mn1\times n2\times \cdot \cdot \cdot \times nd)2 \geq \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd )2

m , which shows
the third bound.

Finally, by a bound of the nuclear norm of subtensors [18, Theorem 3.1], one has

\| \scrT \| \ast \leq 
\sum m

j=1 \| \scrT j\| \ast . Besides, \| \scrT \| =
\sqrt{} \sum m

j=1 \| \scrT j\| 2 \geq 
1\surd 
m

\sum m
j=1 \| \scrT j\| . Therefore,

\| \scrT \| 
\| \scrT \| \ast 

\geq 
\sum m

j=1 \| \scrT j\| \surd 
m
\sum m

j=1 \| \scrT j\| \ast 
\geq 
\sum m

j=1\psi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd)\| \scrT j\| \ast \surd 
m
\sum m

j=1 \| \scrT j\| \ast 
=
\psi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd)\surd 

m
,

which shows the last bound by the generality of \scrT .
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3. Extreme ratio between spectral and Frobenius norms. In this section,
we provide an almost complete picture of a tight lower bound of the extreme ratio
between the spectral and Frobenius norms for nonnegative tensors. The lower bound
can be obtained by a wide class of nk's that can tend to infinity. Our main result is
as follows.

Theorem 3.1. Consider \BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ with positive integers n1, n2, . . . , nd \geq 2.

1. For the extreme ratio between the spectral and Frobenius norms, one has

(3.1) \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ) = min

\scrT \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ \setminus \{ \scrO \} 

\| \scrT \| \sigma 
\| \scrT \| 

\geq 

\Biggl( 
d\prod 

k=1

nk

\Biggr)  - 1
4

.

2. The lower bound is attained if and only if
\sqrt{} \prod d

k=1 nk is an integer that can
be divided by every nk, i.e.,

(3.2)

\sqrt{} \prod d
k=1 nk

nk
\in \BbbN for k= 1,2, . . . , d.

3. The lower bound is achieved by an unfolded identity tensor (UIT), up to slice
permutation and multiplication by a positive constant, and is attained if and
only if a UIT exists in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ .

We shall prove the theorem in a discussion style, starting with the lower bound
in section 3.1, from which the condition of equality is derived. We then propose the
nonnegative tensors that obtain the lower bound under this condition, i.e., the concept
of UITs in section 3.2. Finally we generalize UITs with an aim to fully characterize
these extreme tensors under this condition in section 3.3.

3.1. Lower bound and necessary condition.

Lemma 3.2. \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ )\geq 

\Bigl( \prod d
k=1 nk

\Bigr)  - 1
4

.

Proof. First, it is easy to see that \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ) = min\| \scrT \| =1 \| \scrT \| \sigma and so

1

\phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ )

=max\| \scrT \| \sigma =1 \| \scrT \| . Let us take a close look at the optimization prob-

lem max\| \scrT \| \sigma =1 \| \scrT \| . Since \| \scrT \| \sigma = 1, one obviously has 0\leq ti1i2...id \leq 1 for any entry

ti1i2...id of \scrT . Moreover, as \| \bfite k
\surd 
nk

\| = 1 for any 1\leq k \leq d where \bfite k \in \BbbR nk is an all-one

vector, by (2.1) one has

1\sqrt{} \prod d
k=1 nk

n1\sum 
i1=1

n2\sum 
i2=1

\cdot \cdot \cdot 
nd\sum 

id=1

ti1i2...id =

\biggl\langle 
\scrT , \bfite 1

\surd 
n1

\otimes \bfite 2
\surd 
n2

\otimes \cdot \cdot \cdot \otimes \bfite d
\surd 
nd

\biggr\rangle 
\leq \| \scrT \| \sigma = 1.

(3.3)

This leads to

\| \scrT \| =

\Biggl( 
n1\sum 

i1=1

n2\sum 
i2=1

\cdot \cdot \cdot 
nd\sum 

id=1

ti1i2...id
2

\Biggr) 1
2

\leq 

\Biggl( 
n1\sum 

i1=1

n2\sum 
i2=1

\cdot \cdot \cdot 
nd\sum 

id=1

ti1i2...id

\Biggr) 1
2

\leq 

\Biggl( 
d\prod 

k=1

nk

\Biggr) 1
4

,

where the first inequality is due to 0 \leq ti1i2...id \leq 1 and the second inequality is due
to (3.3). This shows that max\| \scrT \| \sigma =1 \| \scrT \| \leq (

\prod d
k=1 nk)

1
4 . Therefore,

\phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ) = min

\| \scrT \| =1
\| \scrT \| \sigma =

1

max\| \scrT \| \sigma =1 \| \scrT \| 
\geq 

\Biggl( 
d\prod 

k=1

nk

\Biggr)  - 1
4

.
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From the above proof, if the lower bound (
\prod d

k=1 nk)
 - 1

4 is obtained at \scrT , and
further if we only consider \| \scrT \| \sigma = 1 (if not we can scale it), then \scrT \in \BbbB n1\times n2\times \cdot \cdot \cdot \times nd ,
where \BbbB = \{ 0,1\} since ti1i2...id2 = ti1i2...id for any entry ti1i2...id . Moreover, the number

of nonzero entries of \scrT must be
\sqrt{} \prod d

k=1 nk because (3.3) must be held as an equality.

This obviously implies that
\sqrt{} \prod d

k=1 nk is an integer. In fact, these nonzero entries
must be evenly distributed among slices.

Proposition 3.3. Let \scrT \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ with \| \scrT \| \sigma =1 and \| \scrT \| =(

\prod d
k=1 nk)

1
4 .

1. \scrT \in \BbbB n1\times n2\times \cdot \cdot \cdot \times nd with
\sqrt{} \prod d

k=1 nk nonzero entries.

2. Any mode-k slice of \scrT has

\surd \prod d
k=1 nk

nk
number of nonzero entries for k =

1,2, . . . , d.

Proof. From the previous discussion, it suffices to show that all mode-k slices
must have the same number of nonzero entries since the number of mode-k slices is

nk and the total number of nonzero entries is
\sqrt{} \prod d

k=1 nk. Without loss of generality,
we only show this for mode-1 slices.

Let mj =
\sum n2

i2=1

\sum n3

i3=1 \cdot \cdot \cdot 
\sum nd

id=1 tji2i3...id , the number of nonzero entries of \scrT (1)
j

(the jth mode-1 slice of \scrT ) for j = 1,2, . . . , n1. Since \| \bfite k
\surd 
nk

\| = 1 for k= 2,3, . . . , d, we

have

1\sqrt{} \prod d
k=2 nk

\| (m1,m2, . . . ,mn1
)\| =

\bigm\| \bigm\| \bigm\| \bigm\| \scrT \times 2
\bfite 2
\surd 
n2

\cdot \cdot \cdot \times d
\bfite d
\surd 
nd

\bigm\| \bigm\| \bigm\| \bigm\| \leq \| \scrT \| \sigma = 1,

where the inequality is obtained by applying Proposition 2.1 d - 1 times. As a result,\sqrt{} \sum n1

j=1mj
2

n1
=

\| (m1,m2, . . . ,mn1)\| \surd 
n1

\leq 

\sqrt{} \prod d
k=2 nk\surd 
n1

=

\sqrt{} \prod d
k=1 nk

n1
=

\sum n1

j=1mj

n1
,

where the last equality holds because the number of nonzero entries of \scrT is\sqrt{} \prod d
k=1 nk. According to the generalized mean inequality

\sqrt{} \sum n1
j=1 mj

2

n1
\geq 

\sum n1
j=1 mj

n1
, the

above must hold at the equality with m1 =m2 = \cdot \cdot \cdot =mn1
.

For any \scrT \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ that obtains the extreme ratio (

\prod d
k=1 nk)

 - 1
4 in (3.1),

one can certainly multiply a positive constant to make \| \scrT \| \sigma = 1. Thus, Proposi-
tion 3.3 immediately implies the necessity of condition (3.2) in Theorem 3.1 as the

number of nonzero entries of any mode-k slice,

\surd \prod d
k=1 nk

nk
, must be an integer. On

the other hand, we are indeed able to construct a zero-one tensor that obtains the
extreme ratio (

\prod d
k=1 nk)

 - 1
4 under (3.2).

3.2. Unfolded identity tensor. We study zero-one tensors that achieve the
lower bound (3.1) in Theorem 3.1, called unfolded identity tensors, or UITs. To start
with, let us consider the identity matrix In \in \BbbB n\times n. Let n =

\prod sn
k=1 pk be the prime

factorization where 2\leq p1 \leq p2 \leq \cdot \cdot \cdot \leq psn . Let \scrI n \in \BbbB p1\times p2\times \cdot \cdot \cdot \times psn\times p1\times p2\times \cdot \cdot \cdot \times psn be
the maximum folding of In, called the nth identity tensor . This is a tensor of order
2sn whose standard matricization is In, i.e.,

\scrI n (\{ 1,2, . . . , sn\} ,\{ sn + 1, sn + 2, . . . ,2sn\} ) = In.
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It is easy to see that

\| \scrI n\| = \| In\| =
\surd 
n and 1\leq \| \scrI n\| \sigma \leq \| In\| \sigma = 1,

since \scrI n is folded by In by Proposition 2.3. Obviously \scrI n is unique for any given n.

