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Abstract—Unsupervised feature selection has attracted remarkable attention recently. With the development of data acquisition

technology, multi-dimensional tensor data has been appeared in enormous real-world applications. However, most existing

unsupervised feature selection methods are non-tensor-based which results the vectorization of tensor data as a preprocessing step.

This seemingly ordinary operation has led to an unnecessary loss of the multi-dimensional structural information and eventually

restricted the quality of the selected features. To overcome the limitation, in this paper, we propose a novel unsupervised feature

selection model: Nonnegative tensor CP (CANDECOMP/PARAFAC) decomposition based unsupervised feature selection, CPUFS for

short. In specific, we devise new tensor-oriented linear classifier and feature selection matrix for CPUFS. In addition, CPUFS

simultaneously conducts graph regularized nonnegative CP decomposition and newly-designed tensor-oriented pseudo label

regression and feature selection to fully preserve the multi-dimensional data structure. To solve the CPUFS model, we propose an

efficient iterative optimization algorithm with theoretically guaranteed convergence, whose computational complexity scales linearly in

the number of features. A variation of the CPUFS model by incorporating nonnegativity into the linear classifier, namely CPUFSnn, is

also proposed and studied. Experimental results on ten real-world benchmark datasets demonstrate the effectiveness of both CPUFS

and CPUFSnn over the state-of-the-arts.

Index Terms—Unsupervised feature selection, nonnegative CP decomposition, optimization algorithm, classification

Ç

1 INTRODUCTION

STATISTICAL learning algorithms often deal with data in
high dimensional spaces. Due to the curse of dimensional-

ity [1], these algorithms need a plethora of data to maintain
their performance. In addition, a lot of redundancy and
noise that inherently reside in the original high dimensional
feature space will lead to confusion and degradation of
learning systems [2]. To this end, the feature selection tech-
nique, which aims to select a small number of highly infor-
mative features, has been extensively studied in the past
few decades. According to the availability of data labels,
feature selection algorithms can be classified into three cate-
gories, namely supervised feature selection [3], [4], semi-
supervised feature selection [5], [6] and unsupervised
feature selection [7], [8]. Since data labels are usually
unavailable or expensive in reality, unsupervised feature
selection has a wider range of applications, but as a price, it
is more challenging due to the lack of guidance from real

data labels [9]. In this paper, we focus on the challenging
unsupervised feature selection.

Unsupervised feature selection methods can be further
grouped into three families, i.e., wrapper, embedded, and
filter methods [10]. Among these methods, filter methods
have better versatility since they select informative features
according to the inner nature of data directly, regardless of
the adopted statistical learning algorithm. On the other
hand, wrapper methods utilize another independent predic-
tive model to select the best performing features for that
specific model, and the embedded methods perform feature
selection and model learning at the same time. Our focus in
this paper is on filter methods for unsupervised feature
selection.

Most real-world data usually have multi-dimensional
representation structures, i.e., they are tensors in contrast
to vectors. For instance, images are two-dimensional,
videos are three-dimensional, and fMRI data are usually
four-dimensional [11]. In order to process multi-dimen-
sional data, almost all existing unsupervised feature selection
methods first vectorize data samples into one-dimensional
vectors, and then conduct feature selection based on the vec-
torized data. However, the intrinsic multi-dimensional data
structure will be discarded by the vectorization. This will lead
to an unnecessary loss of information and eventually impair
the performance of unsupervised feature selection. Neverthe-
less, there are almost no tensor-based unsupervised feature
selection methods in the literature, to the best of our
knowledge.

To avoid the aforementioned negative affect, we incorpo-
rate the tensor CP decomposition approach [12] and pro-
pose a novel unsupervised feature selection method, called
nonnegative tensor CP decomposition based unsupervised
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feature selection (CPUFS), for selecting features from two-
dimensional data. Specifically, we 1) adopt graph regular-
ized nonnegative CP decomposition [13], [14] to generate
pseudo class labels, and 2) design new linear classifier and
feature selection matrix tailored for tensor data to perform
pseudo label regression and feature selection. In this way,
the multi-dimensional structural information of data can be
well preserved in every part of the whole feature selection
process. In terms of solving the proposed CPUFS model, we
put forward an efficient iterative optimization algorithm
with guaranteed convergence. In addition, the computa-
tional complexity of our proposed algorithm scales linearly
in the number of features, which guarantees the efficiency of
feature selection. To further consider the nonnegativity of
the input tensor data and the generated pseudo class labels,
we also propose a variation of CPUFS, named CPUFSnn,
which additionally imposes a nonnegativity constraint on
the linear classifier. Due to the nonnegative linear classifier,
CPUFSnn may select higher quality features. It is also worth
mentioning that, our proposed methods that apply to two-
dimensional data can be easily extended to three or higher
dimensional cases. The framework of our CPUFS method is
illustrated in Fig. 1.

Discussions: This is the first treatise to utilize tensor
decomposition technique for unsupervised feature selec-
tion, to the best of our knowledge. Although it seems that
the extension for unsupervised feature selection from the
matrix-based to the tensor-based is standard, the underly-
ing challenges are far from trivial, due to the following
reasons.

1) Preserving multi-dimensional structural information of
tensor data in every step of the whole feature selection
process can be easily overlooked. An accidental negli-
gence can directly lead to an unnecessary loss of
information. In order to avoid the loss, we incor-
porate nonnegative tensor CP decomposition and
propose new linear classifier and feature selection
matrix.

2) The design of the linear classifier requires a careful
treatment. Distinct from the existing methods
which vectorize the data to perform pseudo label
regression, we design a new linear classifier that
involves multiple parameter matrices (see Sec-
tion 4.1) to preserve the multi-dimensional data
structure.

3) The design of the feature selection matrix is challenging.
As aforementioned, the newly-designed linear clas-
sifier involves multiple parameter matrices. There-
fore, it is highly nontrivial and indeed important
to design a feature selection matrix to integrate
these parameter matrices together, reserve the

preserved information inside them, and serve as
the importance weights of features. The new fea-
ture selection matrix that we design (see Section 4.1)
is able to achieve the aforementioned three points.
Moreover, this can also be extended to higher
dimensional cases.

We highlight our main contributions as below.

1) We propose a novel nonnegative tensor CP decom-
position based unsupervised feature selection
model, CPUFS, that can preserve the multi-dimen-
sional data structure in the whole feature selection
process. A finer model, CPUFSnn, is also pro-
posed by considering the nonnegativity of the
input tensor data and the generated pseudo class
labels.

2) We develop an efficient iterative optimization algo-
rithm with theoretically guaranteed convergence to
solve CPUFS and CPUFSnn models. Moreover, its
computational complexity scales linearly in the num-
ber of features.

3) We evaluate the proposed CPUFS and CPUFSnn
models on ten real-world benchmark datasets.
Experimental results show that our methods outper-
form the state-of-the-arts. In addition, we investigate
parameter sensitivity, running time, empirical con-
vergence speed and distribution of the selected fea-
tures of CPUFS.

The rest of this paper is organized as follows. First,
we review relevant work in Section 2 and introduce
related preliminaries in Section 3. Then, we present our
proposed CPUFS model and its optimization algorithm
as well as its variation in Section 4. We report the experi-
mental results in Section 5 and conclude this paper in
Section 6.

2 RELATED WORK

In this section, we first review relevant non-tensor-based
unsupervised feature selection methods, followed by ten-
sor-based feature extraction and selection methods, with an
emphasis on the former.

2.1 Non-Tensor-Based Unsupervised Feature
Selection

In recent decades, unsupervised feature selection methods
have been extensively studied. Almost all of them are non-
tensor-based and we comprehensively review relevant ones
in the chronological order.

� Laplacian score (LS) [15] evaluates features separately
according to their capabilities to preserve the local
geometrical structure of data.

� Multi-cluster feature selection (MCFS) [16] adopts joint
spectral analysis and ‘1-norm regularized regression
to select informative features that best preserve the
multi-cluster structure of data.

� Unsupervised discriminative feature selection (UDFS) [17]
picks the most discriminative features by simulta-
neously conducting ‘2;1-norm based feature selection
and local discriminative analysis.

Fig. 1. The framework of CPUFS.
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� Feature selection via joint embedding learning and sparse
regression (JELSR) [18] adopts locally linear approxi-

mation to construct similarity graph and unifies

embedding learning and sparse regression to per-

form feature selection.
� Nonnegative discriminative feature selection (NDFS) [19]

jointly exploits correlation between features and
local discriminative information of data.

� Robust unsupervised feature selection (RUFS) [20] simul-
taneously performs robust nonnegativematrix factor-

ization based pseudo class label learning and feature

selection.
� Robust spectral analysis for unsupervised feature selection

(RSFS) [21] performs spectral analysis and sparse
spectral regression at the same time under a robust
joint framework.

� Simultaneous orthogonal basis clustering and feature
selection (SOCFS) [22] uses a new type of target
matrix to perform orthogonal basis clustering that
guides the process of feature selection.

� Unsupervised feature selection with adaptive structure
learning (FSASL) [23] and structured optimal graph fea-
ture selection (SOGFS) [24] jointly perform ‘2;1-norm
based feature selection and local geometrical struc-
ture optimizing.

� Coupled dictionary learning for unsupervised feature
selection (CDLFS) [25] reconstructs data by dictionary
learning and uses the learned representation coeffi-
cients to model data distribution, which will be fur-
ther used for feature selection.

� Generalized uncorrelated regression with adaptive graph for
unsupervised feature selection (URAFS) [26] simulta-
neously performs uncorrelated regression model learn-
ing, ‘2;1-norm based feature selection and maximum
entropy based adaptive graph structure learning.

� Dependence guided unsupervised feature selection
(DGUFS) [27] jointly conducts feature selection and
data clustering while increasing the inter-depen-

dence among the original data, the generated

pseudo labels and the selected features.
� Unsupervised feature selection with row-sparsity con-

straint and optimized graph (RSOGFS) [7] performs
‘2;0-norm based feature selection and adaptive simi-
larity graph learning at the same time.

� Sparse principal component analysis for feature selection
(SPCAFS) [8] imposes an ‘2;p-norm based sparsity
regularization on the projection matrix of principal
component analysis (PCA) [28] for feature selection.

Discussions: All the above-mentioned methods are non-
tensor-based and so they are relative simple to implement.

However, as a price, the multi-dimensional structural infor-

mation of tensor data was lost among all these methods

since they vectorize the data to make them processable.

In contrast, our proposed CPUFS and CPUFSnn models

adopt the nonnegative tensor CP decomposition for gen-

erating pseudo class labels and utilize newly-designed

linear classifier and feature selection matrix for pseudo

label regression and feature selection. They fully pre-

serve the multi-dimensional structural information in

tensor data.

2.2 Tensor-Based Feature Extraction and Selection

2.2.1 Tensor-Based Feature Extraction

Tensor-based feature extraction methods have also attracted
considerable attention recently. However, few of these are
performed on unsupervised feature selection. We first
briefly review tensor-based feature extraction methods.
Although these methods are not oriented for unsupervised
feature selection, they may bring some insightful inspira-
tions to the development of tensor-based feature selection
methods.

� Multilinear principal component analysis (MPCA) [29]
generalizes classical PCA [28] to higher-order cases
to extract features from tensor data.

� Manifold regularization nonnegative Tucker decomposition
(MR-NTD) [30] simultaneously conduct nonnegative
Tucker decomposition and Laplacian regularization to
extract core feature tensors which preserve the local
geometrical structure.

� Tensor robust principal component analysis (TRPCA) [31]
extends robust PCA [32] to the tensor case to extract
features from tensor data while considering outliers
and noise of data. It is similar toMPCA.

� Tensor Bayesian vectorial dimension reduction (TBV-
DR) [33] represents a tensor as a linear combination
of some tensor bases in the same order with the coef-
ficient vector being taken as the dimension-reduced
representation.

� Low-rank tensor decomposition with feature variance max-
imization (TDVM) [34] extracts features from incom-
plete tensor data via simultaneously estimating
missing entry and exploring feature relationships.

2.2.2 Tensor-Based Unsupervised Feature Selection

We review the only tensor-based unsupervised feature
selection in the literature, to the best of our knowledge.

� Graph regularized low-rank tensor representation
(GRLTR) [35] is an embedded feature selection
method that performs low-rank tensor representation
learning, local geometrical structure learning and
‘2;1-norm based feature selection simultaneously.

Discussions: Although GRLTR is a tensor-based method,
the multi-dimensional structural information of data is
lost in the manifold projection process. This is because
GRLTR uses the mode-n matricization to unfold tensor
data and then projects the unfolded data into a low-
dimensional manifold. The manifold projection process
is actually the most important part of feature selection
since the projection matrix is also the feature selection
matrix. In contrast, our proposed CPUFS and CPUFSnn
models take into account the multi-dimensional data
structural information in not only the pseudo label gen-
eration process but also the pseudo label regression and
feature selection processes.

3 PRELIMINARIES

Before presenting our main mathematical models, we intro-
duce some notations and terminologies used in the paper.
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3.1 Notations

Throughout this paper, we use boldface calligraphic letters
to denote tensors, boldface capital letters to denote matrices,
boldface lowercase letters to denote vectors, and italic low-
ercase letters to denote scalars. An element of a vector x, a
matrix X, and a tensor XX is denoted by xi, xij, and xijk,
respectively, depending on the number of indices (a.k.a.,
modes).

For a matrix X 2 Rn1�n2 , xi: and x:j represent the ith row
and the jth column vector of X, respectively. We denote
TrðXÞ to be the trace of X if it is squared, XT to be the trans-
pose of X, and Xþ to be the nonnegative part of X, i.e., zeros
out negative entries. The Frobenius norm of X is denoted by
kXkF and the ‘2;1-norm is denoted by kXk2;1. The Kronecker
product is denoted by �, the Khatri-Rao product is denoted
by �, and the Hadamard product is denoted by �� . Besides,
we use In to denote the n� n identity matrix, Im;n to denote
the top-left m� n truncation of an identity matrix, and 1n to
denote the n-dimensional all-one vector.

For a third-order tensor XX 2 Rn1�n2�n3 , the vector
along the first mode is called the mode-1 fiber (denoted
by x:ij for the ði; jÞth one), the vector along the second
mode is called the mode-2 fiber (denoted by xi:j), and
the vector along the third mode is called the mode-3
fiber (denoted by xij:). The matrix XðiÞ is called the matri-
cization of XX along the ith mode and can be constructed
by arranging the mode-i fibers to be the columns of the
resulting matrix. The mode-i (matrix) product of XX with
a matrix U is denoted by XX �i U. Same as a matrix, the
Frobenius norm of XX is denoted by kXXkF . For conve-
nience, we use X::i and XðiÞ interchangeably to denote the
ith frontal slice of XX . The readers may refer to [12] for
more details on tensor notations and operations. We
summarize frequently used notations in Table 1.

Definition 3.1 (3D tensor diagonal elements). For a tensor
XX 2 Rj�j�k whose frontal slices are square matrices, we use
g-diagðXXÞ 2 Rj�k to denote the diagonal elements of XX , where
the rows of g-diagðXXÞ are composed of the mode-3 fibers of XX
in the form xii: for i ¼ 1; 2; . . . ; j, i.e.,

g-diagðXXÞ ¼

xT11:
xT22:
..
.

xTjj:

2
6664

3
7775 ¼

x111 x112 . . . x11k
x221 x222 . . . x22k
..
. ..

. . .
. ..

.

xjj1 xjj2 . . . xjjk

2
6664

3
7775:

The g-diag operator is illustrated in Fig. 2.