Definition 3.4. Given a positive integer n\geq 2 and a partition \{ \BbbI 1, \BbbI 2, . . . , \BbbI d\} of
modes \{ 1,2, . . . ,2sn\} that satisfies

(3.4) \| \scrI n(\BbbI 1, \BbbI 2, . . . , \BbbI d)\| \sigma = 1,

\scrI n(\BbbI 1, \BbbI 2, . . . , \BbbI d) is a UIT.

Any mode transpose of a UIT is already included in Definition 3.4 via a permu-
tation of the \BbbI k's. In fact, \scrI n itself, as well as its mode transpose, is a UIT. The
dimensions of a UIT in Definition 3.4 are not specified. For instance, all UITs in
\BbbR 4\times 4\times 4

+ and all UITs in \BbbR 2\times 4\times 8
+ are unfolded from the eighth identity tensor \scrI 8 as

long as (3.4) holds. In any case, the number of entries of a UIT must be n2.
As an obvious but crucial fact, any UIT is a zero-one tensor that achieves the lower

bound (3.1) in Theorem 3.1 because of (3.4) and \| \scrI n(\BbbI 1, \BbbI 2, . . . , \BbbI d)\| = \| \scrI n\| =
\surd 
n.

By Proposition 3.3, for a UIT in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ,

\surd \prod d
k=1 nk

nk
must be an integer for

any k, i.e., the condition (3.2). A key question is whether a UIT exists in a given
\BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ that satisfies (3.2), and if so, whether there is an explicit condition for
the partition \{ \BbbI 1, \BbbI 2, . . . , \BbbI d\} instead of (3.4). Before addressing these issues, we need
a technical result that has an independent interest.

Lemma 3.5. Let an integer d\geq 2 and \scrX 1,\scrX 2, . . . ,\scrX d be tensors with appropriate
dimensions of order a1, a2, . . . , ad, respectively, satisfying that a1 + a2 + \cdot \cdot \cdot + ad = 2s
is even. If \BbbI k = \{ jk1 , jk2 , . . . , jkak

\} \subseteq \{ 1,2, . . . , s\} for k = 1,2, . . . , d and there are exactly
two \BbbI k's containing j for every j = 1,2, . . . , s, then

(3.5)
\sum 

i1,i2,...,is

x1i
j11

i
j12

...ij1a1

x2i
j21

i
j22

...ij2a2

. . . xdi
jd1

i
jd2

...i
jdad

\leq 
d\prod 

k=1

\| \scrX k\| ,

where the summand for ij (that appears exactly twice in the subscripts of xk's) runs
from 1 to an appropriate value under appropriate dimensions of these \scrX k's for every
j = 1,2, . . . , s.

Proof. The proof is based on the induction on d. For d = 2, we simply have
\BbbI 1 = \BbbI 2 = \{ 1,2, . . . , s\} . The summand in (3.5) makes \langle \scrX 1,\scrX 2\rangle under a possible mode
transpose of \scrX 2, which is less than or equal to \| \scrX 1\| \cdot \| \scrX 2\| according to the Cauchy--
Schwarz inequality.

For general d\geq 3, let \BbbI 1
\bigcap 
\BbbI 2 = \{ q1, q2, . . . , qr\} . Without loss of generality, we may

denote \BbbI 1 = \{ j11 , j12 , . . . , j1b1 , q1, q2, . . . , qr\} and \BbbI 2 = \{ j21 , j22 , . . . , j2b2 , q1, q2, . . . , qr\} , where
b1 = a1  - r and b2 = a2  - r. Let us consider a new tensor \scrZ of order b1 + b2, whose
(ij11 , ij12 , . . . , ij1b1

, ij21 , ij22 , . . . , ij2b2
)th entry is defined by\sum 

iq1 ,iq2 ,...,iqr

x1i
j11

i
j12

...i
j1
b1

iq1 iq2 ...iqr
x2i

j21
i
j22

...i
j2
b2

iq1 iq2 ...iqr
.
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We have

\| \scrZ \| 2 =
\sum 

i
j11

,...,i
j1
b1

,i
j21

,...,i
j2
b2

\left(  \sum 
iq1 ,...,iqr

x1i
j11

...i
j1
b1

iq1 ...iqr
x2i

j21
...i

j2
b2

iq1 ...iqr

\right)  2

\leq 
\sum 

i
j11

,...,i
j1
b1

,i
j21

,...,i
j2
b2

\sum 
iq1 ,...,iqr

\biggl( 
x1i

j11
...i

j1
b1

iq1 ...iqr

\biggr) 2 \sum 
iq1 ,...,iqr

\biggl( 
x2i

j21
...i

j2
b2

iq1 ...iqr

\biggr) 2

=
\sum 

i
j11

,...,i
j1
b1

\sum 
iq1 ,...,iqr

\biggl( 
x1i

j11
...i

j1
b1

iq1 ...iqr

\biggr) 2 \sum 
i
j21

,...,i
j2
b2

\sum 
iq1 ,...,iqr

\biggl( 
x2i

j21
...i

j2
b2

iq1 ...iqr

\biggr) 2

= \| \scrX 1\| 2\| \scrX 2\| 2,

where the inequality is due to the Cauchy--Schwarz inequality.
Since q1, q2, . . . , qr belong to both \BbbI 1 and \BbbI 2, none of them belongs to any \BbbI k for

k\geq 3. Hence the summand for iq1 , iq2 , . . . , iqr in (3.5) is irrelevant to \scrX 3,\scrX 4, . . . ,\scrX d.
Thus, the summand in (3.5) can be rewritten as\sum 

\{ i1,...,is\} \setminus \{ iq1 ,...,iqr\} 

x3i
j31

...ij3a3

. . . xdi
jd1

...i
jdad

\sum 
iq1 ,...,iqr

x1i
j11

...i
j1
b1

iq1 ...iqr
x2i

j21
...i

j2
b2

iq1 ...iqr
,

which, under a possible mode transpose of \scrZ , is\sum 
\{ i1,...,is\} \setminus \{ iq1 ,...,iqr\} 

x3i
j31

...ij3a3

. . . xdi
jd1

...i
jdad

zi
j11

...i
j1
b1

i
j21

...i
j2
b2

.

This is the same type of problem for d - 1 tensors and so the above is no more than
\| \scrZ \| 

\prod d
k=3 \| \scrX k\| by the induction assumption. Therefore, (3.5) is proved by combining

the fact that \| \scrZ \| \leq \| \scrX 1\| \cdot \| \scrX 2\| shown earlier.

We provide some insights of the above result. If A \in \BbbF n1\times n2 , B \in \BbbF n2\times n3 , and
C \in \BbbF n3\times n1 are three matrices, then Lemma 3.5 means that

tr (ABC) =

n1\sum 
i=1

n2\sum 
j=1

n3\sum 
k=1

aijbjkcki \leq \| A\| \cdot \| B\| \cdot \| \BbbC \| .

As another example, if \scrA \in \BbbF n1\times n2\times n3 , B \in \BbbF n1\times n2 , and \bfitc \in \BbbF n3 , then Lemma 3.5
means that

\scrA \times 1,2 B \times 3 \bfitc =

n1\sum 
i=1

n2\sum 
j=1

n3\sum 
k=1

aijkbijck \leq \| \scrA \| \cdot \| B\| \cdot \| \bfitc \| .

For both examples, the essential condition is that any index, such as i, should appear
exactly twice, and in two different tensors.

Let us return to the study of UIT. The following result explicitly provides a
necessary and sufficient condition of a UIT.

Theorem 3.6. Given a positive integer n \geq 2 and a partition \{ \BbbI 1, \BbbI 2, . . . , \BbbI d\} of
modes \{ 1,2, . . . ,2sn\} , \scrI n(\BbbI 1, \BbbI 2, . . . , \BbbI d) is UIT if and only if

(3.6)
\bigm| \bigm| \bigm| \BbbI k\bigcap \{ j, sn + j\} 

\bigm| \bigm| \bigm| \leq 1 for 1\leq k\leq d and 1\leq j \leq sn.
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Proof. Let \scrT = \scrI n(\BbbI 1, \BbbI 2, . . . , \BbbI d) \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ where \{ \BbbI 1, \BbbI 2, . . . , \BbbI d\} satis-

fies (3.6). Recall that \scrI n \in \BbbB p1\times p2\times \cdot \cdot \cdot \times psn\times p1\times p2\times \cdot \cdot \cdot \times psn and let psn+j = pj for
j = 1,2, . . . , sn. We have nk =

\prod 
j\in \BbbI k pj for k = 1,2, . . . , d. As \BbbI k cannot include both

j and sn + j, we may define \BbbJ k = \{ 1 \leq j \leq sn : j \in \BbbI k or sn + j \in \BbbI k\} \subseteq \{ 1,2, . . . , sn\} 
for k= 1,2, . . . , d. It is obvious that \| \scrT \| \sigma \geq \| \scrI n\| \sigma = 1 as \scrT is unfolded from \scrI n. Let
us now show that \| \scrT \| \sigma \leq 1 under (3.6).

For every mode k = 1,2, . . . , d, let \BbbI k = \{ jk1 , jk2 , . . . , jkak
\} , \scrZ k \in \BbbR \times j\in \BbbI kpj , be a

tensor of order ak and the vectorization of \scrZ k be \bfitx k \in \BbbR 
\prod 

j\in \BbbI k
pj = \BbbR nk . For any

\| \bfitx k\| = \| \scrZ k\| = 1, it is not hard to see that

\langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle = \langle \scrI n(\BbbI 1, \BbbI 2, . . . , \BbbI d),\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle 
= \langle \scrI n, (\scrZ 1 \otimes \scrZ 2 \otimes \cdot \cdot \cdot \otimes \scrZ d)\pi \rangle 

=
\sum 

i1,i2,...,i2sn

ti1i2...i2sn z
1
i
j11

i
j12

...ij1a1

z2i
j21

i
j22

...ij2a2

. . . zdi
jd1

i
jd2

...i
jdad

,(3.7)

where (\scrZ 1 \otimes \scrZ 2 \otimes \cdot \cdot \cdot \otimes \scrZ d)\pi denotes a proper mode transpose of \scrZ 1 \otimes \scrZ 2\otimes \cdot \cdot \cdot \otimes \scrZ d.
Noticing the relation between \BbbJ k and \BbbI k and the fact | \BbbJ k| = | \BbbI k| , as \{ \BbbI 1, \BbbI 2, . . . , \BbbI d\} 

is a partition of \{ 1,2, . . . ,2sn\} , there are exactly two \BbbJ k's containing j for every
j = 1,2, . . . , sn. To avoid new notation, we still denote \BbbJ k = \{ jk1 , jk2 , . . . , jkak

\} as that
of \BbbI k but bear in mind that every element is now the remainder divided by sn. On
the other hand, as \scrI n(\{ 1,2, . . . , sn\} ,\{ sn + 1, sn + 2, . . . ,2sn\} ) = In, ti1i2...i2sn = 1 if
and only if ij = isn+j for all 1 \leq j \leq sn. We may remove isn+1, isn+2, . . . , i2sn in the
summand of (3.7) and assign the value of relevant ti1i2...i2sn to one, i.e.,

(3.8) \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle =
\sum 

i1,i2,...,isn

z1i
j11

i
j12

...ij1a1

z2i
j21

i
j22

...ij2a2

. . . zdi
jd1

i
jd2

...i
jdad

,

where jk's in (3.8) denote elements of \BbbJ k's while jk's in (3.7) denote elements of \BbbI k's.
Now, since there are exactly two \BbbJ k's containing j for every j = 1,2, . . . , sn, by

applying Lemma 3.5 to \scrZ k's and \BbbJ k's, the right-hand side of (3.8) must be no more
than

\prod d
k=1 \| \scrZ k\| = 1. This shows that \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle \leq 1 for any \| \bfitx k\| = 1,

i.e., \| \scrT \| \sigma \leq 1.
It remains to show that the condition (3.6) is necessary to (3.4), i.e., \| \scrT \| \sigma = 1.

Suppose on the contrary that (3.6) does not hold and assume without loss of generality
that \BbbI 1 includes both 1 and sn + 1. It follows from (3.8) that the index i1 actually
appears twice in the subscripts of \scrZ 1 but not in any other \scrZ k's. Again without loss
of generality we may let the first two subscripts of \scrZ 1 both be i1. Let \bfitx k = \bfite 1 for
k \geq 2 in (3.8) where \bfite 1 is a vector whose first entry is one and others are zeros; in
other words, only the first entry of \scrZ k is nonzero for k\geq 2. We now have

\langle \scrT ,\bfitx 1 \otimes \bfite 1 \otimes \cdot \cdot \cdot \otimes \bfite 1\rangle =
\sum 
i1

z1i1i11...1 =
\surd 
2

if we choose z1111...1 = z1221...1 =
1\surd 
2
and other entries being zeros. This contradicts the

fact that \| \scrT \| \sigma = 1.

We do see that any UIT achieves the lower bound (
\prod d

k=1 nk)
1
4 of (3.1) in Theo-

rem 3.1. This is also true for any slice permutation and multiplication by a positive
constant of a UIT, according to Proposition 2.2. Mode transpose of a UIT is also a
case but this is already included in the definition of UIT. Finally, to prove that (3.2)
is sufficient in Theorem 3.1, it suffices to show the existence of a UIT under (3.2) by
applying Theorem 3.6.
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Proposition 3.7. If positive integers n1, n2, . . . , nd \geq 2 such that
\sqrt{} \prod d

k=1 nk is
an integer that can be divided by nk for every k = 1,2, . . . , d, then a UIT exists in
\BbbB n1\times n2\times \cdot \cdot \cdot \times nd .

Proof. Let
\sqrt{} \prod d

k=1 nk = n =
\prod sn

j=1 pj be its prime factorization where 2 \leq p1 \leq 
p2 \leq \cdot \cdot \cdot \leq psn . Define psn+j = pj for j = 1,2, . . . , sn and \BbbJ = \{ 1,2, . . . ,2sn\} . One
obviously has

(3.9)
\prod 
j\in \BbbJ 

pj =

\left(  sn\prod 
j=1

pj

\right)  2

= n2 =

d\prod 
k=1

nk.

We need to construct a UIT that is unfolded from the nth identity tensor \scrI n. By
Theorem 3.6, in order to make \scrI n(\BbbJ 1,\BbbJ 2, . . . ,\BbbJ d) \in \BbbB n1\times n2\times \cdot \cdot \cdot \times nd a UIT, it suffices to
find a partition \{ \BbbJ 1,\BbbJ 2, . . . ,\BbbJ d\} of \BbbJ with | \BbbJ k

\bigcap 
\{ j, sn + j\} | \leq 1 for all 1 \leq k \leq d and

1 \leq j \leq sn such that
\prod 

j\in \BbbJ k pj = nk for k = 1,2, . . . , d. In fact, \BbbJ k can be defined
recursively as

(3.10) \BbbJ k = argmin
\BbbI \subseteq \BbbJ \setminus 

\bigcup k - 1
i=1 \BbbJ i

\left\{   \sum 
j\in \BbbI 

j :
\prod 
j\in \BbbI 

pj = nk

\right\}   for k= 1,2, . . . , d.

Intuitively, we choose indices in \BbbJ to form \BbbJ 1 via a collection of pj 's whose product is
n1, whereas we have multiple choices of j because the pj 's are the same, we always
choose the smallest available j. The elements of \BbbJ 1 are then removed from \BbbJ and we
continue this approach to form \BbbJ 2,\BbbJ 3, . . . ,\BbbJ d. Obviously \{ \BbbJ 1,\BbbJ 2, . . . ,\BbbJ d\} is a partition
of \BbbJ . The feasibility of \BbbJ k's in (3.10) is guaranteed by (3.9) since

d\prod 
k=1

\prod 
j\in \BbbJ k

pj =

d\prod 
k=1

nk =
\prod 
j\in \BbbJ 

pj .

It remains to show that | \BbbJ k
\bigcap 
\{ j, sn + j\} | \leq 1 for all 1\leq k\leq d and 1\leq j \leq sn.

Suppose on the contrary that \{ \ell , sn+ \ell \} \subseteq \BbbJ k for some k and 1\leq \ell \leq sn. Let r be
the number of primes that are equal to p\ell among all the prime factors p1, p2, . . . , psn
of n. Denote these primes to be pi, pi+1, . . . , pi+r - 1, where i \leq \ell \leq i+ r  - 1. Thus,
pi, pi+1, . . . , pi+r - 1, psn+i, psn+i+1, . . . , psn+i+r - 1 are all the primes that are equal to
p\ell in \{ pj : j \in \BbbJ \} . By the definition of \BbbJ k, in particular

\sum 
j\in \BbbJ k j attaining the minimum,

one has \{ \ell , . . . , i + r  - 1, sn + i, . . . , sn + \ell \} \subseteq \BbbJ k as both \ell and sn + \ell belong to \BbbJ k.
Thus, nk =

\prod 
j\in \BbbJ k pj can be divided by (

\prod i+r - 1
j=\ell pj)(

\prod sn+\ell 
j=sn+i pj) = p\ell 

r+1. However, n
has only r prime factors that are equal to p\ell , contradictory to the fact that n can be
divided by nk.

This concludes the proof of Theorem 3.1.