Definition 3.2 (Inverse vectorization). We use vec�1m;n to
denote the inverse vectorization mapping from vectors in
Rmn�1 to matrices in Rm�n, i.e.,

x 7! vec�1m;nðxÞ ¼ vec Inð Þð ÞT�Im
� �

ðIn � xÞ:

Intuitively, the elements in vec�1m;nðxÞ maintains their
column-wise order from x. As an example, for a vector
x0 ¼ ½1; 2; 3; 4; 5; 6; 7; 8	T 2 R8�1, its inverse vectorization

vec�12;4ðx0Þ ¼
1 3 5 7
2 4 6 8

� �
2 R2�4.

3.2 Data Assumptions

Assume that the dataset D ¼ fX1;X2; . . . ;Xng consists of n
samples and each sample Xi 2 Rn1�n2 is represented by a
matrix. The input of our CPUFS method is a data tensor XX 2
Rn1�n2�n whose frontal slices X::i ¼ Xi for i ¼ 1; 2; . . . ; n.
CPUFS aims at ranking these n1n2 features so that the selec-
tion of any specific number of features can be conducted.
Assume that the dataset D is naturally divided into c classes
with each containing at least one sample. We then introduce
a Boolean matrix Y 2 f0; 1gn�c to describe the sample-clus-
ter memberships of D. That is, if Xi belongs to the jth clus-
ter, then yij ¼ 1; otherwise, yij ¼ 0. Following [17], [19],
we define the scaled cluster indicator matrix as C ¼
YðYTYÞ�1=2, which has better properties and serves as a var-
iable to be optimized in our CPUFS model. Notice that
CTC ¼ ðYTYÞ�1=2YTYðYTYÞ�1=2 ¼ Ic.

3.3 Graph Regularization

One of the key points in unsupervised feature selection is
how to preserve the local geometrical structure of data [19],
[23]. This is specifically expressed as forcing geometrically
close samples to have consistent embeddings, which, in our
case, are scaled cluster indicators c:i’s [13]. According
to [13], the local geometrical structure can be effectively
modeled through a weighted k-nearest neighbor graph,
where the nodes represent data samples and the edges rep-
resent the affinity between data samples. In particular, fol-
lowing [13], we can construct a weighted k-nearest neighbor
graph whose adjacency matrix S is computed by

sij ¼ exp
Xi�Xjk k2F
�s2

� �
if Xi 2 N k Xj

� 	
or Xj 2 N k Xið Þ

0 otherwise;

8<
:

whereN kðXiÞ denotes the set of k-nearest neighbors of Xi and
s is the Gaussian kernel width. With the above constructed
weighted k-nearest neighbor graph, the local geometrical
structure can be effectively preserved by minimizing the fol-
lowing objective function [19], [36]

min
C

1

2

Xn
i;j¼1

sij
c:iffiffiffiffiffi
dii
p � c:jffiffiffiffiffiffi

djj
p

�����

�����
2

2

¼ Tr CTLC
� 	

;

TABLE 1
Summary of Frequently-Used Notations

Fig. 2. Illustration of g-diag.
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where L ¼ In �D�1=2SD�1=2 is the normalized graph Lapla-
cian of S andD ¼ diagðS1nÞ is the degree matrix of S.

3.4 CP and Nonnegative CP Decompositions

CP decomposition [14] is the most widely used decomposi-
tion of tensors. For a third-order tensor XX 2 Rn1�n2�n3 , CP
decomposition is to decompose XX as

XX 

Xr0
r¼1

a:r � b:r � c:r ¼ ½½A;B;C		;

where � represents the vector outer product, A 2 Rn1�r0 ,
B 2 Rn2�r0 , C 2 Rn3�r0 , r0 is the desired rank, and the last
equality uses the shorthand ½½A;B;C		 introduced in [37].

The nonnegative CP decomposition is a special case of
CP decomposition in which the given tensor XX is (entry-
wise) nonnegative and all the factor matrices A, B and C are
required to be nonnegative. Besides, it also has equivalence
to the k-means clustering [38]. Usually, solving the nonneg-
ative CP decomposition resorts to minimizing the Frobenius
norm approximation kXX � ½½A;B;C		k2F while keeping A, B
and C nonnegative.

4 NONNEGATIVE CP DECOMPOSITION BASED

UNSUPERVISED FEATURE SELECTION

4.1 Tensor-Oriented Linear Classifier and Feature
Selection Matrix Design

We first propose a new tensor-oriented linear classifier and
feature selection matrix for CPUFS.

Linear classifier design. Since the tensor data is multi-
dimensional, we use the tensor mode-n product to design
tensor-oriented linear classifier1 in order to preserve the
multi-dimensional data structure. Specifically, given a data
tensor XX 2 Rn1�n2�n, we naturally design the linear classi-
fier as g-diagðXX �1 U�2 VÞ where U 2 Rc�n1 and V 2 Rc�n2
are two collaborative components. That is, for every j ¼
1; 2; . . . ; c, uj: and vj: are collaboratively and inseparably
responsible for fitting the jth scaled cluster indicator c:j by
½uj:X

ð1ÞvTj:;uj:X
ð2ÞvTj:; . . . ;uj:X

ðnÞvTj:	T . In such a way, the
multi-dimensional data structure can be well preserved.

Feature selection matrix design. The feature selection matrix
shall be designed based on the parameter matrices U and V
of the linear classifier, while reversing their multi-dimen-
sional information and serving as the importance weights
of features. Specifically, we design an innovative feature
selection matrix ðUT �VT Þ 2 Rn1n2�c. The reason is as fol-
lows. Let us denote ðg-diagðXX �1 U�2 VÞÞT to be Ĉ and con-
sider its element ĉij, the prediction from the linear classifier
indicating whether the ith sample XðiÞ belongs to the jth
cluster or not. It is calculated that

ĉij ¼ uj:X
ðiÞvTj: ¼

Xn1
h¼1

Xn2
g¼1

ujhvjgxhgi:

In this expression, xhgi represents the value of the ðh; gÞth
feature of XðiÞ and ujhvjg can be interpreted as the impor-
tance weight of the ðh; gÞth feature for the jth cluster as it is

irrelevant to the sample index i. Coincidentally, we notice
that the vector ½u1hv1g; u2hv2g; . . .; uchvcg	 happens to be the

ððh� 1Þn2 þ gÞth row of ðUT �VT Þ! Besides, the mapping

ðh; gÞ 7! ðh� 1Þn2 þ g from Zþ � Zþ to Zþ is obviously a

bijection. Therefore, we design the feature selection matrix

as UT �VT .
Discussions: It is worth mentioning that the importance

weight of the ðh; gÞth feature for the jth cluster is composed
of two parts, ujh and vjg. Each part controls the importance
weight of the hth row and the gth column respectively and
independently. Therefore, for features from the same row
or column, the corresponding importance weights are
directly correlated. This mechanism endows the importance
weights of features with the multi-dimensional structural
characteristics. We will show how this mechanism appears
in reality in Section 5.6.

4.2 The Optimization Model

The main tools for developing CPUFS have been already
introduced or established in Section 3 and Section 4.1. We
now propose the CPUFS model, followed by detailed
explanations for each term and each constraint. The optimi-
zation model is formulated as

min
A;B;C;U;V;Y

XX � ½½A;B;C		k k2FþnTr CTLC
� 	

þ a g-diag XX �1 U�2 Vð Þð ÞT�C
���

���
2

F
þb UT �VT

�� ��
2;1

s.t. A;B;C � 0;C ¼ Y YTY
� 	�12;Y 2 f0; 1gn�c; (1Þ

where n;a and b are parameters to balance different terms
in the objective function, c and n are the number of latent
classes and data samples, respectively, XX 2 Rn1�n2�n, A 2
Rn1�c, B 2 Rn2�c, C 2 Rn�c, L 2 Rn�n, U 2 Rc�n1 and V 2
Rc�n2 are defined similarly as in Section 3.2, Section 3.3, Sec-
tion 3.4 and Section 4.1. The explanations of each term and
constraint in (1) are as follows.