3.3. Characterization of extreme tensors. The extreme property of UITs
for \BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ plays a role similar to that of orthogonal tensors for \BbbR n1\times n2\times \cdot \cdot \cdot \times nd

and the unitary tensor for \BbbC n1\times n2\times \cdot \cdot \cdot \times nd in [19]. Unlike orthogonal and unitary tensors
whose existence condition cannot be explicitly characterized, the existence condition
for UITs is fully determined by the dimensions, i.e., condition (3.2). Under this
condition, is any extreme tensor, i.e., a tensor whose ratio between the spectral and
Frobenius norms attains the lower bound of (3.1), a UIT under slice permutation and
multiplication of a positive constant?
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Unfortunately the answer is no. Consider \BbbR 2\times 2\times 2\times 2
+ and let J4 =

\biggl( 
1

1
1

1

\biggr) 
be a

permutation matrix, also called a slice permutation of I4. The maximum folding of
J4 is \scrJ 4 \in \BbbR 2\times 2\times 2\times 2

+ , i.e., \scrJ 4(\{ 1,2\} ,\{ 3,4\} ) = J4. Since

1\leq \| \scrJ 4\| \sigma \leq \| J4\| \sigma = 1 and \| \scrJ 4\| = \| J4\| = 2,

\scrJ 4 is an extreme tensor but is neither \scrI 4 nor its slice permutation or mode transpose.
There are other examples as well via another slice permutation of I4. The main reason
is that the number of slice permutations of I4, 4!, is more than the number of slice
permutations of \scrI 4, which is at most 24. Any slice permutation of a folded tensor can
be obtained by a certain slice permutation before the folding, but the reverse is not
always possible.

It is straightforward to generalize UITs. Let I
(\pi )
n \in \BbbB n\times n be a permutation matrix

where \pi is a permutation of \{ 1,2, . . . , n\} . Let n=
\prod sn

k=1 pk be the prime factorization

where 2 \leq p1 \leq p2 \leq \cdot \cdot \cdot \leq psn . Denote \scrI (\pi )
n \in \BbbB p1\times p2\times \cdot \cdot \cdot \times psn\times p1\times p2\times \cdot \cdot \cdot \times psn to be the

maximum folding of I
(\pi )
n , i.e.,

\scrI (\pi )
n (\{ 1,2, . . . , sn\} ,\{ sn + 1, sn + 2, . . . ,2sn\} ) = I(\pi )n .

Here, we use the notation \scrI (\pi )
n instead of \scrI \pi 

n as the latter is a mode transpose of \scrI n
for a permutation \pi of \{ 1,2, . . . ,2sn\} . It is easy to see that \scrI (\pi )

n is an extreme tensor

as \| \scrI (\pi )
n \| \sigma = 1 and \| \scrI (\pi )

n \| =
\surd 
n.

Definition 3.8. Given a positive integer n\geq 2, a permutation \pi of \{ 1,2, . . . , n\} ,
and a partition \{ \BbbI 1, \BbbI 2, . . . , \BbbI d\} of modes \{ 1,2, . . . ,2sn\} that satisfies

(3.11) \| \scrI (\pi )
n (\BbbI 1, \BbbI 2, . . . , \BbbI d)\| \sigma = 1,

\scrI (\pi )
n (\BbbI 1, \BbbI 2, . . . , \BbbI d) is called an unfolded permutation tensor (UPT).

As in the definition of UIT, any UPT is a zero-one tensor that achieves the lower
bound (3.1) in Theorem 3.1 because of (3.11) and \scrI (\pi )

n (\BbbI 1, \BbbI 2, . . . , \BbbI d)\| = \| \scrI (\pi )
n \| =

\surd 
n.

By Proposition 3.3, for a UPT in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ,

\surd \prod d
k=1 nk

nk
must be an integer for

any k. The existence of a UPT in a given \BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ is obvious as UPT includes

UIT as its special case. For any given permutation \pi of \{ 1,2, . . . , n\} , it is possible
to derive an explicit condition that is equivalent to (3.11), such as (3.6) for UIT in
Theorem 3.6. However, this varies for different permutations and also depends on
the prime factorization of n. Unlike the neat condition for UIT, there is no uniform
expression other than the condition (3.11) for a general permutation.

In fact, for a given permutation matrix I
(\pi )
n with its maximum folding \scrI (\pi )

n ,
whether a UPT in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ is obtainable by unfolding \scrI (\pi )
n also depends on

the nk's that satisfy (3.2). As an example, let n= 8 and \pi = \{ 1,2,3,5,4,6,7,8\} , i.e.,
I
(\pi )
8 is obtained by swapping the fourth and fifth rows of I8. Denote \scrT = \scrI (\pi )

8 , whose
nonzero entries are

t111111, t112112, t121121, t122211, t211122, t212212, t221221, t222222 = 1.

Obviously \scrT = \scrI (\pi )
8 (\{ 1\} ,\{ 2\} ,\{ 3\} ,\{ 4\} ,\{ 5\} ,\{ 6\} ) is a UPT in \BbbR 2\times 2\times 2\times 2\times 2\times 2

+ , the same
as any mode transpose of \scrT . However, no UPT in \BbbR 4\times 4\times 4

+ is obtainable by unfolding
\scrT ; in other words, unfolding \scrT to any 4\times 4\times 4 tensor strictly increases the spectral
norm. Of course there exists a permutation matrix I

(\pi )
n with its maximum folding \scrI (\pi )

n
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such that a UPT in any \BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ is obtainable by unfolding \scrI (\pi )

n as long as the
condition (3.2) is satisfied. These include the identity and many others. As another
example, if n= 6, for any permutation \pi of \{ 1,2, . . . ,6\} , a UPT in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ with

(3.2), i.e., \BbbR 2\times 2\times 3\times 3
+ , \BbbR 2\times 3\times 6

+ , and \BbbR 6\times 6
+ , is obtainable by unfolding \scrI (\pi )

6 .
Mode transpose of a UPT must be a UPT by Definition 3.8 via a permutation

of \{ \BbbI 1, \BbbI 2, . . . , \BbbI d\} . In fact, slice permutation of a UPT is also a UPT, but it actually

originates from another permutation matrix I
(\pi \prime )
n , i.e., is obtainable by unfolding

another \scrI (\pi \prime )
n . Obviously, multiplication by a positive constant of a UPT must be

an extreme tensor as well. We conjecture that these fully characterize the extreme
tensors. With Theorem 3.1 and an affirmative answer to the following conjecture, we
can conclude a complete story.

Conjecture 3.9. The lower bound (3.1) is achieved by and only by a UPT up
to multiplication by a positive constant.

On the other hand, suppose that \scrT \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ with the condition (3.2) is

an extreme tensor. Upon multiplying a positive constant, we may let \| \scrT \| \sigma = 1 and

\| \scrT \| = (
\prod d

k=1 nk)
1
4 . By Proposition 3.3, \scrT must be a zero-one tensor with

\sqrt{} \prod d
k=1 nk

nonzero entries that must be evenly distributed among mode-k slices for every k. This
condition is not sufficient to extreme tensors. One other condition to extreme tensors
is that any fiber contains at most one nonzero entry, as otherwise picking two nonzero
entries of the fiber of the tensor \scrT and constructing a rank-one tensor \scrX whose only
nonzero entries correspond to the two entries of \scrT and are assigned values 1\surd 

2
will

make \| \scrT \| \sigma \geq \langle \scrT ,\scrX \rangle =
\surd 
2. However, combining these two necessary conditions is

still not sufficient. For example, let \scrT \in \BbbB 2\times 2\times 4\times 4 whose nonzero entries are

t1111, t1132, t1214, t1243, t2122, t2131, t2223, t2244 = 1

but in fact

\| \scrT \| \sigma \geq 
\biggl\langle 
\scrT , 1\surd 

2
(\bfite 1 + \bfite 2)\otimes \bfite 2 \otimes 

1\surd 
3
(\bfite 1 + \bfite 2 + \bfite 4)\otimes 

1\surd 
2
(\bfite 3 + \bfite 4)

\biggr\rangle 
=

2\surd 
3
> 1,

where \bfite i denotes a vector whose ith entry is one and others are zeros.
While it remains difficult to tighten the above necessary conditions to extreme

tensors, they can be sufficient for some special cases.

Proposition 3.10. Let \scrT \in \BbbB n1\times n2\times \cdot \cdot \cdot \times nd with
\sqrt{} \prod d

k=1 nk nonzero entries sat-
isfy that

1. any fiber of \scrT has at most one nonzero entry;

2. any mode-k slice of \scrT has

\surd \prod d
k=1 nk

nk
number of nonzero entries for k =

1,2, . . . , d.
If nj =

\prod 
1\leq k\leq d, k \not =j nk for some 1\leq j \leq d, then \scrT is a UPT, hence an extreme tensor.

Proof. Suppose without loss of generality that j = d. Since
\prod d - 1

k=1 nk = nd =\sqrt{} \prod d
k=1 nk, we may let M = \scrT (\{ 1,2, . . . , d - 1\} ,\{ d\} )\in \BbbB nd\times nd and M has nd nonzero

entries. It suffices to show that M is a permutation matrix since \scrT can be unfolded
by the maximum folding of M and \| \scrT \| \sigma \leq \| M\| \sigma .

As

\surd \prod d
k=1 nk

nd
= 1, any mode-d slice of \scrT has exactly one nonzero entry, implying

that any mode-2 slice (column) of M has exactly one nonzero entry. Moreover, any
mode-d fiber of \scrT has at most one nonzero entry, implying that any mode-2 fiber
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(row) of M has at most one nonzero entry. Since M has nd nonzero entries and nd
rows, any row of M has exactly one nonzero entry. Therefore, M is a permutation
matrix.

To conclude our discussions on extreme tensors, upon scaling to make spectral
norms being one, we have in general\bigl\{ 

\scrT \in \BbbB n1\times n2\times \cdot \cdot \cdot \times nd : \scrT is a UPT
\bigr\} 

\subseteq 

\left\{   \scrT \in \BbbB n1\times n2\times \cdot \cdot \cdot \times nd : \| \scrT \| \sigma = 1 and \| \scrT \| =

\sqrt{}    d\prod 
k=1

nk

\right\}   
\subsetneq 

\left\{   \scrT \in \BbbB n1\times n2\times \cdot \cdot \cdot \times nd :
Any mode-k slice of \scrT has

\surd \prod d
k=1 nk

nk
nonzero entries and

any fiber of \scrT contains no more than one nonzero entry

\right\}   .

Conjecture 3.9 concerns whether the first inclusion is an equality or not, while Proposi-
tion 3.10 indicates that both inclusions become an identity when nj =

\prod 
1\leq k\leq d, k \not =j nk

for some j. We also validated this fact for n=
\sqrt{} \prod d

k=1 nk = 4,6,9 with the help of a
computer.

4. Related problems. With the help of the story in section 3, in particular
Theorem 3.1, we shall develop various results on the extreme ratios in several contexts.

4.1. General nonnegative tensors. The condition (3.2) in Theorem 3.1 im-

mediately implies that any nj is no more than
\prod 

1\leq k\leq d, k \not =j nk because
\sqrt{} \prod d

k=1 nk can
be divided by any nj . On the other hand, for a tall tensor where one dimension is very
large, i.e., nj \geq 

\prod 
1\leq k\leq d, k \not =j nk for some j, the extreme ratio between the spectral and

Frobenius norms can be easily obtained; cf. [19, Proposition 2.3].

Proposition 4.1. If positive integers n1, n2, . . . , nd \geq 2 and nj \geq 
\prod 

1\leq k\leq d, k \not =j nk
for some 1\leq j \leq d, then

(4.1) \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ) =

\left(  \prod 
1\leq k\leq d, k \not =j

nk

\right)   - 1
2

,

obtained by and only by a tensor whose mode-j matricization is a submatrix of I
(\pi )
nj

(permutation matrix), up to multiplication by a positive constant.

Theorem 3.1 and Proposition 4.1 perfectly match in the intersection where nj =\prod 
1\leq k\leq d, k \not =j nk, i.e., Proposition 3.10. The extreme ratio keeps the same one 1\surd 

nj

and is obtained by and only by a tensor whose mode-j matricization is I
(\pi )
nj up to

multiplication by a positive constant. For a space other than those nk's required in
Theorem 3.1 and Proposition 4.1, the extreme ratio is generally unknown. However,
Theorem 3.1 is enough to provide a general idea about the extreme ratio since it
includes the case of n\times n\times \cdot \cdot \cdot \times n tensors of order d when d is even or n is a complete
square.

Corollary 4.2. For n\times n\times \cdot \cdot \cdot \times n tensors of order d and n\geq 2, if d is even,
then

\phi (\BbbR n\times n\times \cdot \cdot \cdot \times n
+ ) = n - 

d
4 ,
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and if d is odd, then

n - 
d
4 \leq \phi (\BbbR n\times n\times \cdot \cdot \cdot \times n

+ )\leq min
\bigl\{ \bigl( \surd 

n+ 1 - 1
\bigr)  - d

2 , n - 
d - 1
4

\bigr\} 
.

Proof. The case of even d follows immediately from Theorem 3.1, as does the
lower bound of odd d.

For the first upper bound of odd d, let p2 \leq n \leq (p+ 1)2  - 1 where p \in \BbbN . We
have that

\surd 
n+ 1 - 1\leq p. By the monotonicity of the extreme ratio (Lemma 2.8),

\phi (\BbbR n\times n\times \cdot \cdot \cdot \times n
+ )\leq \phi (\BbbR p2\times p2\times \cdot \cdot \cdot \times p2

+ ) = (p2) - 
d
4 \leq 

\bigl( \surd 
n+ 1 - 1

\bigr)  - d
2 ,

where the equality follows Theorem 3.1.
For the second upper bound of odd d, again by Lemma 2.8, the extreme ratio for

n\times n\times \cdot \cdot \cdot \times n tensors of order d must be no more than that for n\times n\times \cdot \cdot \cdot \times n tensors
of order d - 1, which is n - 

d - 1
4 since d - 1 is even.

The first upper bound for odd d nails down the asymptotic order of magnitude
for \phi (\BbbR n\times n\times \cdot \cdot \cdot \times n

+ ), which is O(n - 
d
4 ) no matter whether d is even or odd. However,

this upper bound for odd d can be quite loose, especially for small n, in which case
the second upper bound is able to compensate.

We remark that the order of magnitude for \phi (\BbbR n\times n\times \cdot \cdot \cdot \times n
+ ) can also be obtained

via an example of Theorem 3.1 using the norm compression inequality of tensors [20,
Theorem 5.1].

Theorem 4.3. If a nonnegative tensor \scrT \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ satisfies \| \scrT \| \sigma 

\| \scrT \| = \alpha ,

then there exists a nonnegative tensor \scrT m \in \BbbR n1
m\times n2

m\times \cdot \cdot \cdot \times nd
m

+ satisfying \| \scrT m\| \sigma 

\| \scrT m\| = \alpha m

for any positive integer m. If \scrT is further symmetric, then \scrT m is also symmetric.

For illustration, there is a nonnegative tensor \scrT \in \BbbR 4\times 4\times \cdot \cdot \cdot \times 4
+ of order d such that

\| \scrT \| \sigma 

\| \scrT \| = 4 - 
d
4 by Theorem 3.1. Then by Theorem 4.3 there exists a nonnegative tensor

\scrT m \in \BbbR 4m\times 4m\times \cdot \cdot \cdot \times 4m

+ of order d such that \| \scrT m\| \sigma 

\| \scrT m\| = 4 - 
dm
4 for any positive integer m.

This provides a general upper bound O(n - 
d
4 ) for \phi (\BbbR n\times n\times \cdot \cdot \cdot \times n

+ ) if we set n = 4m,
while the lower bound is obtained by Theorem 3.1. In any case, this confirmed order
of magnitude trivially beats the best known upper bound for \phi (\BbbR n\times n\times n

+ ), O(n - 0.584)
in [20, Theorem 5.3], whereas ours is O(n - 0.75) for d= 3.

In fact, it is not difficult to see that the order of magnitude for \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ )

is O((
\prod d

k=1 nk)
 - 1

4 ) controlled by Theorem 4.3 with an appropriate example in The-
orem 3.1, as long as they are not tall tensors, whose ratio is provided by (4.1) in
Proposition 4.1. In order to get an explicit upper bound instead of an order of mag-
nitude, we now apply Theorem 3.1 again to estimate \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ ) using powers
of two.

Theorem 4.4. If positive integers n1, n2, . . . , nd \geq 2 and nj \leq 
\prod 

1\leq k\leq d, k \not =j nk for
any 1\leq j \leq d, then

(4.2) \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ )\leq 2

d+1
4

\Biggl( 
d\prod 

k=1

nk

\Biggr)  - 1
4

.

Proof. Let 2ak \leq nk < 2ak+1 where ak \in \BbbN for k = 1,2, . . . , d. We estimate the
upper bound in three cases below.

If \BbbR 2a1\times 2a2\times \cdot \cdot \cdot \times 2ad

+ is a space of tall tensors, we may without loss of generality let\prod d - 1
k=1 2

ak \leq 2ad . By Lemma 2.7, \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nk
+ ) is upper bounded by the ratio of
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its mode-d matricization, \phi (\BbbR nd\times 
\prod d - 1

k=1 nk

+ ), which is equal to 1\surd 
nd

since nd \leq 
\prod d - 1

k=1 nk.

Therefore, \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nk
+ ) is upper bounded by

1
\surd 
nd

\leq (nd2
ad)

 - 1
4 \leq 

\Biggl( 
nd

d - 1\prod 
k=1

2ak

\Biggr)  - 1
4

\leq 

\Biggl( 
nd

d - 1\prod 
k=1

nk
2

\Biggr)  - 1
4

= 2
d - 1
4

\Biggl( 
d\prod 

k=1

nk

\Biggr)  - 1
4

.