� kXX � ½½A;B;C		k2F with A;B;C � 0 is the standard
nonnegative tensor CP decomposition of data tensor
XX . It is responsible for generating pseudo class labels
C while preserving the multi-dimensional structural
information.

� TrðCTLCÞ is the graph regularizer. It aims to capture
the intrinsic geometrical structure of data so that the
generated pseudo class labels of similar data sam-
ples are kept as consistent as possible.

� kðg-diagðXX �1 U�2 VÞÞT � Ck2F is the pseudo label
regression of our newly-designed linear classifier
g-diagðXX �1 U�2 VÞ to the generated pseudo class
labels C. The Frobenius norm is adopted to measure
the discrepancy.

� kUT �VTk2;1 is the ‘2;1-norm based row-sparsity reg-
ularizer for the feature selection matrixUT �VT . The
‘2;1-norm imposed on the matrix forces its rows to be
sparse. As the rows of the feature selection matrix
encode the importance weights of different features,
the smaller the ‘2-norm of a certain row, the less the
correlation between the corresponding feature and
the pseudo cluster labels C, and hence the less
importance of that feature.

1. Note that the tensor contracted product [39] cannot be adopted
here as otherwise the multi-dimensional data structure would be lost.
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� C ¼ YðYTYÞ�12 with Y 2 f0; 1gn�c is a combinatorial
constraint that enforces C to meet the requirements
of being a scaled cluster indicator matrix.

Generally speaking, the first two terms in the objective
function of (1) try to learn pseudo cluster labels while pre-
serving the local geometrical structure of data whereas the
last two terms aim at fitting learned pseudo cluster labels
by a linear classifier with sparsity regularization. The two
parts can guide each other in the iterative optimization pro-
cess. However, due to the discrete nature of the constraints,
(1) is very hard to be solved. In order to solve the problem,
some relaxation and reformulation are needed and we will
discuss these in the next subsection.

4.3 Solution Method

4.3.1 CPUFS Reformulation

The most difficult part of (1) lies in the binary constraint C ¼
YðYTYÞ�12 with Y 2 f0; 1gn�c. One common approach to
overcome this is to relax C as a continuous variable. How-
ever, directly relaxing C to be continuous may bring severe
negative effects. For instance, the learned C might be a very
dense matrix and deteriorate its cluster indicating precision.

Notice that C has an important property, i.e., CTC ¼ Ic (see
Section 3.2), which can get rid of most undesirable solutions.
Therefore, we first relax (1) to be

min
A;B;C;U;V

XX � ½½A;B;C		k k2FþnTr CTLC
� 	

þ a g-diag XX �1 U�2 Vð Þð ÞT�C
���

���
2

F
þb UT �VT

�� ��
2;1

s.t. A;B;C � 0;CTC ¼ Ic:

Notice that the nonnegativity and orthogonality simulta-
neously imposed on C still make the objective function hard
to optimize. Similar to [22], we propose another equivalent
optimization problem

min
A;B;C;F;U;V

XX � ½½A;B;C		k k2FþnTr CTLF
� 	

þ a g-diag XX �1 U�2 Vð Þð ÞT�F
���

���
2

F
þb UT �VT

�� ��
2;1

s.t. A;B; F � 0; F ¼ C;CTC ¼ Ic;

where F is an auxiliary matrix to alleviate the difficulty of
optimization. By adding a penalty function hkC� Fk2F
which describes the cost of violating the constraint F ¼ C to
the objective function, we can reformulate the above optimi-
zation problem to be

min
A;B;C;F;U;V

XX � ½½A;B;C		k k2FþnTr CTLF
� 	þ h C� Fk k2F

þ a g-diag XX �1 U�2 Vð Þð ÞT�F
���

���
2

F
þb UT �VT

�� ��
2;1

s.t. A;B; F � 0;CTC ¼ Ic; (2Þ

where h is a large constant to ensure that F and C are
sufficiently close. This reformulation has greatly reduced
the difficulty to solve the optimization model as each
matrix variable has at most one constraint. In what fol-
lows, we propose an efficient algorithm for the reformu-
lated model.

4.3.2 Optimization Algorithm Design

The optimizationmodel (2) remains nonconvex and cannot be
solved directly albeit its difficulty has been greatly alleviated.
However, due to the separable nature of the six matrix varia-
bles, it can be solved one by one cyclically by fixing others
and iteratively improved. Therefore, we propose the follow-
ing iterative algorithmvia alternative updating.

Updating A: Updating A with other variables fixed leads
to a standard NMF formulation [40]

min
A�0

Xð1Þ �A C� Bð ÞT
���

���
2

F
;

whose updating rule is

A A��
Xð1Þ C� Bð Þ

A C� Bð ÞT C� Bð Þ ;

where the division is performed entry-wisely.
Updating B: Similar to updating A, updating B with other

variables fixed also leads to a standardNMF formulation

min
B� 0

Xð2Þ � B C�Að ÞT
���

���
2

F
;

whose updating rule is

B B��
Xð2Þ C�Að Þ

B C�Að ÞT C�Að Þ :

Updating C: The subproblem relevant to C is

min
CTC¼ Ic

Xð3Þ � C B�Að ÞT
���

���
2

F
þnTr CTLF

� 	þ h C� Fk k2F ;

which can be equivalently reformulated as

min
CTC¼ Ic

C� 2Xð3Þ B�Að Þ � nLFþ 2hF
� 	�� ��2

F
:

Lemma 4.1 (Orthogonal Procrustes problem [41]). Given
two matrices P 2 Rn�m and Q 2 Rn�d, the optimization prob-
lem

min
~T~TT ¼ Im

P~T�Q
�� ��2

F

has an analytical solution

~T ¼ UIm;dV
T ;

where U 2 Rm�m and V 2 Rd�d are formed by the left and
right singular vectors of PTQ via singular value decomposi-
tion, respectively.

By letting P ¼ Ic, ~T ¼ CT , andQ ¼ 2ðB�AÞTXT
ð3Þ � nFTLT þ

2hFT in Lemma 4.1, the solution of the subproblem of
updating C can be obtained as

C VCIn;cU
T
C;

where UC and VC are formed by the left and right singular
vectors of 2ðB�AÞTXT

ð3Þ � nFTLT þ 2hFT , respectively.
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Updating F: The subproblem relevant to F is

min
F� 0

a g-diag XX �1 U�2 Vð Þð ÞT�F
���

���
2

F
þnTr CTLF

� 	

þ h C� Fk k2F ;
which can be equivalently reformulated as

min
F� 0

F� a g-diag XX �1 U�2 Vð Þð ÞTþhC� n
2L

TC

aþ h

�����

�����
2

F

:

The optimal updating rule for F is obviously

F 
a g-diag XX �1 U�2 Vð Þð ÞTþhC� n

2L
TC

� �
þ

aþ h
: (3)

UpdatingU andV: The subproblemassociated toU andV is

min
U;V

a g-diag XX �1 U�2 Vð Þð ÞT�F
���

���
2

F
þb UT �VT

�� ��
2;1
;

which is an unconstrained optimization problem.

Theorem 4.1. The function

a g-diag XX �1 U�2 Vð Þð ÞT�F
���

���
2

F
þb UT �VT

�� ��
2;1
;

is convex with respect to U (and with respect to V).

Proof. The proof can be found in the supplemental
material. tu
Although the subproblem associated to U (and to V) is a

convex optimization problem, it is impossible to derive a
closed-form solution via first-order optimality conditions.
Therefore, we adopt the simple gradient descent method.
Denote the objective function of this subproblem as J U;V,
the gradients are then computed as

@J U;V

@U
¼ 2a

Xn
k¼ 1

diag e:kð ÞVXðkÞ
T þ b V�� 2Q

� 	
�� U; (4Þ

@J U;V

@V
¼ 2a

Xn
k¼ 1

diag e:kð ÞUXðkÞ þ bðU�� 2QT Þ�� V; (5Þ

where E ¼ g-diagðXX �1 U�2 VÞ � FT , V�� 2 ¼ V�� V, and

Q is the element-wise reciprocal of vec�1n2;n1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððUT �VT Þ�� ðUT �VT ÞÞ1c

q
Þ. We then optimize U and V

alternatively via the gradient descent method.

Summary: Based on the discussion above, we summarize
the detailed alternating updating algorithm in Algorithm 1.
The algorithm first constructs the graph Laplacian and ran-
domly initializes all factor matrices (Lines 1-2). Afterwards, it
alternately updates A and B by multiplicative rules derived
from the classical NMF method (Lines 4-5), updates C and F
analytically (Lines 6-7), and updates U and V by the gradient
descent method (Lines 8-13). These steps are performed itera-
tively until some stopping criteria are met. We can then select
features according to the ‘2-norms of rows ofUT �VT .

Algorithm 1. The optimization algorithm for CPUFS

Input: Data tensor XX 2 Rn1�n2�n, parameters h, n, a, b, learn-
ing rate u and number of selected features p.
Output: The p selected features.
1: Construct the weighted k-nearest neighbor graph and

compute L accordingly, as in Section 3.3;
2: Set t 0, initialize At, Bt, Ct, Ft, Ut, Vt randomly;
3: while t < F1 and not converged do

4: Update Atþ1  At��
Xð1ÞðCt�BtÞ

AtðCt�BtÞT ðCt�BtÞ
;

5: Update Btþ1  Bt��
Xð2ÞðCt�Atþ1Þ

BtðCt�Atþ1ÞT ðCt�Atþ1Þ
;

6: Update Ctþ1  VCIn;cU
T
C, where 2ðBtþ1 �Atþ1ÞTXT

ð3Þ�
nFTt L

T þ 2hFTt ¼ UCSSCV
T
C;

7: Update Ftþ1  1
aþh ðaðg-diagðXX �1 Ut �2 VtÞÞT þ hCtþ1

� n
2L

TCtþ1Þþ;
8: Set t  0, and set Ut  Ut, Vt  Vt;
9: while t < F2 and not converged do

10: Update Utþ1  Ut � u
@JU;V

@U jU¼Ut ;V¼Vt ;F¼Ftþ1 and

Vtþ1  Vt � u
@JU;V

@V jU¼Utþ1;V¼Vt ;F¼Ftþ1 in order, with
@JU;V

@U ,
@JU;V

@V computed via (4) and (5);

11: t  t þ 1;
12: end while
13: Update Utþ1  Ut and Vtþ1  Vt;
14: t tþ 1;
15: end while
16: return the p selected features corresponding to the largest

p rows of UT
t �VT

t in terms of the ‘2-norm.

4.4 Convergence Analysis

The convergence of Algorithm 1 can be theoretically
guaranteed. To show this, we denote the objective function
of (2) to be J ðA;B;C; F;U;VÞ.
Theorem 4.2. Given a small enough learning rate u,
J ðA;B;C; F;U;VÞ is nonincreasing in each iteration of Algo-
rithm 1 and converges to a local minimum.

Proof. The proof consists of four parts as follows.

1) J ðA;B;C; F;U;VÞ is bounded below: We first show
that when CTC ¼ Ic, the term nTrðCTLFÞ þ hkC�
Fk2F is bounded below. By expanding the squared
norm and then completing the square for F, this
term is equal to

h F� C� n

2h
LC

� �����
����
2

F

þ nTr CTLC
� 	� n2

4h
Tr CTL2C

� 	
:

Note that both L and L2 are positive semidefinite.
Since CTC ¼ Ic, the columns of C are orthonormal
vectors. This leads to TrðCTLCÞ � 0 and
TrðCTL2CÞ 
Pn

i¼1 �
2
i where �i is the ith largest

eigenvalue of L. Thus, we have

nTr CTLF
� 	þ h C� Fk k2F� �

n2

4h

Xn
i¼1

�2
i :

Therefore, J ðA;B;C; F;U;VÞ is bounded below
by � n2

4h

Pn
i¼1 �

2
i by noticing that all the other terms

in J ðA;B;C; F;U;VÞ are obviously nonnegative.
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2) Updating A and B: Our proposed multiplicative
updating rules for A and B are directly derived
from NMF counterparts and are guaranteed to
decrease the objective functions of respective sub-
problems. Therefore, one has

J ðAtþ1;Btþ1;Ct; Ft;Ut;VtÞ 
 J ðAt;Bt;Ct; Ft;Ut;VtÞ:

3) Updating C and F: Since both C and F are updated
by closed-form optimal solutions of respective
subproblems, one has

J ðAtþ1;Btþ1;Ctþ1; Ftþ1;Ut;VtÞ

J ðAtþ1;Btþ1;Ct; Ft;Ut;VtÞ:

4) UpdatingU andV: SinceU andV are updated via the
gradient descentmethod, givena small enough learn-
ing rate u, it is guaranteed that the objective function
is decreasing in every gradient descent iteration t !
t þ 1 for t ¼ 0; 1; . . . ;F2 � 1. Thus,we have

J ðAtþ1;Btþ1;Ctþ1; Ftþ1;Utþ1;Vtþ1Þ

J ðAtþ1;Btþ1;Ctþ1; Ftþ1;Ut;VtÞ:

By combining the last three inequalities, we conclude
that

J ðAtþ1;Btþ1;Ctþ1; Ftþ1;Utþ1;Vtþ1Þ

J ðAt;Bt;Ct; Ft;Ut;VtÞ:

Therefore, the objective values computed by Algorithm 1
converges to a local minimum as the iterations are nonin-
creasing and bounded below. tu

4.5 Computational Complexity Analysis

We now analyze the asymptotic computational complexity
of Algorithm 1 step by step as follows. As in reality, we
assume that c� n.

1) Updating A: One must compute C� B first whose
computational complexity is Oðn2ncÞ. Besides, com-
puting the multiplicative updating rule costs
Oðn1n2ncþ n2ncþ n2nc

2 þ n1c
2 þ n1cþ n1cÞ time as

we compute ðC� BÞT ðC� BÞ first instead of AðC�
BÞT . Thus, the total time complexity of updating A is
Oðn1n2ncþ n2nc

2Þ.
2) Updating B: Similar to the above, the time complexity

of updating B is Oðn1n2ncþ n1nc
2Þ.

3) Updating C: One must compute Q ¼ 2ðB�AÞTXT
ð3Þ �

nFTLT þ 2hFT first whose computational complexity is
Oðn2cþ n1n2ncÞ. Besides, conducting singular value
decomposition by bi-diagonalization andQR algorithm
on that matrix costs Oðn2cÞ time. Finally, computing
VCIn;cU

T
C needs Oðn2cÞ time. Thus, the total time com-

plexity of updatingC isOðn1n2ncþ n2cÞ.
4) Updating F: Computing items in the parenthesis in

(3) requires Oðn1n2ncþ n2nc
2 þ n2cÞ time as we

compute XX �1 U first instead of XX �2 V. Picking the
nonnegative entries on those items costs OðncÞ time.
Thus, the total time complexity of updating F is
Oðn1n2ncþ n2nc

2 þ n2cÞ.

5) Updating U and V: To compute
@JU;V

@U and
@JU;V

@V , one
needs to compute E and Q in advance, whose
computational complexities are Oðn1n2ncþ n2nc

2Þ
and Oðn1n2cÞ, respectively. Besides, since diagðekÞ is
a diagonal matrix, computing

@JU;V

@U and
@JU;V

@V costs
the same Oðn1n2ncÞ time. Thus, the total time com-
plexity for one iteration of the gradient descent loop
is Oðn1n2ncþ n2nc

2Þ.
To summarize, as the maximum numbers of iterationsF1

and F2 are all constants, the total asymptotic complexity for
each iteration of Algorithm 1 is Oðn1nc

2 þ n2nc
2 þ n1n2ncþ

n2cÞ, where ni is the number of mode-i features for i ¼ 1; 2,
n is the number of samples, and c is the number of latent
classes.