If \BbbR 2a1\times 2a2\times \cdot \cdot \cdot \times 2ad

+ is not tall and further
\sum 

k=1 ak is even, then by Lemma 2.8
and Theorem 3.1, \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nk

+ ) is upper bounded by

\phi (\BbbR 2a1\times 2a2\times \cdot \cdot \cdot \times 2ad

+ ) =

\Biggl( 
d\prod 

k=1

2ak

\Biggr)  - 1
4

\leq 

\Biggl( 
d\prod 

k=1

nk
2

\Biggr)  - 1
4

= 2
d
4

\Biggl( 
d\prod 

k=1

nk

\Biggr)  - 1
4

.

Finally, if \BbbR 2a1\times 2a2\times \cdot \cdot \cdot \times 2ad

+ is not tall and
\sum d

k=1 ak is odd, we need to truncate the
largest 2ak , say 2ad without loss of generality, by half in the above estimate. This is

to keep \BbbR 2a1\times 2a2\times \cdot \cdot \cdot \times 2ad - 1

+ not tall while making
\sum d - 1

k=1 ak +(ad  - 1) even. Therefore,
\phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nk

+ ) is upper bounded by

\phi (\BbbR 2a1\times 2a2\times \cdot \cdot \cdot \times 2ad - 1

+ ) =

\Biggl( 
1

2

d\prod 
k=1

2ak

\Biggr)  - 1
4

\leq 

\Biggl( 
1

2

d\prod 
k=1

nk
2

\Biggr)  - 1
4

= 2
d+1
4

\Biggl( 
d\prod 

k=1

nk

\Biggr)  - 1
4

.

The desired upper bound (4.2) is proved by combining the three cases.

As an example for nonnegative tensors of order 3, one has

(n1n2n3)
 - 1

4 \leq \phi (\BbbR n1\times n2\times n3
+ )\leq 2(n1n2n3)

 - 1
4

if no nk exceeds the product of the other two.
We conclude this subsection by combining Theorem 3.1, Proposition 4.1, and

Theorem 4.4.

Corollary 4.5. If nd is the largest among positive integers n1, n2, . . . , nd \geq 2,
then

min

\Biggl\{ 
d\prod 

k=1

nk,

d - 1\prod 
k=1

nk
2

\Biggr\}  - 1
4

\leq \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ )\leq 2

d+1
4 min

\Biggl\{ 
d\prod 

k=1

nk,
d - 1\prod 
k=1

nk
2

\Biggr\}  - 1
4

.

4.2. Symmetric tensors. We now study the extreme ratio between the spectral
and Frobenius norms in the space of symmetric tensors. By applying homogeneous
polynomial mapping discussed in section 2.2, we can show that for any \BbbF , \phi (\BbbF nd

sym) is
no more than \phi (\BbbF n\times n\times \cdot \cdot \cdot \times n) multiplied by a constant depending only on d.

Theorem 4.6. For any \BbbF and positive integers d and n,

\phi (\BbbF dn\times dn\times \cdot \cdot \cdot \times dn)\leq \phi (\BbbF (dn)d

sym )\leq 
\surd 
d!d - d\phi (\BbbF n\times n\times \cdot \cdot \cdot \times n)\leq 

\surd 
d!\phi (\BbbF dn\times dn\times \cdot \cdot \cdot \times dn).

Proof. The lower bound is trivial since \BbbF nd

sym is a subset of \BbbF n\times n\times \cdot \cdot \cdot \times n for any
n\in \BbbN . To show the upper bound, let \scrT \in \BbbF n\times n\times \cdot \cdot \cdot \times n such that

\phi (\BbbF n\times n\times \cdot \cdot \cdot \times n) =
\| \scrT \| \sigma 
\| \scrT \| 

.
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Consider the multilinear form \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle where each \bfitx k is a variable
vector of dimension n. According to section 2.2, there is a unique symmetric tensor

\scrZ \in \BbbF (dn)d

sym such that

\langle \scrZ ,\bfitx \otimes \bfitx \otimes \cdot \cdot \cdot \otimes \bfitx \rangle = \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle ,

where \bfitx = ((\bfitx 1)T, (\bfitx 2)T, . . . , (\bfitx d)T)T is a variable vector of dimension dn. \scrZ can be
partitioned to dd block tensors in \BbbF n\times n\times \cdot \cdot \cdot \times n and there are exactly d! nonzero blocks,
each of which is equal to \scrT 

d! or its mode transpose. We thus have

\| \scrZ \| 2 = d! \cdot \| \scrT \| 2

(d!)2
=

\| \scrT \| 2

d!
.

On the other hand, since \scrZ is symmetric, it follows by Banach's classical result (The-
orem 2.5) that

\| \scrZ \| \sigma = max
\| \bfitx \| 2=1

| \langle \scrZ ,\bfitx \otimes \bfitx \otimes \cdot \cdot \cdot \otimes \bfitx \rangle | 

= max\sum d
k=1 \| \bfitx k\| 2=1

| \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle | 

= max
\| \bfitx k\| = 1\surd 

d
, k=1,2,...,d

| \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle | 

= d - 
d
2 max
\| \bfitx k\| =1, k=1,2,...,d

| \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle | 

= d - 
d
2 \| \scrT \| \sigma ,

where the third equality is due to\Biggl( 
d\prod 

k=1

\| \bfitx k\| 

\Biggr) 1
d

\leq 

\Biggl( 
1

d

d\sum 
k=1

\| \bfitx k\| 2
\Biggr) 1

2

=
1\surd 
d

and the upper bound is attained only when all \| \bfitx k\| 's are the same.
Therefore, we obtain

(4.3) \phi (\BbbF (dn)d

sym )\leq \| \scrZ \| \sigma 
\| \scrZ \| 

=
d - 

d
2 \| \scrT \| \sigma 

(d!) - 
1
2 \| \scrT \| 

=
\surd 
d!d - d\phi (\BbbF n\times n\times \cdot \cdot \cdot \times n),

which can generate an upper bound if an asymptotic upper bound of \phi (\BbbF n\times n\times \cdot \cdot \cdot \times n)
is available. Even without this information, we can still obtain

\phi (\BbbF (dn)d

sym )\leq 
\surd 
d!d - d\phi (\BbbF n\times n\times \cdot \cdot \cdot \times n)

\leq 
\surd 
d!d - d \cdot 

\surd 
d
d
\phi (\BbbF dn\times dn\times \cdot \cdot \cdot \times dn)

=
\surd 
d!\phi (\BbbF dn\times dn\times \cdot \cdot \cdot \times dn),

where the last inequality is obtained by applying Lemma 2.8 repeatedly for d times.

Theorem 4.6 states that the asymptotic order of magnitude for \phi (\BbbF nd

sym) is the
same as that for \phi (\BbbF n\times n\times \cdot \cdot \cdot \times n) for any \BbbF . For instance, it was pointed out in [7]

that the order of magnitude for \phi (\BbbR n\times n\times \cdot \cdot \cdot \times n) is O(n - 
d - 1
2 ) and so this is also for

\phi (\BbbR nd

sym). While Kozhasov and Tonelli-Cueto [16] recently obtained asymptotic upper
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bounds for both \phi (\BbbR nd

sym) and \phi (\BbbC nd

sym) by using sophisticated probabilistic analysis,
our approach is very simple. In fact, Theorem 4.6 can be used to improve the constant
of their estimation. Specifically, [16, Theorem 1.1] indicates that \phi (\BbbC n\times n\times \cdot \cdot \cdot \times n) \leq 
32
\surd 
d lndn - 

d - 1
2 . Applying Theorem 4.6, we have

\phi (\BbbC (dn)d

sym )\leq 
\surd 
d!d - d\phi (\BbbC n\times n\times \cdot \cdot \cdot \times n)\leq 32

\surd 
d lndn - 

d - 1
2 \cdot 

\surd 
d!d - d = 32

\surd 
d! lnd (dn) - 

d - 1
2 ,

(4.4)

a better estimate than \phi (\BbbC nd

sym) \leq 36
\surd 
d! lndn - 

d - 1
2 stated in [16, Theorem 1.2], at

least when n is a multiple of d or tends to infinity. In any case, the asymptotic order
of magnitude for both \phi (\BbbR nd

sym) and \phi (\BbbC nd

sym) is O(n - 
d - 1
2 ) for fixed d.

Let us turn to study \phi (\BbbR nd

+sym). When d is even, we know from section 3 that
there is a zero-one tensor \scrT whose standard matricization is an identity matrix and
this \scrT is indeed an extreme tensor. However, \scrT itself may not be symmetric unless
d= 2. We now provide another construction that only applies to nonnegative tensors.

Theorem 4.7. If \scrT \in \BbbR n\times n\times \cdot \cdot \cdot \times n
+ \setminus \{ \scrO \} and

\sum 
\pi \scrT \pi \in \BbbR nd

+sym where the summand
is taken over all permutations of \{ 1,2, . . . , d\} , then

\| 
\sum 

\pi \scrT \pi \| \sigma 
\| 
\sum 

\pi \scrT \pi \| 
\leq 
\surd 
d!
\| \scrT \| \sigma 
\| \scrT \| 

.