Discussions: Compared with other relevant unsupervised
feature selection methods, such as NDFS whose computa-
tional complexity is Oððn1n2Þ3 þ n2cÞ, CPUFS bypasses the
curse of dimensionality from the algorithmic aspect. The
computational time for our method scales linearly in the
number of features n1n2.

4.6 CPUFSnn: A Variation of the CPUFS Model

The model CPUFS can be modified to incorporate the
nonnegativity of U and V if required. In our CPUFS set-
ting, the pseudo cluster indicator matrix C and the data
tensor XX are both nonnegative. Therefore, the linear clas-
sifier should be constrained to be nonnegative as well.
This would benefit the pseudo label fitting process
because nonnegative U and V only allow feature addi-
tions that retain the semantic meanings of the features
but prohibit subtractions or other operations that may
distort the semantic meanings. In order to validate this
hypothesis, we derive a modified CPUFS model, named
CPUFSnn as a comparison, where the nonnegative con-
straint is imposed on both U and V. Specifically, the
CPUFSnn model is

min
A;B;C;U;V;Y

��XX � ½½A;B;C		��2
F
þ nTr C>LC

� 	

þ a
�� g-diag XX �1 U�2 Vð Þð Þ>� C

��2
F
þ b

��U> �V>
��
2;1

s.t. A;B;C;U;V � 0;C ¼ Y Y>Y
� 	�12;Y 2 f0; 1gn�c:

To solve the CPUFSnn model, we apply the same relax-
ation strategy as that for CPUFS in Section 4.3.1 and sub-
sequently the same learning procedure as that for CPUFS
in Algorithm 1 except for the step of updating U and V.
In that step, the projected gradient descent method is
adopted to replace the gradient descent method. We will
compare the performance of both CPUFS and CPUFSnn in
the experiments.

5 EXPERIMENTS

5.1 Experimental Settings

5.1.1 Experimental Environment and Datasets

All the experiments are implemented in MATLAB R2020b
and run on a Ubuntu server with 3.70-GHz i9-10900K CPU
and 128GB main memory. We perform the experiments on
ten real-world benchmark datasets, including two object clas-
sification datasets (FashionMNIST [42] and COIL20 [43]), five
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face classification datasets (ORL [16], UMIST [44], Pix-
raw10P2, Orlraws10P3 and JAFFE [45]), and three medical
image classification datasets (BreastMNIST [46], OCTMN-
IST [46] and OrganSMNIST [46]). For all the datasets, we nor-
malize the value of each feature to the range of 0 and 1. Since
the scales of BreastMNIST, OCTMNIST and OrganSMNIST
are too large, we only select 100, 100 and 10 samples from
each class of these three datasets, respectively.We summarize
details of these datasets in Table 2.

5.1.2 Comparative Methods

To validate the effectiveness of our proposed CPUFS and
CPUFSnn3, we compare them with several state-of-the-art
unsupervised feature selection methods4, including AllFea
(a baseline method that simply selects all the original fea-
tures), LapScore5 [15], MCFS6 [16], UDFS6 [17], SOCFS7 [22],
SOGFS [24], RUFS8 [20], RSFS9 [21], JELSR10 [18] and
CDLFS11 [25]. The detailed descriptions for these methods
can be found in Section 2.1. Codes for SOGFS are imple-
mented by ourselves and codes for all other comparative
methods are provided by their original authors as
footnoted.

5.1.3 Parameter Settings

To fairly compare different unsupervised feature selection
methods, we tune all parameters for all methods by a grid-
search strategy in the range of f10�2; 10�1; 1; 10; 102g. For
CPUFS, we set h ¼ 105 across all the datasets, while for
CPUFSnn, we set h ¼ 105 for all but the BreastMNIST,
OCTMNIST and OrganSMNIST datasets where we set h ¼
104 consistently12. For those methods which utilize the
weighted k-nearest neighbor graph, we set the number of
neighbors k ¼ 5 and the Gaussian kernel width s ¼ 1. For
projection-based methods, we set the dimensionality of the

projected subspace as the ground-truth number of classes c,
and for clustering-based methods, we also set the number
of latent classes as c. Besides, we set F1 ¼ 500 and F2 ¼ 2
and define the stopping criterion of Algorithm 1 as reaching
the maximum number of iterations F1.

5.1.4 Evaluation Methodology and Evaluation Metrics

After features have been selected, we evaluate the perfor-
mance of feature selection by conducting k-means clustering
on the selected features and adopt two widely used metrics
accuracy (ACC) and normalized mutual information (NMI) to
quantitatively describe the clustering performance [13]. The
larger the metric values, the better the clustering perfor-
mance, and accordingly the higher the quality of the
selected features. Since the results of the k-means clustering
partly depend on the initialization, we adopt the following
strategy to alleviate the stochastic effects inherently existing
in the evaluation system. Specifically, for every group of the
selected features, we repeat the k-means clustering 20 times
with random initialization and then record the average
result with the obtained standard deviation. For each
method, its clustering results from the optimal parameters
are reported.

5.2 Experiment 1: Clustering on the Selected
Features

In this section, we report and analyze the performance of
different unsupervised feature selection methods in terms
of the clustering performance on the selected features. The
results of clustering performance are shown in Fig. 3 and
Fig. 4 where the shaded area represents the interval
½m� 0:2s;mþ 0:2s	,13 the black curve with bigger diamond
markers represents CPUFS, and the dark blue curve with
smaller diamond markers represents CPUFSnn. Based on
Fig. 3 and Fig. 4, we have the following observations.

1) Feature selection improves data quality. Compared with
the baseline method ALLfea, the k-means clustering
performance based on features selected by most
methods has been enhanced. This shows that the fea-
ture selection can indeed filter out redundant and
noisy features and is thus very important.

2) CPUFS and CPUFSnn outperform the state-of-the-art
methods. In terms of the maximum attainable NMI, at
least one of our proposed methods consistently get
the best performance on all the ten datasets. While in
terms of the maximum attainable ACC, although our
proposed methods are not always the best, they still
outperform other comparative methods remarkably
on all but the FashionMNIST and UMIST datasets.
This has fully demonstrated the effectiveness of
CPUFS and CPUFSnn. We believe that it mainly
attributes to the consideration of incorporating the
multi-dimensional data structure.

3) Both CPUFS and CPUFSnn are competent while their
applicability may vary across different datasets. From
Fig. 3 and Fig. 4, it is hard to determine whether
CPUFS or CPUFSnn is better. For example, on the

TABLE 2
Detailed Statistics of the Ten Datasets

2. See https://jundongl.github.io/scikit-feature/datasets.html.
3. Codes are publicly available at https://github.com/Kwan1997/

CPUFS.
4. We do not compare with the tensor-based unsupervised feature

selection method GRLTR [35] as it is an embedded method and is
beyond the scope of this paper.

5. See https://github.com/ZJULearning/MatlabFunc/.
6. See http://www.cs.cmu.edu/~yiyang/.
7. See https://sites.google.com/site/dyhan0920/.
8. See https://sites.google.com/site/qianmingjie/.
9. See https://github.com/LeiShiCS/RSFS/.
10. See https://sites.google.com/site/houchenping/.
11. See https://github.com/AISKYEYE-TJU/CDLFS-AAAI2016/.
12. Our parameter for h are tested to be adequate enough to dimin-

ish the discrepancy between C and F in both CPUFS and CPUFSnn but
we do not report this part of experimental results due to the page limit.

13. Here, m and s represent the mean and the standard deviation of
the 20 k-means clustering trials, respectively.
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JAFFE dataset, CPUFSnn yields better performance
than CPUFS, while on the ORL dataset, CPUFSnn is
inferior to CPUFS. This suggests that the nonnegativ-
ity of the linear classifier may not always be condu-
cive for feature selection, but in some cases, it does
increase the quality of the selected features.