As a consequence, one has

(4.5) \phi (\BbbR n\times n\times \cdot \cdot \cdot \times n
+ )\leq \phi (\BbbR nd

+sym)\leq 
\surd 
d!\phi (\BbbR n\times n\times \cdot \cdot \cdot \times n

+ ).

Proof. The number of different permutations of \{ 1,2, . . . , d\} is d!. Any entry of\sum 
\pi \scrT \pi is the sum of d! entries of \scrT . Its square must be larger than or equal to the

sum of squares for these d! entries because the square of sum is larger than or equal
to the sum of squares for nonnegative numbers. Each entry of \scrT appears exactly d!
times in

\sum 
\pi \scrT \pi . Therefore, by summing over all the squares for the entries of

\sum 
\pi \scrT \pi ,

it is easy to see that \| 
\sum 

\pi \scrT \pi \| 2 \geq d!\| \scrT \| 2.
Besides, the triangle inequality implies that \| 

\sum 
\pi \scrT \pi \| \sigma \leq 

\sum 
\pi \| \scrT \pi \| \sigma = d!\| \scrT \| \sigma 

by Proposition 2.2. Combining the two inequalities, we have

\| 
\sum 

\pi \scrT \pi \| \sigma 
\| 
\sum 

\pi \scrT \pi \| 
\leq d!\| \scrT \| \sigma \surd 

d!\| \scrT \| 
=
\surd 
d!
\| \scrT \| \sigma 
\| \scrT \| 

.

It is easy to see that
\sum 

\pi \scrT \pi represents the generality of tensors in \BbbR nd

+sym. Taking
the minimum over all \scrT \in \BbbR n\times n\times \cdot \cdot \cdot \times n

+ \setminus \{ \scrO \} leads to the upper bound of (4.5), while
its lower bound is trivial.

Let us apply Theorems 4.6 and 4.7 to get exact estimates of \phi (\BbbR nd

+sym).

Corollary 4.8. If d is even, then

n - 
d
4 \leq \phi (\BbbR nd

+sym)\leq 

\left\{     
d!

1
2 d - 

d
4 n - 

d
4 , n

d \in \BbbN ,
d!

1
2 d - 

d
4 (n+ 1 - d) - 

d
4 , n\geq d,

d!
1
2n - 

d
4 , n\geq 2,
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and if d is odd, then

n - 
d
4 \leq \phi (\BbbR nd

+sym)\leq 

\left\{       
d!

1
2 d - 

d
4

\bigl( \surd 
n+ d - 

\surd 
d
\bigr)  - d

2 , n
d \in \BbbN ,

d!
1
2 d - 

d
4

\bigl( \surd 
n+ 1 - 

\surd 
d
\bigr)  - d

2 , n\geq d,

d!
1
2 min

\bigl\{ \bigl( \surd 
n+ 1 - 1

\bigr)  - d
2 , n - 

d - 1
4

\bigr\} 
, n\geq 2.

Proof. The lower bounds are obvious by Theorem 3.1 and \phi (\BbbR n\times n\times \cdot \cdot \cdot \times n
+ ) \leq 

\phi (\BbbR nd

+sym). We now focus on the upper bounds.
If d is even, then by Theorem 4.6 and Corollary 4.2,

\phi (\BbbR (dn)d

+sym)\leq 
\surd 
d!d - d\phi (\BbbR n\times n\times \cdot \cdot \cdot \times n

+ ) =
\surd 
d!d - dn - 

d
4 = d!

1
2 d - 

d
4 (dn) - 

d
4 .

To obtain a uniform upper bound for any m \geq d, we let dn \leq m \leq d(n + 1)  - 1,
implying that dn\geq m+ 1 - d. By the monotonicity,

\phi (\BbbR md

+sym)\leq \phi (\BbbR (dn)d

+sym)\leq d!
1
2 d - 

d
4 (dn) - 

d
4 \leq d!

1
2 d - 

d
4 (m+ 1 - d) - 

d
4 .

The last upper bound for even d is immediate from Theorem 4.7 and Corollary 4.2.

If d is odd, by applying the upper bound \phi (\BbbR n\times n\times \cdot \cdot \cdot \times n
+ ) \leq 

\bigl( \surd 
n+ 1 - 1

\bigr)  - d
2 in

Corollary 4.2,

\phi (\BbbR (dn)d

+sym)\leq 
\surd 
d!d - d\phi (\BbbR n\times n\times \cdot \cdot \cdot \times n

+ )

\leq 
\surd 
d!d - d

\bigl( \surd 
n+ 1 - 1

\bigr)  - d
2

= d!
1
2 d - 

d
4

\bigl( \surd 
dn+ d - 

\surd 
d
\bigr)  - d

2 .

For any m\geq d, by letting dn\leq m\leq d(n+ 1) - 1, one also has

\phi (\BbbR md

+sym)\leq \phi (\BbbR (dn)d

+sym)\leq d!
1
2 d - 

d
4

\bigl( \surd 
dn+ d - 

\surd 
d
\bigr)  - d

2 \leq d!
1
2 d - 

d
4

\bigl( \surd 
m+ 1 - 

\surd 
d
\bigr)  - d

2 .

Finally, the last upper bound for odd d is immediate from Theorem 4.7 and Corol-
lary 4.2.

The bound obtained by Theorem 4.7 that works only for \BbbR + is neat and uniform
for all n compared to the bound obtained by Theorem 4.6 that works for any \BbbF ,
however, with a price of d

d
4 when n tends to infinity, as seen from Corollary 4.8.

4.3. Extreme ratio between Frobenius and nuclear norms. We now study
the extreme ratio between the Frobenius norm and the nuclear norm. By the duality
between the spectral and nuclear norms, it was shown in [9] that

(4.6) \psi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) = \phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) and \psi (\BbbF nd

sym) = \phi (\BbbF nd

sym) if \BbbF =\BbbC ,\BbbR 

and the two extreme ratios can be obtained by the same tensor. With this fact and
Theorem 4.6 for symmetric tensors, applying the best estimate of \phi (\BbbF n\times n\times \cdot \cdot \cdot \times n) for
\BbbF =\BbbC ,\BbbR [16, Theorem 1.1], we obtain the following estimates. The proof is similar to
the discussion for (4.4).

Corollary 4.9. If \BbbF =\BbbC ,\BbbR , then

n - 
d - 1
2 \leq \phi (\BbbF nd

sym) =\psi (\BbbF nd

sym)\leq 

\Biggl\{ 
32

\surd 
d! lndn - 

d - 1
2 , n

d \in \BbbN ,
36

\surd 
d! lndn - 

d - 1
2 , n\geq 2.

However, (4.6) did not close the topic for nonnegative tensors. To our surprise,
\psi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ ) and \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ) are in general different.
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Theorem 4.10. If positive integers n1, n2, . . . , nd \geq 2, then

\psi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd)\leq \psi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ )\leq 

\surd 
2\psi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd),

and if n\geq 2, then

\psi (\BbbR nd

sym)\leq \psi (\BbbR nd

+sym)\leq 
\surd 
2\psi (\BbbR nd

sym).

Proof. The lower bound is obvious since \BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ is a subset of

\BbbR n1\times n2\times \cdot \cdot \cdot \times nd . For the upper bound, let \scrT \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd be an extreme tensor
for the ratio \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd) where \| \scrT \| \sigma = 1 and \| \scrT \| = \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd) - 1.

Decompose \scrT = \scrT +  - \scrT  - where \scrT + keeps positive entries of \scrT and makes other
entries zero while  - \scrT  - keeps negative entries of \scrT and makes other entries zero.
Obviously, both \scrT + and \scrT  - are nonnegative tensors. Since \| \scrT \| 2 = \| \scrT +\| 2 + \| \scrT  - \| 2,
we may assume without loss of generality that \| \scrT +\| 2 \geq 1

2\| \scrT \| 2.
Since \| \scrT \| \sigma = 1, by the dual norm property (Lemma 2.4), one has \| \scrT +\| \ast \geq 

\langle \scrT +,\scrT \rangle = \| \scrT +\| 2. This implies that

\psi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ )\leq \| \scrT +\| 

\| \scrT +\| \ast 
\leq \| \scrT +\| 

\| \scrT +\| 2
=

1

\| \scrT +\| 
\leq 

\surd 
2

\| \scrT \| 
=
\surd 
2\phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd).

Since \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd) = \psi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd) by (4.6), we obtain \psi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ) \leq \surd 

2\psi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd).

The bounds for \psi (\BbbR nd

+sym) can be shown in a similar way by noticing that both
\scrT + and \scrT  - are symmetric as long as \scrT is symmetric.

Applying the estimates in the literature [19, 16] as well as Theorem 4.6 for sym-
metric tensors, we are able to nail down the asymptotic order of magnitude for the
extreme ratios. The following uniform bounds are obtained using the bounds in [16],

although the constant of the upper bound for \psi (\BbbR nd

+sym) can be slightly improved
using Theorem 4.6, such as that in Corollary 4.9.