5.3 Experiment 2: Parameter Sensitivity Analysis

In this section, we analyze the impact of the parameters n, a
and b in CPUFS on the performance of feature selection. In
particular, we alternately vary one of these parameters in
the range of f10�2; 10�1; 1; 10; 102g while fixing the others to
1 and record the feature selection performance (in terms of
NMI) of CPUFS under all possible parameter combinations.
For the interest of space, we only illustrate results on the
FashionMNIST and UMIST datasets in Fig. 5. We have the
following observations:

1) For the FashionMNIST dataset, the performance of
CPUFS is relatively sensitive to these parameters
when the number of selected features is low (say, 50
or 100) while it is relatively nonsensitive in other

cases. Besides, the performance of CPUFS shows a
positive correlation with respect to the number of
selected features.

2) For the UMIST dataset, the performance of CPUFS is
relatively nonsensitive to all these parameters and is
relatively stable with respect to the number of
selected features.

5.4 Experiment 3: Running Time Analysis

In this section, we analyze the running time of our proposed
CPUFS method. As analyzed in Section 4.5, the computa-
tional complexity of CPUFS scales linearly in the number of
features while some previous methods scale cubically. To
validate our analysis, we run CPUFS, NDFS, UDFS and
RSFS on the Pixraw10P and Orlraws10P datasets which
have the largest numbers of features among all the datasets
(and hence are more suitable to compare the running time).
Specifically, we run the four methods on the two datasets
with all tunable parameters fixed to 1 and then record their
accumulative training time within 50 iterations. The experi-
mental results are shown in Fig. 6(a) and Fig. 6(b). We
observe that our CPUFS method takes significantly less

Fig. 3. NMI curves of different unsupervised feature selection methods on the ten datasets.

Fig. 4. ACC curves of different unsupervised feature selection methods on the ten datasets.
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training time than NDFS, UDFS and RSFS. It clearly sup-
ports our theoretical complexity analysis.

5.5 Experiment 4: Convergence Analysis

In this part, we empirically study the convergence speed of
Algorithm 1. In particular, we run CPUFS on the Fashion-
MNIST dataset with all parameters fixed to 1 and then record
its objective function value within 105 iterations. The corre-
sponding convergent curve is shown in Fig. 6(c). As observed,
the objective function value decreases monotonically. More
specifically, it drops rapidly at the very beginning and then
decreases steadily to a stationary point. This validates the con-
vergence theory Theorem 4.2. Moreover, it can be seen from
Fig. 6(c) that the objective function decreases to a low level via
Algorithm 1within only dozens of iterations. This ensures the
efficiency of thewhole feature selection process.

5.6 Experiment 5: Selected Feature Visualization

As discussed at the end of Section 4.1, in the CPUFS model,
the importance weights of features from the same row or the
same column of the original two-dimensional data are
directly correlated. We now empirically show how this corre-
lation appears in practice. In particular, for a specific dataset,
we first retrieve 300 best performing features in terms of NMI
(i.e., these 300 features are exactly the ones that performed the
best in Fig. 3) and then mask these 300 selected features on a
randomly sampled image from that dataset. Since ourmethod
is relatively most similar to RUFS, we also visualize the fea-
tures selected by RUFS following the same routine. We illus-
trate experimental results on the ORL, JAFFE, OCTMNIST,
FashionMNIST, COIL20, BreastMNIST, Pixraw10P and Orl-
raws10P datasets in Table 3. It can be seen that the features
selected by our CPUFSmethod are spatiallymore correlated:

1) On the ORL dataset, the selected features tend to
gather within a (smaller) rectangular sub-region;

2) On the JAFFE and Orlraws10P datasets, the grid-like
characteristic of the selected features is obvious;

3) On the OCTMNIST and BreastMNIST datasets, the
selected features are more likely to stick together;

4) On the FashionMNIST, COIL20 and Pixraw10P data-
sets, the vertical characteristic of the selected features
is very clear.

However, selected features from RUFS show few such
effects. This phenomenon fully demonstrates the effective-
ness of a tensor-basedmethod.We believe that the improved
performance by CPUFS mainly attributes to the better struc-
ture of its selected features.

6 CONCLUSION

In this paper, we proposed a novel unsupervised feature selec-
tion method, namely, nonnegative tensor CP decomposition
based unsupervised feature selection (CPUFS). Distinct from
existing unsupervised feature selection methods, CPUFS takes
into account the multi-dimensional structural information of
data, which is neglected by most existing methods. To solve
the CPUFSmodel, we proposed an efficient iterative optimiza-
tion algorithm and established its convergence. Moreover, the
proposed optimization algorithm scales linearly in the number

Fig. 5. Parameter sensitivity analysis of CPUFS on the FashionMNIST
and UMIST datasets.

Fig. 6. Running time and convergence analyses of CPUFS on the Pix-
raw10P, Orlraws10P and FashionMNIST datasets.

TABLE 3
Visualization of the Selected Features
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of features. A variation of the CPUFS model, called CPUFSnn,
has also been proposed and studied. Extensive experiments
have been conducted on ten real-world benchmark datasets.
The experimental results demonstrated that our proposed
CPUFS andCPUFSnnmethods clearly outperform the state-of-
the-arts. Besides, we also tested the parameter sensitivity and
empirically analyzed the running time and the convergent
speed of CPUFS. It is worth mentioning that our proposed
methods can be easily extended to higher-order tensors.

For future work, one possible direction is how to endow
CPUFS with the ability to handle missing data. In some
real-world scenarios, the data might be incomplete, due to,
e.g., improper data collection or intentional (malicious) cor-
ruption. However, directly applying the proposed CPUFS
method to these scenarios is not favorable as CPUFS does
not admit any built-in mechanism for handling missing
data and may lead to a degraded feature selection perfor-
mance. A possible approach is to adapt missing entry esti-
mation mechanisms for CPUFS. As an example, one can
adopt the strategy introduced in [34] to enhance CPUFS,
i.e., introducing an additional optimization variable YY to
replace XX in the objective function and imposing an equality
constraint that enforces the entries of XX and YY to be identi-
cal in the positions where XX is complete.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for
their valuable comments.

REFERENCES

[1] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731,
pp. 34–37, 1966.

[2] R. O. Duda and P. E. Hart, Pattern Classification. Hoboken, NJ,
USA: Wiley, 2006.

[3] Y. Sun, S. Todorovic, and S. Goodison, “Local-learning-based fea-
ture selection for high-dimensional data analysis,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1610–1626, Sep. 2010.

[4] X. Wu, X. Xu, J. Liu, H. Wang, B. Hu, and F. Nie, “Supervised fea-
ture selection with orthogonal regression and feature weighting,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 1831–1838,
May 2021.

[5] X. Li, Y. Zhang, and R. Zhang, “Semisupervised feature selection
via generalized uncorrelated constraint andmanifold embedding,”
IEEE Trans. Neural Netw. Learn. Syst., early access, Apr. 02, 2021,
doi: 10.1109/TNNLS.2021.3069038.

[6] X. Chen, R. Chen, Q. Wu, F. Nie, M. Yang, and R. Mao,
“Semisupervised feature selection via structured manifold
learning,” IEEE Trans. Cybern., early access, Feb. 26, 2021, doi:
10.1109/TCYB.2021.3052847.

[7] F. Nie, X. Dong, L. Tian, R. Wang, and X. Li, “Unsupervised fea-
ture selection with constrained ‘2;0-norm and optimized graph,”
IEEE Trans. Neural Netw. Learn. Syst., early access, Dec. 25, 2020,
doi: 10.1109/TNNLS.2020.3043362.

[8] Z. Li, F. Nie, J. Bian, D. Wu, and X. Li, “Sparse pca via ‘2;p-norm
regularization for unsupervised feature selection,” IEEE Trans.
Pattern Anal. Mach. Intell., early access, Oct. 19, 2021, doi: 10.1109/
TPAMI.2021.3121329.

[9] X. Lin, J. Guan, B. Chen, and Y. Zeng, “Unsupervised feature
selection via orthogonal basis clustering and local structure pre-
serving,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Jan. 08, 2021, doi: 10.1109/TNNLS.2021.3083763.