Corollary 4.11. If positive integers n1, n2, . . . , nd \geq 2, then

1\sqrt{} 
min1\leq j\leq d

\prod 
1\leq k\leq d, k \not =j nk

\leq \psi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ )\leq 32

\surd 
2d lnd\sqrt{} 

min1\leq j\leq d

\prod 
1\leq k\leq d, k \not =j nk

,

and if n\geq 2, then

n - 
d - 1
2 \leq \psi (\BbbR nd

+sym)\leq 24
\surd 
2d! lndn - 

d - 1
2 .

Compared with Corollary 4.5, \psi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ) and \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ ) have dif-
ferent asymptotic orders of magnitude for d \geq 3, except that for tall tensors where
max1\leq j\leq d nj \geq min1\leq j\leq d

\prod 
1\leq k\leq d, k \not =j nk (this does include the matrix case and the

vector case), we have

\phi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) =\psi (\BbbF n1\times n2\times \cdot \cdot \cdot \times nd) =
1\sqrt{} 

min1\leq j\leq d

\prod 
1\leq k\leq d, k \not =j nk

for any \BbbF \supseteq \BbbB .

For symmetric tensors, \phi (\BbbR nd

+sym) and \psi (\BbbR nd

+sym) are also in different orders of mag-
nitude for d\geq 3 compared with Corollary 4.8, while they are the same in the matrix
case and the vector case.
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4.4. Low dimensions. While the extreme ratio for nonnegative tensors is gen-
erally understood, it is always a temptation to look into some low dimension cases. In
this part we examine \phi (\BbbR n1\times n2\times n3

+ ) for 2\leq n1, n2, n3 \leq 4 and \phi (\BbbR n3

+sym) for 2\leq n\leq 4.

For \phi (\BbbR n1\times n2\times n3
+ ), it suffices to check 2\leq n1 \leq n2 \leq n3 \leq 4 because of Lemma 2.6.

The cases for \phi (\BbbR 2\times 2\times 4
+ ) = 1

2 and \phi (\BbbR 4\times 4\times 4
+ ) = 1\surd 

8
are already included in Theo-

rem 3.1, i.e., they satisfy (3.2). To obtain \phi (\BbbR 2\times 2\times 2
+ ), we need to use \phi (\BbbC 2\times 2\times 2) = 2

3
[8] as well as the following observation.

Proposition 4.12. \phi (\BbbC n1\times n2\times \cdot \cdot \cdot \times nd)\leq \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ).

The main reason is that the definition of the spectral norm for nonnegative tensors
remains unchanged by extending to the complex field, i.e., if \scrT \in \BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ , then

\| \scrT \| \sigma = max
\| \bfitx k\| =1,\bfitx k\in \BbbR nk

+

| \langle \scrT ,\bfitx 1\otimes \bfitx 2\otimes \cdot \cdot \cdot \otimes \bfitx d\rangle | = max
\| \bfitx k\| =1,\bfitx k\in \BbbC nk

| \langle \scrT ,\bfitx 1\otimes \bfitx 2\otimes \cdot \cdot \cdot \otimes \bfitx d\rangle | .

To see why, first we have

max
\| \bfitx k\| =1,\bfitx k\in \BbbR nk

+

| \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle | \leq max
\| \bfitx k\| =1,\bfitx k\in \BbbC nk

| \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle | .

On the other hand, for any \bfitx k \in \BbbC nk with \| \bfitx k\| = 1, one has | \bfitx k| \in \BbbR nk
+ with

\| | \bfitx k| \| = 1 where | \bfitx k| takes the componentwise modulus of \bfitx k, and further

| \langle \scrT ,\bfitx 1\otimes \bfitx 2\otimes \cdot \cdot \cdot \otimes \bfitx d\rangle | \leq | \langle | \scrT | , | \bfitx 1| \otimes | \bfitx 2| \otimes \cdot \cdot \cdot \otimes | \bfitx d| \rangle | = | \langle \scrT , | \bfitx 1| \otimes | \bfitx 2| \otimes \cdot \cdot \cdot \otimes | \bfitx d| \rangle | ,

implying that

max
\| \bfitx k\| =1,\bfitx k\in \BbbC nk

| \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle | \leq max
\| \bfitx k\| =1,\bfitx k\in \BbbR nk

+

| \langle \scrT ,\bfitx 1 \otimes \bfitx 2 \otimes \cdot \cdot \cdot \otimes \bfitx d\rangle .

With this equivalence, \BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ can be taken as a subset of \BbbC n1\times n2\times \cdot \cdot \cdot \times nd for

the optimization problem (1.1), leading to Proposition 4.12. Therefore, we have
\phi (\BbbR 2\times 2\times 2

+ )\geq 2
3 .

Proposition 4.12 implies that if a nonnegative tensor achieves \phi (\BbbC n1\times n2\times \cdot \cdot \cdot \times nd),
then it also achieves \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd

+ ). This is true for the space of symmetric tensors
as well. In fact, there is a tensor [20, Example 5.2] \scrT \in \BbbB 2\times 2\times 2 whose nonzero entries

are t112, t121, and t211 such that \| \scrT \| \sigma 

\| \scrT \| = 2
3 . This leads to \phi (\BbbR 2\times 2\times 2

+ ) = 2
3 . Since this

\scrT is symmetric, we also have \phi (\BbbR 23

+sym) =
2
3 .

Currently we are unable to nail down the exact values of \phi (\BbbR n1\times n2\times n3
+ ) for other

small nk's. We do, however, perform some extensive search over zero-one tensors and
obtain the exact values of \phi (\BbbB n1\times n2\times n3) for 2 \leq n1 \leq n2 \leq n3 \leq 4. They provide
currently the best known upper bounds for \phi (\BbbR n1\times n2\times n3

+ ), which are believed to be
tight. In fact, we would like to make a bold conjecture.

Conjecture 4.13. \phi (\BbbR n1\times n2\times \cdot \cdot \cdot \times nd
+ ) = \phi (\BbbB n1\times n2\times \cdot \cdot \cdot \times nd).

We summarize exact values or bounds of \phi (\BbbR n1\times n2\times n3
+ ) for 2\leq n1 \leq n2 \leq n3 \leq 4 in

Table 2. Except for \phi (\BbbR 2\times 2\times 2
+ ), the lower bound is (n1n2n3)

 - 1
4 and must not be tight

unless (3.2) is satisfied by Theorem 3.1. The upper bound is exactly \phi (\BbbB n1\times n2\times n3),
whose achieved example is also provided.

For symmetric nonnegative tensors, we summarize similar bounds of \phi (\BbbR n3

+sym) for
2 \leq n \leq 4 in Table 3. Except for n = 2 where an exact value is known as mentioned
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Table 2
Lower and upper bounds of \phi (\BbbR n1\times n2\times n3

+ ) for 2\leq n1 \leq n2 \leq n3 \leq 4.

nk's Lower bound \phi (\BbbB n1\times n2\times n3 ) Gap \scrT \in \BbbB n1\times n2\times n3 achieving \phi (\BbbB n1\times n2\times n3 )

2,2,2 0.667 = 2/3 0.667 = 2/3 t112, t121, t211 = 1

2,2,3 0.537 0.577 = 1/
\surd 
3 0.040 t111, t212, t223 = 1

2,2,4 0.500 0.500 t111, t123, t212, t224 = 1

2,3,3 0.485 0.500 0.015 t123, t132, t213, t231 = 1
2,3,4 0.452 0.500 0.048 t114, t132, t213, t222 = 1

2,4,4 0.420 0.447 = 1/
\surd 
5 0.027 t113, t121, t142, t214, t231 = 1

3,3,3 0.439 0.469 0.030 t113, t121, t222, t312, t331 = 1

3,3,4 0.408 0.436 0.028 t122, t131, t211, t224, t312, t333 = 1

3,4,4 0.380 0.408 = 1/
\surd 
6 0.028 t113, t124, t212, t241, t322, t331 = 1

4,4,4 0.354 = 1/
\surd 
8 0.354 = 1/

\surd 
8 t111, t123, t231, t243, t312, t324, t432, t444 = 1

Table 3
Lower and upper bounds of \phi (\BbbR n3

+sym) for 2\leq n\leq 4.

n Lower bound \phi (\BbbB n3

\mathrm{s}\mathrm{y}\mathrm{m}) Gap \scrT \in \BbbB n3

\mathrm{s}\mathrm{y}\mathrm{m} achieving \phi (\BbbB n3

\mathrm{s}\mathrm{y}\mathrm{m})

2 0.667 = 2/3 0.667 = 2/3 t112, t121, t211 = 1

3 0.439 0.471 0.032 t123, t132, t213, t231, t312, t321 = 1

4 0.354 = 1/
\surd 
8 0.385 0.031 t123, t132, t213, t231, t312, t321, t344, t434, t443 = 1

earlier, the lower bounds are the same as that of \phi (\BbbR n\times n\times n
+ ) in Table 2 and must not

be tight. All the upper bounds are from \phi (\BbbB n3

sym).
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