[10] S. Solorio-Fern�andez, J. A. Carrasco-Ochoa, and J. F. Mart�ınez-Tri-
nidad, “A review of unsupervised feature selection methods,”
Artif. Intell. Rev., vol. 53, no. 2, pp. 907–948, 2020.

[11] Y. Zhao et al., “Four-dimensional modeling of fmri data via spatio-
temporal convolutional neural networks,” IEEE Trans. Cogn.
Devel. Syst., vol. 12, no. 3, pp. 451–460, Sep. 2020.

[12] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[13] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized non-
negative matrix factorization for data representation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1548–1560, Aug. 2011.

[14] J. D.Carroll and J.-J. Chang, “Analysis of individual differences inmul-
tidimensional scaling via an n-way generalization of ‘Eckart-Young’
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[15] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature
selection,” in Proc. 19th Int. Conf. Neural Inf. Process. Syst., 2006,
pp. 507–514.

[16] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection for
multi-cluster data,” in Proc. 16th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2010, pp. 333–342.

[17] Y. Yang, H. T. Shen, Z.Ma, Z. Huang, and X. Zhou, “‘2;1-norm regu-
larized discriminative feature selection for unsupervised learning,”
in Proc. 21st Int. Joint Conf. Artif. Intell., 2011, pp. 1589–1594.

[18] C. Hou, F. Nie, D. Yi, and Y. Wu, “Feature selection via joint
embedding learning and sparse regression,” in Proc. 22nd Int. Joint
Conf. Artif. Intell., 2011, pp. 1324–1329.

[19] Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu, “Unsupervised feature
selection using nonnegative spectral analysis,” in Proc. 26th AAAI
Conf. Artif. Intell., 2012, pp. 1026–1032.

[20] M. Qian and C. Zhai, “Robust unsupervised feature selection,” in
Proc. 24th Int. Joint Conf. Artif. Intell., 2013, pp. 1621–1627.

[21] L. Shi, L. Du, and Y.-D. Shen, “Robust spectral learning for unsu-
pervised feature selection,” in Proc. 14th IEEE Int. Conf. Data Min-
ing, 2014, pp. 977–982.

[22] D. Han and J. Kim, “Unsupervised simultaneous orthogonal basis
clustering feature selection,” in Proc. 28th IEEE Conf. Comput. Vis.
Pattern Recognit., 2015, pp. 5016–5023.

[23] L. Du and Y.-D. Shen, “Unsupervised feature selection with adap-
tive structure learning,” in Proc. 21st ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2015, pp. 209–218.

[24] F. Nie, W. Zhu, and X. Li, “Unsupervised feature selection with
structured graph optimization,” in Proc. 30th AAAI Conf. Artif.
Intell., 2016, pp. 1302–1308.

[25] P. Zhu, Q. Hu, C. Zhang, and W. Zuo, “Coupled dictionary learn-
ing for unsupervised feature selection,” in Proc. 30th AAAI Conf.
Artif. Intell., 2016, pp. 2422–2428.

[26] X. Li, H. Zhang, R. Zhang, Y. Liu, and F. Nie, “Generalized uncor-
related regression with adaptive graph for unsupervised feature
selection,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 5,
pp. 1587–1595, May 2019.

[27] J. Guo and W. Zhu, “Dependence guided unsupervised feature
selection,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018, pp. 2232–2239.

[28] S. Wold, K. Esbensen, and P. Geladi, “Principal component ana-
lysis,” Chemometrics Intell. Lab. Syst., vol. 2, no. 1-3, pp. 37–52,
1987.

[29] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “MPCA:
Multilinear principal component analysis of tensor objects,” IEEE
Trans. Neural Netw., vol. 19, no. 1, pp. 18–39, Jan. 2008.

[30] X. Li, M. K. Ng, G. Cong, Y. Ye, and Q. Wu, “Mr-ntd: Manifold
regularization nonnegative tucker decomposition for tensor data
dimension reduction and representation,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 8, pp. 1787–1800, Aug. 2017.

[31] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust
principal component analysis: Exact recovery of corrupted low-
rank tensors via convex optimization,” in Proc. 29th IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 5249–5257.

[32] E. J. Cand�es, X. Li, Y. Ma, and J. Wright, “Robust principal compo-
nent analysis?,” J. ACM, vol. 58, no. 3, pp. 1–37, 2011.

[33] F. Ju, Y. Sun, J. Gao, Y. Hu, and B. Yin, “Vectorial dimension
reduction for tensors based on bayesian inference,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 4579–4592, Oct. 2018.

[34] Q. Shi, Y.-M. Cheung, Q. Zhao, and H. Lu, “Feature extraction for
incomplete data via low-rank tensor decomposition with feature
regularization,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 6, pp. 1803–1817, Jun. 2019.

[35] Y. Su, X. Bai, W. Li, P. Jing, J. Zhang, and J. Liu, “Graph regular-
ized low-rank tensor representation for feature selection,” J. Vis.
Commun. Image Representation, vol. 56, pp. 234–244, 2018.

[36] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[37] T.G.Kolda, “Multilinear operators for higher-order decompositions.”
SandiaNational Laboratories, Tech. Rep. SAND2006-2081, 2006.

CHEN ETAL.: UNSUPERVISED FEATURE SELECTION VIA GRAPH REGULARIZED NONNEGATIVE CP DECOMPOSITION 2593



[38] H. Huang, C. Ding, D. Luo, and T. Li, “Simultaneous tensor sub-
space selection and clustering: The equivalence of high order SVD
and k-means clustering,” in Proc. 14th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2008, pp. 327–335.

[39] B. W. Bader and T. G. Kolda, “Algorithm 862: MATLAB tensor
classes for fast algorithm prototyping,” ACM Trans. Math. Softw.,
vol. 32, no. 4, pp. 635–653, 2006.

[40] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Proc. 14th Int. Conf. Neural Inf. Process. Syst.,
2001, pp. 556–562.

[41] T. Viklands, “Algorithms for the weighted orthogonal procrustes
problem and other least squares problems,” Ph.D. dissertation,
Dept. Comput. Sci., Umea

�
Univ., Umea

�
, Sweden, 2006.

[42] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,”
2017, arXiv:1708.07747.

[43] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia object image
library (coil-20)” Columbia Univ., Tech. Rep. CUCS-006-96, 1996.

[44] D. B. Graham and N. M. Allinson, “Characterising virtual eigensigna-
tures for general purpose face recognition” Face Recognit., Theory
Appl., NATOASI Ser. F., Comput. Syst. Sci., vol. 163, pp. 446–456, 1998.

[45] M. J. Lyons, J. Budynek, and S. Akamatsu, “Automatic classifica-
tion of single facial images,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 21, no. 12, pp. 1357–1362, Dec. 1999.

[46] J. Yang, R. Shi, and B. Ni, “Medmnist classification decathlon: A
lightweight automl benchmark for medical image analysis,” in
Proc. 18th IEEE Int. Symp. Biomed. Imag., 2021, pp. 191–195.

Bilian Chen received the PhD degree from The Chinese University of
Hong Kong, Hong Kong, in 2012. She is currently an associate professor
with Xiamen University, Xiamen, China. Her publications appear in IEEE
Transactions on Knowledge and Data Engineering, IEEE Transactions
on Neural Networks and Learning Systems, SIAM Journal on Optimiza-
tion, and Information Sciences. Her research interests include machine
learning, optimization theory, and recommendation system.

Jiewen Guan received the BEng degree from Zhejiang University of
Technology, Hangzhou, China, in 2019. He is currently working toward
the MEng degree with Xiamen University, Xiamen, China. His publica-
tions appear in IEEE Transactions on Neural Networks and Learning
Systems and IEEE Transactions on Knowledge and Data Engineering.
His research interests include the intersection between data mining and
optimization.

Zhening Li is currently with the School of Mathematics and Physics and
the Centre for Operational Research and Logistics in the University of
Portsmouth, Portsmouth, U.K.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2594 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 2, FEBRUARY 2023


